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ABSTRACT

On-line social networks have become a massive communication
and information channel for users world-wide. In particular, the
microblogging platform Twitter, is characterized by short-text mes-
sage exchanges at extremely high rates. In this type of scenario, the
detection of emerging topics in text streams becomes an important
research area, essential for identifying relevant new conversation
topics, such as breaking news and trends. Although emerging topic
detection in text is a well established research area, its application
to large volumes of streaming text data is quite novel. Making scal-
ability, efficiency and rapidness, the key aspects for any emerging
topic detection algorithm in this type of environment.

Our research addresses the aforementioned problem by focus-
ing on detecting significant and unusual bursts in keyword arrival
rates or bursty keywords. We propose a scalable and fast on-line
method that uses normalized individual frequency signals per term
and a windowing variation technique. This method reports key-
word bursts which can be composed of single or multiple terms,
ranked according to their importance. The average complexity of
our method is O(nlogn), where n is the number of messages in
the time window. This complexity allows our approach to be scal-
able for large streaming datasets. If bursts are only detected and
not ranked, the algorithm remains with lineal complexity O(n),
making it the fastest in comparison to the current state-of-the-art.
‘We validate our approach by comparing our performance to similar
systems using the TREC Tweet 2011 Challenge tweets, obtaining
91% of matches with LDA, an off-line gold standard used in sim-
ilar evaluations. In addition, we study Twitter messages related to
the SuperBowl football events in 2011 and 2013.
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1. INTRODUCTION

Social media microblogging platforms, such as Twitter', are char-
acterized by extremely high exchange rates. This quality, as well as
its network structure, makes Twitter ideal for fast dissemination of
information, such as breaking news. Furthermore, Twitter is identi-
fied as the first media source in which important news is posted [10]
and national disasters (e.g. earthquakes, diseases outbreaks) are re-
ported [6].

Each message that is posted on Twitter is called a rweet, and mes-
sages are at most 140-characters long. In addition, Twitter users
connect to each other using a follower/followee directed graph struc-
ture. Users can support and propagate messages by using a re-tweet
feature which boosts the original message by reposting it to the
user’s followers.

Given that Twitter has been adopted as a preferred source for in-
stant news, real-time detection of emerging events and topics has
become one of the priorities in on-line social network analysis. Re-
search on emerging topic detection in text is now focused on the
analysis of streaming data and on-line identification [1]. In par-
ticular, the analysis of microblog text is quite challenging, mostly
because of the large volume and high arrival rate of new data. In
this scenario an important part of the analysis must be performed
in real-time (or close to real-time), requiring efficient and scalable
algorithms.

This problem has generated increasing interest from the private
and academic communities. New models are constantly being de-
veloped to better understand human behavior based on social media
data in interdisciplinary work fields such as sociology, political sci-
ence, economy and business markets [3, 26].

We target the problem of emerging topic detection in short-text
streams by proposing an algorithm for on-line Bursty Keyword De-
tection (BD) (definitions in Figure 1). This in general is considered
to be a first important step in the identification of emerging topics
in this context. Our approach uses windows slicing and window
relevance variation rate analysis on keywords.

We validate our methodology on the TREC Tweet 2011 dataset,
using it to simulate streaming data. Our experiments indicate that
this concept works better at detecting keyword bursts in text streams
than other more complex state-of-the-art solutions based on queue
theory [8, 14, 24]. Also we analyze tweets from the SuperBowl
football events in 2011 and 2013 as case studies. We perform a
detailed discussion on the behavior of noise in bursty keyword sig-
nals which is constituted mostly by stopwords. We compare our
solution to LDA [2] as a ground truth, similarly to prior work [24].
Using LDA in a one-keyword per topic mode, we achieved more
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than 91% topic matches. This is a great improvement over similar
approaches. Moreover, our implementation is efficient, achieving a
complexity of O(nlogn) in the average case, where n is the num-
ber of messages in the current window.

In detail, the contributions of our work are three-fold:

1. We introduce a scalable and efficient keyword burst detec-
tion algorithm for microblog text streams, based on window
slicing and relevance window variations.

2. We present a technique for eliminating non-informative and
irrelevant words from microblog text streams.

3. We present a detailed proof-of-concept system and validate
it on a public dataset.

Definition 1: A keyword is an informative word used in an infor-
mation retrieval system to indicate the content of a document.
Definition 2: A bursty keyword is defined as a word or set of words
that suddenly appear in a text stream at an unusually high rate [14].
Definition 3: A ropic [noun] is a discussion or conversation sub-
ject. In other words, it is a set of keywords with semantic associa-
tion.

