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ABSTRACT 

Motif discovery in time series is an important data mining task 

that involves the identification of frequently repeating 

subsequences, and has been used in biomedical sensor data 

analysis for pattern detection. However, time series data generated 

by different biomedical sensors can have noise and variations due 

to various factors such as calibration issues, drifts while sensing, 

and environmental conditions. The presence of such noise may 

induce distortion or variation in some instances of a pattern 

because of which they might not be identified. A recent work 

discussed the merits of combining the SAX time series 

representation with the Sequitur string compression algorithm in 

finding variable length motifs. Using this motif discovery 

technique as an example, we propose a more flexible treatment of 

time series subsequences based on partial similarity matching and 

an increased margin of tolerance in the interest of finding noisy or 

distorted motif instances, or possible variations of a particular 

motif. To complement the proposed approach, we also identify 

some fundamental requirements in the visualization and 

exploration of discovered motifs, and present a new motif 

visualization tool to address them.  

Categories and Subject Descriptors 

H.2.8 [Database Management]: Database Applications – Data 

Mining. H.3.3 [Information Systems]: Information Search and 

Retrieval. 

General Terms 

Algorithms, Performance, Design. 

Keywords 

Data Mining, Pattern Discovery, Time Series, Motifs, Noisy Data, 

Rule Mining, Visualization. 

1. INTRODUCTION 
Finding approximately repeated subsequences in time series data 

are referred to as motifs. In recent years, motif discovery in time 

series has been one of the most important data mining tasks 

[1,6,7,8,9,10], irrespective of domain and nature. The objective of 

motif discovery techniques is to identify time series subsequences 

that are similar to each other, or find repetitive patterns in a time 

series.  Data generated by different biomedical sensors can have 

noise due to various factors such as calibration issues, drifts while 

sensing, and environmental conditions. The presence of noise may 

induce distortion in some instances of a pattern because of which 

they might not be identified. It might also be desirable to detect 

possible non-trivial variations of a motif. This poses a veritable 

challenge to motif discovery techniques. While smoothing can be 

used for cleaning originally noisy signals, general smoothing of 

the time series is not a solution for overcoming local distortions or 

variations, since optimality of the smoothing filter is disputable 

and clarity of potential motifs may be lost.  Thus, the solution to 

capturing variations of motifs is not trivial. There have been many 

studies [3,8,10,14] that address the issue of motif discovery 

despite factors such as noise, scaling, translation etc. 

In biomedical sensor datasets, it is rarely enough to identify 

motifs; the interpretation of the detected motif and its relevance to 

the analysis is highly imperative.  The detected motifs need to be 

associated with specific inferences about the nature of the data or 

the condition of the subject being monitored.  Therefore, it is 

important to focus on the descriptive aspects of a motif such as the 

frequency, time duration, amplitude scale etc. that would aid in 

proper identification and annotation.  Efficient and flexible 

visualization is key to descriptive analysis and inference in time 

series motif discovery. 

In Section 2, we study the challenges presented to motif discovery 

by inadequate flexibility by reviewing a recently proposed 

combination [4] of the popular time series representation 

technique SAX [2] and a string compression algorithm Sequitur 

[5] for finding variable length motifs in time series data. We 

examine the various aspects of these techniques that are affected 

by noise distortions in data, and propose an approach in Section 3 

that provides for a more flexible treatment of time series 

sequences and lends a margin of tolerance for overlooking 

localized distortion or variations in the interest of discovering 

valid patterns instances. Section 4 presents a new motif 

visualization and exploration tool that addresses some 

fundamental requirements of motif analysis. 

2. BACKGROUND 

2.1 SAX and Discretization 
The SAX (Symbolic Aggregate approximation) representation [2] 

is a widely popular symbolic representation for time series data.  