Definition 4: An event is a topic which in general, corresponds to
a real-world occurrence. It is usually associated with a geographic
location and a time.

Definition 5: The concept of relevance used in this work means:
the representation of a term in a window. In other words "the prob-
ability of occurrence of a term in a Window".

Figure 1: Definitions used in the paper (Oxford Dictionary)

This paper is organized as follows. Section 2 presents an overview
of relevant literature for this work. Section 3 presents a complete
description of our proposal, divided in two parts: the burst detection
algorithm and our proof-of-concept system. Section 4 summarizes
our experimental validation and results on the SuperBowl 2011 and
SuperBowl 2013 events. Section 5 delivers our conclusions and
discuss future work.

2. RELATED WORK

Our work involves research in the areas of event detection and
trend analysis for microblog text streams. In particular our goal is
to identify current popular candidate events listed by most popular
bursty terms in the data stream. In relation to this topic, several ap-
plications exist for detecting events like natural disasters and health
alerts. For example, epidemics [11], wildfires [23], hurricanes and
floods [20], earthquakes and tornados [7, 17].

Events have been modeled and analyzed over time using key-
word graphs [18], link-based topic models [13], and infinite state
automatons [8]. Leskovec et al. [12] perform analyses of memes
for news stories over blogs and news data, and on Twitter data
in [25]. Swan et al. [21,22] deal with constructing overview time-
lines of a set of news stories.

On-line bursty keyword detection is considered as the basis for
on-line emerging topic detection [14]. For topic detection in an off-
line fashion, algorithms such as Latent Dirichlet Allocation (LDA)
[2] or Phrase Graph Generation Method [19] can be used. Statis-
tical methods and data distribution tests can also be used to detect
bursty keywords [8].

Mathioudakis and Koudas introduce Twitter Monitor [14], a sys-
tem that performs detection of topic trends (emerging topics) in
the Twitter stream. Trends are identified based on individual key-
word bursts and are detected in two steps. This system identifies
bursts of keywords by computing the occurrence of individual key-
words in tweets. The system groups keyword trends based on their
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co-occurrences. To detect bursts of keywords, they introduce the
algorithm QueueBurst with the following characteristics: (1) one-
step analysis per keyword, (2) real-time analysis (based on the
tweet stream), (3) adjustable against “false” explosions, and (4)
adjustable against spam. In order to group sets of related bursty
keywords, the authors introduce an algorithm named GroupBurst,
which evaluates co-occurrences in recent tweets. Our current work
focuses on keyword detection up to three term keywords, for which
we compare to QueueBurst in Section 4. Twitter Monitor requires
an intensive pre-processing step for determining its optimal param-
eter settings for each keyword and also for global variables. These
parameter settings must be computed with a historical dataset.

A different approach is presented by Weng et al. [24], with their
system EDCoW (Event Detection with Clustering of Wavelet-based
Signals). EDCoW builds individual word signals by applying wavelet
analysis to word frequencies. It filters away trivial words by look-
ing at their corresponding signal auto-correlations. The remaining
words are clustered to form events with a modularity-based graph
partitioning technique. The wavelet transform is applied to a signal
(time-series) created using the TF-IDF index [5]. Their approach
was implemented in a proof-of-concept system, which they used to
analyze online discussions about the Singapore General Election of
2011.

Another relevant study is that of Naaman et al. [15]. In this work
the authors make two contributions for interpreting emerging tem-
poral trends. First, they develop a taxonomy of trends found in data,
based on a large Twitter message dataset. Secondly, they identify
important features by which trends can be categorized, as well as
the key features for each category. The dataset used by Naaman
et al. consists of over 48 million messages posted on Twitter be-
tween September 2009 and March 2010 by 855,000 unique New
York users. For each tweet in this dataset, they recorded its textual
content, the associated timestamp and the user ID.

3. BURST DETECTION MODEL

We propose a methodology based on time-window analysis. We
compute keyword frequencies, normalize by relevance and com-
pare them in adjacent time windows. This comparison consists
of analyzing variations in ferm arrival rates and their respective
variation percentages per window. A similar notion (Discrete Sec-
ond Derivative) has been used in the context of detection of bursts
in academic citations [4]. We define Relevance Rates (RR) as the
probability of occurrence of a non-stopword term in a window. We
use RR to generalize burst detection making them independent of
the arrival rate. Even though the public Twitter API only provides
a stream which is said to be less than 10% of the actual tweets
posted on Twitter, we believe our method can be easily adapted for
the complete data stream using a MapReduce schema [see Section
4.2.3]. Arrival rates vary periodically (in a non-bursty way) dur-
ing the day; depending on the hour, time zone, user region, global
events and language (shown in Figure 4).

Bursty keywords are ranked according to their relevance varia-
tion rate. Our method avoids the use of statistical distribution anal-
ysis methods for keyword frequencies; The main reason is that this
approach, commonly used in state-of-the-art approaches, increases
the complexity of the process. We show that a simple relevance
variation concept is sufficient for our purposes if we use good stop-
word filter and noise minimization analysis [see section 4.1.1].

To study the efficiency of our algorithm, which we name Win-
dow Variation Keyword Burst Detection, we implement a proof-
of-concept system. The processes involved in this system are five.
These modules are independent of each other and they have been
structured for processing in threads. These modules are: Stream



Listener, Tweets Filterer, Tweets Packing, Window Processing and
Keyword Ranker. This architecture allows us to process all the
input data with linear complexity, making it scalable for on-line
processing.

3.1 Data Pre-Processing

In this stage, data is pre-processed extracting keywords from

each message, so that later on, our burst detection algorithm an-
alyzes them (see Figure 2 and 3). This stage is composed of the
following three modules: (1) Stream Listener, (2) Tweet Filter and
(3) Tweet Packing.
1) Stream Listener Module: This module receives streaming data
in the form of Twitter messages, which can come directly form
the Twitter API or some other source’ . Messages are received in
JSON format®. This data is parsed and encapsulated. After the en-
capsulation of each message it is en-queued in memory for the next
module in the pipeline. It should be noted that message encapsula-
tion is prone to delays caused by the Internet bandwidth connection
and Twitter’s information delivery rate, which can cause data loss.
2) Tweet Filter Module: This module discards messages which
are not written in languages accepted by our system. We perform
language classification using a Naive Bayes classifier. This module
also standardizes tweets according to the following rules:

e Treatment of special characters and separation marks: Re-
placing special characters and removal of accents, apostro-
phes, etc.

e Standardization of data: Upper and lower case conversion
and replacement of special characters.

After normalization and language detection, the tweet is enqueued
into queue @) for posterior analysis.

3) Tweet Packing Module: Filtered and standardized tweets in
queue @1, are grouped into a common set determined by creation
timestamp, shown in Figure 2. This set of tweets, which we refer
to as Bag of Tweets, represent an individual time-window. It is im-
portant to note that the arrival of tweets maintains a chronological
order. In the case that an old or delayed tweet appears, it is in-
cluded in the current window. Each of these windows is sent to the
following stage for processing.

3.2 Bursty Keyword Detection

This process involves two modules. The second module must

wait for the first module to finish processing a window in order to
process an entire window at a time (serial mode). The algorithm
shown in Figure 3 describes this process, where the second module
starts in line 24.
1) Window Processing Module: Each keyword, composed of a
single or adjacent word n-grams, is mapped into a hash table data
structure. This structure manages keywords in addition to the in-
formation of its two adjacent windows and their rates. We consider
as n-grams the n ordered correlative words.

The hash table allows access to keyword information in constant
time for most cases O(1), and in the worst case with complexity of
O(n) when collisions occur. This process is detailed in the algo-
rithm described in Figure 3. This data structure controls the com-
plexity of the algorithm with optimal insertions and search O(1).
2) Keyword Ranker Module: Bursty keywords are included im-
plicitly into the hash table. Therefore, we extract bursty keywords
by discarding those that do not classify as having a positive rele-
vance variation. We discard non-bursty keywords using the criteria

nttp://twitterdj.org/
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Require: Global Queue Q1 of previously filtered tweets, and Global
Queue Q2 of keyword bags. window_time is the earliest timestamp
of the tweets in the same Bag.

Consider window_size as the time length of the window.