The two major merits of SAX are (i) efficient dimensionality 

reduction while retaining essential features; and (ii) lower 

bounding of the distance measure.  Its basic principle is that a 

time series C of length n can be represented in a w-dimensional 

space by a vector           , where the ith element of   is 

given by 
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In SAX, each time subsequence is z-normalized (mean = 0 and 

SD = 1), and split into w equal segments. For each segment, the 

mean is calculated and a symbol is assigned based on a set of 

breakpoints that divide the distribution space into α equiprobable 

regions, where α is the alphabet size.  Thus, each time 

subsequence is converted into a string or word of length w, 

formed by symbols from an alphabet of size α.  Both the word 

length w and the alphabet size α are pre-specified.  Theoretically, 

an optimal combination of the two parameters – w and α – should 

be able to efficiently represent the variation in the sequences of 

any given time series data.  Figure 1 shows the usage of SAX to 

represent time series subsequences as strings of symbols, with w = 

4 and α = 3{1,2,3}.  For the definition of breakpoints, please refer 

to [2].  In the interest of reducing redundancy while representing 

motif instances having variable lengths, an approach similar to 

run-length encoding called numerosity reduction has been 

employed to record consecutive occurrences of identical SAX 

words.  

In their formalization of SAX [2], the authors have defined a 

distance metric for computing the similarity between two time 

series subsequences            and             as 
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The        function is calculated as follows 

         
            

                               
   (3) 

This distance function has the highly desirable quality of lower 

bounding i.e. the distance between any two time series 

subsequences in their SAX representation will not be larger than 

the Euclidean distance between the original subsequences. 

Local distortions or variations can cause similar data sequences to 

be represented using different symbols. While the MINDIST 

distance measure in combination with a probabilistic approach 

presented in [3] (discussed in a later section) is robust enough to 

handle this, motif discovery techniques that rely on exact string 

matching metrics would fail to capture the actual extent of 

similarity between the two subsequences. This point is of 

considerable importance to the premise of our study. 

2.2 Sequitur and Motif Discovery 
While initial motif discovery techniques required the length of the 

motifs to be pre-specified, recently a grammar induction approach 

to finding motifs having variable lengths has been proposed in [4]. 

This approach is based on the Sequitur string compression 

algorithm [5] that uses a context free grammar based rule building 

approach to index repeating bigrams in a string of symbols.  Every 

bigram (two consecutive symbols) in the string of symbols is 

recorded. Whenever a bigram is repeated, all occurrences of the 

bigram are replaced by a non-terminal symbol.  If a rule for such a 

substitution does not already exist, a new rule is created and added 

to the existing rule base.  Also, rules that are not used more than 

once are discarded, emphasizing the meaningfulness of the rules 

that are retained. 

Since Sequitur processes strings one symbol at a time from 

beginning to end, it has been shown to be a useful online 

technique for finding repetitive patterns. A pattern or motif 

corresponds to any of the different rules in the rule base, since 

every rule corresponds to a sequence that occurs at least twice in 

the symbol string.  Sequitur is therefore used to mine rules and 

identify motifs from a given string of SAX words, where each 

SAX word is a symbol. The approach provides scope for 

identifying variable length motifs, as is obvious from the 

possibility of a non terminal substitution for a bigram of non-

terminals. Also, the aforementioned numerosity reduction feature 

also allows subsequences within each motif to have different 

lengths. 

 

The greatest merits of using Sequitur for motif discovery are its 

efficiency in finding naturally occurring repetitive patterns, and its 

identification of a hierarchy among the motifs found.  Knowledge 

of the components of a specific motif is highly advantageous for 

semantic interpretation of the motif and its association with other 

motifs in the data. However, Sequitur employs exact matching, 

and does not make use of the distance metric in Eqn(2) to 

compare two bigrams. Consequently, a match between two 

bigrams is successful if and only if the bigrams are identical i.e. 

the edit distance between them is zero. 

Figure 2. Rule mining from a SAX symbol string using 

Sequitur 

 

 

Figure 1. (a) Segmentation of original time series into 

subsequences using overlapping sliding windows; (b) 

Chart showing sample of breakpoints that divide the 

distribution space into equiprobable regions for each 

alphabet size α; (c) Derivation of SAX representation for 

each subsequence. 

 

. 

 

 



2.3 Motivation for proposed approach  
While the combination of SAX and Sequitur provides for efficient 

motif discovery and identifying hierarchical associations among 

motifs, the approach compromises on flexibility in more than once 

aspect of the motif discovery and analysis. 

A distortion in the original sequence may very well be reflected in 

its SAX representation as well, hindering the identification of 

distorted instances of a motif. Although it might be possible to 

capture the variations of the sequences using an optimal selection 

of the parameters w and α, this would necessitate re-segmentation 

of the original data and thus possible only in an offline 

environment. Chiu et al [3] addressed the issue of motif distortion 

in the presence of noise, and proposed a probabilistic approach 

based on random projection, to find similar SAX words even 

when they differed by one or more symbols. However, this 

approach only provides for noise tolerance at the SAX word level 

through partial matching of SAX words.  In other words, this 

approach can identify distorted instances of a motif, but only as 

long as the noise is within the range of a SAX segmentation 

window. Therefore, the approach should be made more flexible to 

identify motif instances when the distortion occurs over a larger 

duration than the initial assumption. 

As discussed earlier, instead of employing the distance metric in 

Eqn. 2, Sequitur uses an exact match criterion to match bigrams 

and build rule hierarchy.  Even under the assumption that noise 

distortion occurs only within a SAX word (resulting in at least a 

partial dissimilarity in symbols), Sequitur would lose the partial 

similarity information, and would never match a bigram with its 

partially distorted counterpart.  Thus, even if a rule is formed by 

matching the „clean‟ instances of a potential motif and the motif is 

identified by the rule, any distorted instances would be lost, no 

matter how small the distortion. 

Since noise might introduce sufficient distortion in an instance of 

a repeating motif to hinder its identification, one can always 

measure the extent of similarity between the noisy instance and 

other instances to determine if they belong to the same motif.  An 

argument can be made against partial similarity that it might 

attempt to correlate two different patterns as being variations of 

the same pattern.  Such false positives might hinder motif 

discovery.  However, the concept behind partial match is to have a 

flexible perspective towards motifs, since naturally occurring 

motifs are seldom exactly similar across their repetitions.  Having 

a margin of tolerance for dissimilarity enables us to look beyond 

the tolerance levels of SAX and might help in capturing 

similarities lost due to the strict approach of the SAX 

representation.  At any rate, it could be useful to know that there 

is a similarity overlap between two distinct time sequences.  This 

would just provide more information and the decision of whether 

or not the overlap is enough for motif identification can be dealt 

with manually or through heuristic computation. 

3. PROPOSED APPROACH 

3.1 Implementation 
The approach proposed in this work attempts to induce flexibility 

in motif discovery while retaining the benefits provided by the 

original approach. In the original Sequitur algorithm, bigrams are 

matched exactly and rules formed only upon encountering exact 

duplicates of a previously recorded bigram.  Thus, each rule maps 

a non-terminal to a single bigram. In contrast, the proposed 

approach allows multiple bigrams to be substituted by the same 

rule.  Each rule in the rule base would correspond to not a single 

bigram, but instead a set of bigrams, all of which are evaluated to  

be similar to each other than others.  To accommodate this 

situation, a record structure is implemented, where each record 

consists of a list of bigrams (Figure 3). For each record, a 

representative bigram is calculated from the member bigrams of 

the record.  The representative bigram is not one of the actual 

Table 2. Comparing resultant rules from exact match 

and partial match criteria of Sequitur 

Original 

String:  

1234 1134 1234 1244 1243 1343 1342 1432 

1423 2423 2313 2314 2324 2224 2124 1124 

1134 1144 

Exact 

Match:  

R0 -> [ 1234 1134 1234 1244 1243 1343 

1342 1432  1423 2423 2313 2314 2324 

2224 2124 1124 1134 1144] 

Partial 

Match: 

R0 -> [ R1 R2 R2 R3 R3 R1 1134 1144 ];  

R1 -> [ R4 R4 ];  

R2 -> [ 1243 1343 ]; [ 1342 1432 ]; 

R3 -> [ 1423 2423 ]; [ 2313 2314 ]; 

R4 -> [ 1234 1134 ]; [ 1234 1244 ];  

[ 2324 2224 ]; [ 2124 1124 ]; 

 

Table 1. Algorithm for flexible motif discovery 

Algorithm: Proposed Approach 

1. 