> initTime <= null

: while t’ < get_tweet_from_queue(Q1) do

if initTime = null then

initTime < timestamp(t’)

endTime < initTime + window_size

TBag <= ¢

Set initTime to window_time in T Bag
end if

if timestamp(t') < endT'ime then

t" < filter_stopwords(t')

TBag < TBag ] keywords(t") |Jword_nGrams(t'")
else

put(TBag) in Q2

Create new T'Bag

TBag <= ¢

Set endT'ime to window_time in T'Bag

initTime < endT'ime

18: endT'ime < initTime + window_size

19:  endif

20: end while

1o N RN —oPR QN LN —

Figure 2: Packer Thread

Require: Global Queue Q2 of keyword bags, and a Global hash table HT'
mapping < Keyword, < window , windows, rates >>

1: while T Bag < get_bag_from_queue(Q2) do

2:  TotalWords < size(T Bag)

3:  for all word € T Bag do

4: if word ¢ mapped_keywords(HT') then

5: window_time < window_time(T Bag)

6: freq <=0

7: window << window_time, freq > {create a new win-
dow}

8: put_in_hashtable_as_windowl(word, window)

9: else

10: window < get_from_hashtable(word, HT)

11: w_time < window_time(window)

12: b_time < window_time(T Bag)

13: if w_time # b_time then

14: windows < window; for word in HT

15: window_time < window_time(T Bag)

16: freqg <=0

17: window <=< window_time, freq > {create a new

window }

18: put_in_hashtable_as_windowl(word, window)

19: end if

20: Add 1 to freq in window; for word mapped in HT

21: end if

22:  end for

23:  set_relevance_for_each_keyword_with(TotalW ords)
24:  WordRank < ¢
25:  for all mword € mapped_keywords(HT) do

26: window; < get_window (mword, HT)
27: windows <= get_windows (mword, HT)
28: relevance; < get_relevance(window: )
29: relevances < get_relevance(windows)
30: if (relevance; — relenvancez) > 0 then
31: WordRank < WordRank|J mword
32: end if

33:  end for

34:  WordRank' < quickSort(WordRank)
35:  display WordRank'
36: end while

Figure 3: Processor Thread



Table 1: Tweet language classification results
Language % Freq.
English 344 | 4,287,605
Romanic (Neo-Lat) 209 2,599,849
German 2.5 305,228
Others 422 | 5,253,562
TOTAL 100.0 | 12,446,244

described below, this prevents the size of the hash table from grow-
ing out of control:
1. It is the first occurrence of the keyword. We must wait until
the next window to check it again.
2. We observe a negative variation in frequency rates between
adjacent windows.
3. Low arrival rate: Many words do not appear frequently. We
discard these words if the average arrival rate is lower than
1.0 (keywords per time-window).
The remaining keywords are sorted in descending order accord-
ing to their Relevance Variation Rate. Keywords with the highest
variation rate or burstiness are ranked in the top positions.

4. EVALUATION

In this section we explain empirical parameter settings for our
system and perform a validation by comparing it against state-of-
the-art methods. For evaluation and comparison purposes we adapt
the evaluation used in [24] with LDA as a gold standard. LDA is
used to process data off-line and generate topics listed by its most
likely keyword.

4.1 Dataset Description

The datasets used in this experiment are the TREC Tweet 2011
Challenge dataset from the National Institute of Standards and Tech-
nology (NIST*): In addition, we use tweets related to the Super-
Bowl 2013 football event obtained using Twitter API on February
3rd. As part of the TREC 2011 microblog track, Twitter provided
identifiers for approximately 16 million tweets, sampled from its
full data-stream between January 23rd and February 8th, 2011. The
corpus is designed to be a reusable and representative sample of
the Twitter stream. The TREC Tweet 2011 messages are obtained
using a crawler, fed with tweet IDs provided by NIST for down-
loading messages directly from Twitter. As expected, not all mes-
sages were obtained in the downloading process, mostly because
of: the tweet having been removed, transmission or server errors,
or changes made in the access permissions by the owner of the
message. Therefore, we only obtained 12, 446, 244 tweets.

The origin of these messages is random regarding their geo-
graphic location, and their languages. To identify the language of
each message, we use the java library LangDetect® which claims
93% accuracy in the detection of 59 languages in short messages®.
Using this classifier we obtain the classification shown in Table 1.