2. 

3. 

 

4. 

5. 

6. 

7. 

8. 

 

9. 

10. 

11. 

12. 

13. 

14. 

 

15. 

16. 

17. 

18. 

19. 

20. 

21. 

22. 

Repeat till end of symbol stream: 

Read symbol 

Form cand.bigram using previous symbol 

and current symbol 

Search lists for exact match 

If exact match is found 

RuleCheck() 

Else 

Compare to rep.bigrams in record for 

partial match 

   If partial match is not found 

Create new list 

Add cand.bigram  

Make bigram the rep.bigram 

Else If partial match is found 

Compare to list members for partial 

match 

If p-match found 

Enter bigram into list 

Update rep.bigram 

RuleCheck() 

Else 

Create new list 

Add cand.bigram 

Make bigram the rep.bigram 

RuleCheck() 

1. 

2. 

3. 

4. 

5. 

 

 

6. 

If Rule exists for record 

Non-terminal substitution using Rule 

Else 

Create Rule for bigram substitution 

Replace All instances of bigram set 

(two instances including the current 

one) with Non-terminal 

Recursively execute bigram routine for 

any new bigrams formed 

 

 

Figure 3. Each record consists of a list of bigrams that are 

more similar to each other than to others. Each record 

also stores a representative bigram which is the 

approximate average of all bigrams in the list at any given 

point in time. 

 

 



member bigrams but the best approximation of the current 

members of the record. This notion of a representative is similar 

to that of a cluster mean in cluster analysis.  The representative 

bigram of a list is updated whenever a new bigram is added to it. 

Whenever a new bigram (referred to as candidate bigram) needs 

to be processed for entry in the record, an exact match routine is 

executed to find any bigram in the records identical to the 

candidate.  If an exact match is found, it means it already exists in 

the list and does not need to be re-entered.  The routine can skip 

the entry and representative update, and proceed with rule creation 

and/or non-terminal substitution, depending on whether or not a 

rule exists for that list.  If an exact match is not found, then the 

candidate bigram needs to be either entered into the record 

corresponding to the list of bigrams that are sufficiently similar to 

the candidate, or entered into a new record on its own.  This is 

resolved in the following manner. 

The candidate bigram is first matched with the representative 

bigrams for each record for partial similarity.  If an admissible 

partial match with a representative is not found, then a new record 

is created, with the candidate bigram as the first member of the 

new record. Thus, it becomes both the representative as well as 

the first member of its list.  However, if an admissible partial 

match is found with the representative bigram of a certain record, 

the candidate bigram is then entered into the bigram list 

corresponding to that record, if and only if there is at least one 

actual member of that list that has an admissible partial match 

with the candidate. This ensures that the candidate is indeed being 

added to a list where it belongs in terms of similarity.  If such an 

actual member does not exist in the list, the candidate is not 

entered in that list, and a new record is created for the candidate. 

Also, if the candidate is entered into a pre-existing bigram list that 

does not have a rule associated with it, it means the candidate is 

the second bigram to enter the list.  In this case, a new rule is 

created for the list, with a new non-terminal substituting both 

bigrams belonging to the list in the string. If a rule already exists 

for the bigram list, the candidate bigram being entered into the list 

is substituted in the original symbol string by the non-terminal 

corresponding to the rule. 

Table 1 shows the pseudocode for the proposed approach using 

the partial match criteria. It is important to note that the 

modification made to the implementation of Sequitur to 

accommodate partial similarity does not affect the algorithm‟s 

original performance.  If no margin is allowed for a partial match 

(match threshold = 0), then the proposed approach performs 

identical to the original Sequitur algorithm. The utility of our 

approach can be demonstrated by the example presented in Table 

2, which compares results obtained by using the original exact 

match criterion with the results obtained by the use of partial 

match using the MINDIST measure with a match threshold of 0.1.  

Since the original string does not have any repeating bigrams, no 

rule is put forward. However, the partial match approach puts 

forward a set of rules that illustrate the similarities between the 

various bigrams. 