In this work we only use English, Neo-Lat’ and German lan-
guages. These correspond to 57.8% of the dataset with a total of
7,192,682 messages. The main reasons for selecting these lan-
guages are:

*http://trec.nist.gov/data/tweets/
Shttp://code.google.com/p/language—-detection
®http://shuyo.wordpress.com/2011/11/28/language-detection-
supported-17-language-profiles-for-short-messages/

"Romanic and Romance Languages: Spanish, French, Italian, Por-
tuguese.
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Table 2: Average word count per message

Language Words per Msg
English 7
Romanic (Neo-Lat) 12
German 10

e The use of the space character as a word delimiter.
e Same writing structure order (left to right and top to bottom).
e Same set of character symbols for writing.

In table 2 we show the average number of words per message
in each language. Twitter’s 140-character limit for messages is an
advantage for the filtering and tokenizing steps which take place in
lineal complexity O(wn) using single words, and O(w?n) adding
adjacent word n-grams. The variable n corresponds to the number
of tweets to be processed and w the average number of words per
message. Since w is a constant upper-bound, we conclude that the
complexity of the algorithm described in Figure 2 remains lineal

O(n).

4.1.1 Stopword analysis

We consider stopwords as words used to connect objects, actions
and subjects. Stopwords are omitted in our experiments (see Fig-
ure 2, line 10) and discarded since they do not add semantic value
or represent events.

The Window Variation Keyword Burst Detection (BD) technique
computes keyword arrival frequency in time-windows using a pre-
defined window length that remains constant during the entire pro-
cess. The use of the absolute frequency value is the most intuitive
approach, but it does not work correctly because the arrival rate is
not constant during the day. This is explained in correlation with
sleep hours, work hours, days of the week or season of the year in
which the tweet is posted (many of these changes can show period-
icity in time). Other factors can affect tweet arrival rate behavior,
with an important one being language and geographical location
of the user at that moment. As shown in Figure 4, frequency sig-
nals decrease between 2:00 and 9:00 GMT hours, especially dur-
ing sleeping hours. The signal slowly increases between 9:00 and
17:00 GMT hours, when people are at work. After that, the sig-
nal remains stable until 2:00 GMT the next day. Therefore, we opt
for using Relevance Variation rates for window comparison, which
creates independence between values and the hour of the day.

In Figure 4 we show frequency signals according to the arrival
rate of each language. We observe that country time zone can affect
the behavior of certain keywords. Portuguese tweets are clearly
shifted some hours in comparison to other languages. We believe
that this happens because a large number of tweets in this language
originate in Brazil. Again, this effect is mitigated by the use of
relative rates (or percentages) instead of absolute values.

A common technique to filter or discard stopwords is the use of
predetermined list of stopwords per languages. In social media, es-
pecially in Twitter, the behavior of stopwords is dynamic. This oc-
curs because the message limit of 140-characters forces the user to
reduce or transform their message to utilize less space. Therefore,
stopwords in Twitter messages vary from those of standard docu-
ment lists. To identify stopwords for our experiment in this type
of environment (microblogging), we download standard stopword
lists® and map them onto a frequency histogram of our keyword

8Stopwords  List: http://snowball.tartarus.org/

algorithms/
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Figure 4: Tweet arrival rate per language (GMT timezone): Shows differences between language volumes and the shift in the signals

due to different timezones.
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dataset (made up of the complete vocabulary found in our collec-
tion of tweets). We observe that most stopwords are concentrated
in the area of the histogram which contains words with a high ar-
rival rate. Therefore, we mark as candidate stopwords all keywords
with more than 18, 000 frequency occurrence in our keyword data
set. Nevertheless, by inspecting our stopword candidate list we
see that it still contains some relevant keywords which we do not
wish to mark as stopwords (false negatives). These cases occur be-
cause some relevant keywords have high occurrence rates during
certain time periods. In order to avoid these cases, we compute the
Relative Standard Deviation (RSD) rate’ and use it to describe fre-
quency signal stability of keywords. Intuitively, stopword signals
should be noisier (i.e., have a higher standard_deviation) than
the signal of regular keywords because they do not represent an or-
ganized phenomena. Figure 6 shows that stopwords are twice as
noisy as regular words, therefore we consider this as a parameter
for stopword identification. Also, we measure RSD using different
window sizes (shown in Figure 6) in order to identify the optimal
window size for which stopwords and keywords are less affected by
noise.

Using the previously described methodology, we obtain a final
list of stopwords that contains 18, 631 words. With this, we remove
90% of total word arrivals, making the process significantly faster.
It also reduces the volume of words for the final hash table in
algorithm in Figure 3, therefore requiring less memory. Stopwords
can be updated by performing off-line batch analysis which does
not affect on-line performance.

4.1.2 Determining optimal window size

The stability of the signal (minimization of RSD) helped us de-
termine the optimal window size for our algorithm. This is a crucial
parameter that determines the performance of our solution.

o If the window size is too small, the occurrence of empty win-
dows for a term increases (frequency equal to 0), making the
noise rate increase and frequency rate tend to zero.

e On the other hand, if the window size is too large, the stabil-
ity of the signal becomes constant and bursty keyword detec-
tion is delayed.

Therefore, it seems reasonable to place optimal window size
somewhere between 17 minutes and 2 hours. In practice, we se-
lect windows of 20 minutes for actual tweet arrival rate for fast
detection of bursts. This choice is practical because it divides a
24-hour day exactly, making the analysis easier to understand and
to compare windows from different days. It is important to remark
that this decision of 20 minutes is for the actual Twitter API arrival
rate of tweets that represent less than 10% of the total system. We
expect to reduce the time of the window size if the arrival rate is
higher. The effect of using higher size on windows would not de-
tect bursts because the signal will tend to the average value. Using
20 minutes as window size, we minimize the time of bursts detec-
tion keeping the noise level in the signal to a minimum.

4.2 Comparison to other methods

TwitterMonitor (TM) [14] is one of the earliest works in the field
of detecting emerging topics on Twitter. Its core algorithm named
QueueBurst uses five parameters and concepts of Queue Theory
M/M/1. We used the recommended parameter settings from the
technical paper provided directly to us by the authors, setting the
tolerances ey and €1 to 1072, and the ratio r to 2. The arrival
rates (A\o) per each keyword were calculated using the first week
of tweets of the TREC Tweet 2011 dataset to set each keyword.

Relative Standard (RSD):
Standard_Deviation/Average

Deviation
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Figure 6: Relative standard deviation of keywords and stop-
words: Noise in stopwords is higher than in keywords (non-
stopwords). The 20-minute windows size stabilizes the noise in
both signals keeping the window size as short as possible.

Weng et al. [24] developed EDCoW (Event Detection with Clus-
tering of Wavelet-based Signals), a system that uses queueing tech-
nique for bursty keyword detection [8] and wavelet techniques to
detect trends in Twitter.

As mentioned earlier, LDA (with the Gibbs Sampling technique
for parameter estimation [16]) is a reasonable gold standard for our
evaluation. This follows the approach used in the EDCoW arti-
cle [24] to compare TM and EDCoW with our proposal. Given that
with EDCoW there are no details available for the implementation,
we can only perform a similar experiment and compare results to
TM and our method.

Next, we analyze the complexity of TM, LDA and BD. We can-
not analyze the complexity of EDCoW. It should be noted that LDA
is an off-line method, therefore it competes with an advantage in re-
lation to on-line methods TM, BD (and EDCoW) given that it has
a complete view of the information, as opposed to the limited data
that on-line methods use.

e TM is O(wni), where n is the number of tweets to be pro-
cessed, w is the average number of words per message and %
is the iterations for generating the exponential aleatory vari-
ables for the M/M/1 queue. The parameter ¢ cannot be deter-
mined exactly because of randomness, leaving the complex-
ity of the algorithm in O(ni). This algorithm analyzes each
tweet in one pass, but this property creates delays because it
cannot be parallelized.

e DA is a statistical method that determines k topics that rep-
resent a document, where k is the number of the top events
in that document. Assume we have N documents and a vo-
cabulary of size V. The complexity of mean-field variational
inference for LDA is O(NKV). In this scenario, we as-
sume a document to be the concatenation of all of the tweets
in a same time-window (as in [24]). It should be noted that
LDA does not constitute a perfect gold standard for burst de-
tection in streaming data, but constitutes an approximation.
Some topics might not be bursty and some bursts do not cor-
respond to topics.

o For our Window Variation Keyword Burst Detection (BD) a
threshold 7" can be included in order to truncate the number
of bursty keywords returned. This, and an optimal selection
algorithm [9], reduce complexity of the ranking algorithm to



Table 3: Examples of bursty keywords detected in the TREC Tweet 2011 dataset for February 6th, 2011