3.2 Experiments and Discussion 
In this section, we present some examples that demonstrate the 

proposed approach and compare its performance with the original 

approach. The MINDIST measure was used for calculating the 

similarity between bigrams composed of terminal symbols for 

evaluating matches.  The threshold for match criterion is accepted 

as input from the user.  Two bigrams were considered to be 

similar only if the similarity value satisfied the threshold.  Since a 

match threshold of zero would enforce the exact match criterion, 

the original approach can now be considered a strict version of the 

proposed approach.   

The proposed approach was implemented and used for motif 

discovery on a number of biomedical time series datasets such as 

EEG, ECG etc. [12].  In our implementation, segmentation of data 

is done by SAX using an overlapping window with numerosity 

reduction.  The window sizes used were typically 50 to 100 

samples long, and the values for the word length and alphabet size 

ranged from 4 to 5 and 4 to 6, respectively.  In a SAX word 

discretization, two adjacent SAX words that form a bigram can 

very well be the discretized form of two overlapping windows. 

However, since, numerosity reduction does not guarantee that, 

and two adjacent words are more often than not non-overlapping, 

the two adjacent words were considered to have a sequential 

association.  This assumption holds to all similarity calculations 

and rule mining tasks. 

Figure 4 offers a juxtaposition of motifs identified by the original 

and proposed approaches.  The data used is EEG data, smoothed 

by a moving average of 50 samples (to ignore local variations and 

capture higher level motifs).  The sliding window size, the SAX 

word length, the SAX alphabet size and match threshold for 

partial match were 100 samples, 5, 6 and 0.1.  While the old 

approach retrieved 9 motifs, the proposed approach retrieved 42 

motifs.  As expected, several of the motifs returned by the partial 

Figure 4. Comparison of Motifs detected by original approach and the proposed approach in a smoothed EEG signal. The 

proposed approach (a) captured every motif identified by the original approach, (b), identified more instances for certain 

motifs, (c) identified previously undiscovered motifs that were not captured by the original approach. 

(a) (b) (c) 

Proposed 

Approach 

Original 

Approach 



match approach were spurious and redundant.  However, the 

proposed approach was able to not only able to capture every 

motif identified by the old approach (Figure 4(a)), it identified 

more instances for certain motifs (Figure 4(b)) as well as totally 

new motifs that were not identified by the old approach (Figure 

4(c)). 

It is a challenge to compare the performance of the exact and 

partial match approaches in an unsupervised motif discovery task 

due to number of variables in the process.  The quality of motifs 

returned by both approaches depends heavily on the effectiveness 

of the initial segmentation using SAX.  Just as there is no optimal 

set of values for the word length and alphabet size parameters of 

SAX that can be generalized across all datasets, the optimal match 

threshold for the distance measure used in the partial match 

criteria also has to be derived empirically. While one might expect 

that the number of rules returned by a partial match approach 

would be lesser, this cannot be predicted since the number of rules 

depends not only on the number of repeating bigrams, but also on 

the repeated associations of the rules. As noted in [4], the number 

of rules generated by Sequitur depends largely on the complexity 

of the dataset as well as the choice of SAX parameters, and these 

rules represent distinct motifs. While the new flexible approach 

might result in the merging of some of these into a single motif 

group by mapping multiple bigrams to each rule, one cannot 

assume that it returns lesser rules than Sequitur.  Due to the 

inherent flexibility in the rule-building approach, the rule 

hierarchy may have more levels than before with two or more 

rules constituting higher level rules, i.e, motifs with larger 

temporal footprints. 

4. Motif Visualization Tool 
While inducing greater flexibility in motif discovery enhances the 

scope of identifying possible variations of a motif, the benefits of 

this flexible approach can be further exploited through the 

provision of an efficient visualization and exploration 

functionality.  A number of studies have focused on the 

visualization and searching of time series motifs [15, 16].  In this 

section, we present a new motif visualization tool to complement 

the motif discovery approach presented in the previous sections. 