Window Time | Top 10 Keywords Tweet Examples
17:20 GMT | liverpool, torres, justinbieber, R .
meircles chelsea super. e berapa" chelsea liverpool?
greenanciyellow bléckan dyel—’ e A little over 6 hours until Super Bowl starts! Do you have everything you
i 2
Tow, ials, bowl need?
oW, commerciass, bow e #BrandBowl - Mullen Leverages @Twitter, @Radian6 to Rank the Best
Super Bowl Ads http://cot.ag/hkLL6H?2 #sb45
e if torres is worth £50m I must be worth about a tenner . Nice one @Leed-
sLadAdam
20:40 GMT inthians, Imeiras, , . o
;i)lrigl alg(r)lsa j(r)) gomecllrl?li)a ggi e @ferpetucco palmeiras perdeu pro Corinthians ? O_O
CesaI: vai ’ ’ ? ’ e 2T 37m. GOOOOOOOOOOOOOOOOLLLLLLLLLLLLLL E DO
’ CORINTHIANS!!!!
o GOOOOOOOOOOOL DO CORINTHIANS! Aleshow faz o dele!
Palmeiras O x 1 Corinthians. #vccomenta
23:20 GMT hristina, bowl, anthem, . . . _ . .
Icla:il(s)rigla azlllri)lirr ao“;ingansule)rer; e National anthem over-under is 1:54. I think Christina Aguilera s hitting
bowl, lea, singing the over. .
e The Superbowl seems to be 90% entertainment, and 10% of the actual
game. #bbcsuperbowl
e superbowl lea michele cantandoooo :)
e Que elegante se ve Christina, yo pense que iba a salir en minifalda con
tanga :P......:0

O(Tn). Because T is constant it remains lineal O(n). This
technique does not require parameters to be reset at run time.
Otherwise, if we decide not to use a threshold, the complete
ranking would take O(n log(n)).

We compare our BD algorithm to the topics returned by LDA
on a one-keyword-per-topic basis. We do this to determine the per-
centage of topic matches on the TREC Tweet 2011 dataset. We also
compared Twitter Monitor with LDA using the same dataset and as-
sumptions, and discuss results obtained similarly in EDCoW [24].

4.2.1 Results and discussion

The comparison of BD and TM against LDA is performed win-
dow by window. We compare the number of keywords that over-
lap between each time-window and their respective match percent-
ages (see Figure 7). Our system BD displays 91% coincidences
with LDA. Comparing TM with LDA, there is only a 3% keyword
match. We also looked at the overlap between bursty keywords
reported by BD and TM, obtaining only a 14% match.

We believe that the low percentage of the coincidences between
LDA and TM corresponds to the sensitivity of TM’s empirical pa-
rameter settings. Also, TM keeps reporting the same keywords in
time because they have not yet been dropped in the following win-
dows (while they do not satisfy the hypothesis Hy of the TM algo-
rithm).

In addition, the results reported by Weng et al. [24] for their
system EDCoW are of a 22% match with LDA in the best case.

Therefore, in our experimental evaluation we observed that our
algorithm (BD) outperformed TM and EDCoW with 91% coinci-
dences with LDA versus 3% and 22% of the other methods re-
spectively. Figure 7 shows the percentage of coincidences against
LDA on the TREC Tweet 2011 Dataset. These percentages were
estimated for each 20-minute time-window in the dataset. The
horizontal-axis considers the beginning of the first window on Jan-
uary 23rd 00:00 hours and that of the last window on February 8th
23:40 hours.
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It should be noted that we acknowledge that LDA is not a per-
fect gold standard for burstiness detection. Nevertheless, we be-
lieve that it constitutes a reasonable approximation. In particular,
LDA detects topics and not all topics text are bursty. For example,
if a topic is constant through the entire dataset, then it is not bursty
(i.e. fan conversations of celebrities such as Justin Bieber). Also,
not all bursts constitute topics, for example random hashtags which
interconnect otherwise unrelated messages (i.e. the popular hash-
tag #fail is put at the end many messages which depict failed
situations).

In addition, we study an interesting event on February 6th, 2011,
due to the Super Bowl XLV. We observe that keywords related to
this event rapidly reach the top positions in the word rank list (see
Table 3). Interestingly, before the Super Bowl started, a soccer
match between Corinthians and Palmeiras was played in Brazil,
which is also shown in the top keywords. Also, keywords related to
Chelsea and Liverpool soccer match displayed burstiness too. On
February 3rd, 2013, the SuperBowl XLVII event occurs as well,
and specific keywords related to the event appear highly ranked
(Black-out, 49ers, Ravens, among others).