There are certain requirements in the exploration and visualization 

of the detected motifs that need to be addressed.  The merits of 

finding the most significant motif have been established in 

previous studies.  The „significance‟ of a motif can be evaluated 

based on its frequency of occurrence (number of non-trivial 

instances), time period or duration of the motif etc., and the choice 

of such a parameter would be dictated by the purpose of the 

analysis.  It would be beneficial to provide the option of selecting 

a parameter, and present detected motifs ranked by the selected 

parameter. Secondly, SAX amplitude-normalizes time series 

information in a piece-wise manner to result in a representation 

that is constituted by equiprobable symbols.  Due to this 

normalization step, SAX generates the same (or similar) 

representations for sections of the time series that may differ in 

scale of amplitude, but have the same underlying pattern. 

Therefore, a detected motif might have instances that are not 

uniform in amplitude scale.  In the interest of proper interpretation 

of the motif, it is important to provide the functionality of 

specifying a range for amplitude variation in the motif instances.  

Finally, the integral aspects of visualizing a motif are identifying 

the location of its occurrences in the original data as well as 

illustrating the consistency of its different instances. 

To exploit the flexibility of the proposed approach as well as to 

enhance control over motif exploration, we present a simple 

interactive tool that offers the functionality of visualizing the 

motifs and analyzing the motifs detected by approach.  This 

program enables the user to (i) view the total count of detected 

motifs, as well as basic statistics such as the frequency and 

duration for each motif, (ii) visualize each distinct motif detected 

by the proposed motif discovery approach, (iii) locate and plot the 

instances of each motif in the original time series data, as well as 

 

Figure 5. Snapshot of the Motif Visualization Tool. The 

original curve is plotted as a dotted line and the detected 

motif instances are shown in red. The instance level view 

displays a superimposed plot of the detected instances. 

Figure 6. Utility of Filtering Option on Amplitude 

Variation of Motif; motif instances satisfying specified 

amplitude range are in red, rest in black. 



illustrate their consistency using an instance level superimposed 

plot, (iv) rank detected motifs based on different parameters such 

as frequency, temporal footprint (duration) etc., and (v) set ranges 

for the amplitude scale to filter and highlight motif instances that 

conform to the scale constraints. The fundamental merit of this 

visualization tool is its simplicity of operation and efficient 

controls for navigation through the set of detected motifs. Forward 

and backward navigation is made possible using navigation 

controls. The ranking functionality accepts the parameter from the 

user through a pop-up menu and sorts the detected motifs, such 

that the navigation controls show motifs in the order of their rank. 

With respect to filtering instances by amplitude, the tool first 

reports the maximum and minimum values in the time series data, 

and accepts any valid amplitude range of interest for filtering. It 

also provides the option of either showing only the desired 

instances or showing all instances with the desired instances 

highlighted. Figure 5 shows a snapshot of the tool displaying 

motif instances, and Figure 6 demonstrates amplitude filtering.  

The time duration or temporal footprint of a motif can be viewed 

in terms of number of samples or the number of SAX words used 

in the discretized form of the motif. The functionality of filtering 

and ranking the detected motifs using a parameter of choice would 

prove highly useful in the analysis of biomedical data streams.  

We are currently adding more modules to the visualization tool 

such as enable search by query, advanced statistics report etc. that 

would prove valuable to clinicians and medical data researchers 

and analysts. 

5. CONCLUSION 
The proposed approach presented in this paper offers a flexible 

approach to motif discovery in biomedical sensor data. The partial 

match criterion allows consideration of sequences that are not 

exactly similar, but are sufficiently similar to be considered 

instances of a motif.  The approach facilitates motif discovery 

with a tolerance margin for distortion or variation of time 

subsequences in the presence of noise, amplitude scaling etc. The 

interactive motif visualization and exploration tool complements 

the flexible motif discovery approach, enabling easy navigation, 

filtering and ranking of detected motifs.  Our future studies would 

be directed at identifying relationships between the variability in 

the data and the importance attributed to factors included in the 

match criteria.  The challenges for extending the proposed 

solution for motif discovery in multi-dimensional multi-sensor 

biomedical sensor data also need to be addressed. 

NOTE: All code, datasets and supplementary examples for the 

proposed motif discovery approach and the motif visualization 

tool presented in this paper are available at the support webpage: 

http://www.utdallas.edu/~arvind/support/exploreMotif.html. 
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