Table 3 and 4 show the top-10 keywords of a specific time-
window, and a random sample of tweets from this time period con-
taining some of these keywords. Note that the tweets do not in-
clude all of the keywords which are listed in the first column. In
this example some tweets and keywords contain noise, but this is
normal when important events occur (e.g massive sport matches,
concerts, and other public events).We list keywords ranked accord-
ing to highest burstiness.

4.2.2 Experiment Repeatability

We used a public dataset, openly available libraries and an easy
to acquire computer to make the experiment repeatable. In this ex-
periment we used a Home Personal Computer (PC) with Core2Quad
Q6600 2.4Ghz Intel Processor with 4 cores, 8 GB in RAM using
Linux Ubuntu x64 11.10 version as Operative System. The pro-
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Figure 7: Comparison of the Window Variation Keyword Burst Detection algorithm with TwitterMonitor and LDA

Table 4: Examples of bursty keywords detected for the SuperBowl 2013 event, February 3rd and 4th, 2013

Window Time

Top 10 Keywords

Tweet Examples

Feb 3rd 21:20 GMT , b , . . . .
e T Zi;\:;rsls#superbowlsun da;yonce e @ArianaGrande: @glitteryariana: @ ArianaGrande 49ers or ravens?
@mrbbutterfield, forward, Beyonce lol made my day.

hours, #superbowlxlvii, xlvii,
halftime

e RT @NiallOfficial: Who do I follow in superbowl tonight american fans?
49ers or ravens? I don t know much about american football

e 49ers: 27 Ravens: 24 Goes into quadruple OT. Monday declared national
holiday.

Feb 3rd 23:40 GMT

ravens, touchdown, commer-
cial, #thekiss, kaepernick,
commercials, boldin, godaddy,
tackles, @godaddy

o RT @lifestylist: #TheKiss? The Worst! @ GoDaddy #NotBuyinglt. Wish
they d spend that money on customer service instead of wasting it on a
o RT @PiperJones: That GoDaddy commercial was just ...ew.

Feb 4th 01:40 GMT

lights, power, outage, super-
dome, 49ers, ravens, turned off,
stadium, luz, #lightsout

e RT @YourAnonNews: NFL can control everything except power in
Superdome. What an embarrassment. 7 mins and counting.

o RT @ShamelessProbs: The lights went out because we don t need foot-
ball after Beyonce. -

o RT @billmarchil3: @TheShield WWE turned off the lights and are mak-
ing their way to take out #Flacco! @ WWE #Superbowl

gramming language used to implement the algorithms was mainly
Java. For implementing algorithm LDA we used the OpenSource
GibbsLDA C++. The Dataset can be obtained upon request and
must be acquired via NIST and downloaded using a crawler or an
API on Twitter. We also will provide on request, code implementa-
tion of our algorithm for research purposes.

4.2.3  Scalability

After the process of a window by the Keyword Ranker Module,
the entire system can be conceptually represented as a Node for a
MapReduce Schema, using a specific term as a Key from merge
data between other nodes in parallel processing. When we use var-
ious instances of the system as nodes, each one would have their
own HashTable, and it is necessary to merge the sorted results of
each one efficiently adding the frequencies of each repeated terms
from all nodes, The computational cost of this procedure would
take O(n log(n)) using a variation of the merge step in MergeSort
or much better a parallel variation of it. Once the hash tables data
is merged, the method must recalculate the additional rates (arrival
rate, relevance and variations). Thus, we will obtain a global re-
sult.
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S. CONCLUSION

We have introduced a novel approach for on-line bursty keyword
detection on the text streams. Our approach requires only the set-
ting of the window_size parameter. It is efficient in the use of re-
sources with a complexity of O(n logn) which makes the method
scalable. This makes our approach easy to use and promising for
on-line processing in comparison to other state-of-the-art methods.
Experimental results indicate that our algorithm can scale to high
tweet arrival rates while still producing high-quality results. Over-
all, our system produces an extraordinary keyword overlap against
LDA, using very limited resources and memory.

In addition, we have presented an in-depth analysis of the behav-
ior of stopwords on the Twitter stream and how to identify them.
We also explain and justify the values for the parameters for our
algorithm.

Future work is directed at identifying topics for fast and efficient
detection of semantically coherent trends on Twitter.
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