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ABSTRACT
Professional sports is a roughly $500 billion dollar industry
that is increasingly data-driven. In this paper we show how
machine learning can be applied to generate a model that
could lead to better on-field decisions by managers of pro-
fessional baseball teams. Specifically we show how to use
regularized linear regression to learn pitcher-specific predic-
tive models that can be used to help decide when a starting
pitcher should be replaced. A key step in the process is our
method of converting categorical variables (e.g., the venue
in which a game is played) into continuous variables suit-
able for the regression. Another key step is dealing with
situations in which there is an insufficient amount of data
to compute measures such as the effectiveness of a pitcher
against specific batters.

For each season we trained on the first 80% of the games,
and tested on the rest. The results suggest that using our
model could have led to better decisions than those made
by major league managers. Applying our model would have
led to a different decision 48% of the time. For those games
in which a manager left a pitcher in that our model would
have removed, the pitcher ended up performing poorly 60%
of the time.

Categories and Subject Descriptors
I.2 [Artificial Intelligence]: Applications and Expert Sys-
tems; G.3 [Probability and Statistics]: Multivariate statis-
tics, Time series analysis

General Terms
Machine Learning Applications

Keywords
MLB, Predictive Modeling
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1. INTRODUCTION
Perhaps the most important in-game decision a baseball

manager makes is when to relieve a starting pitcher [2]. To-
day, managers rely on various heuristics (e.g., pitch count)
to decide when a starting pitcher should be relieved [2, 17].
In this paper, we derive from data a model that can be used
to assist in making these decisions in a principled way.

We pose the problem as classification problem of predict-
ing whether a starting pitcher would give up at least one run
if allowed to start the next inning. (This formulation seems
appropriate late in close games, but is probably not the right
formulation early in a game or during a blowout.) Our
method uses information about the current at-bat, game
situation, and historical data.

First, we reformulate our problem into a regression prob-
lem using Pitcher’s Total Bases (PTB) [9] instead of runs
allowed as the dependent variable because PTB is generally
accepted as a better indicator of pitcher effectiveness. We
solve the regression problem using regularized least squares
to produce a pitcher-specific predictor for the expected PTB
in the next inning. The main technical interest of this work
lies in our approach to constructing the variables used in the
regularized regression.

• Many of the important predictors that provide con-
textual information such as the next batter, the venue
in which the game is played, etc., are categorical vari-
ables. We convert these categorical variables into con-
tinuous variables by deriving associations between these
variables and various statistics in the historical data.
For example, the batting team is represented by prior
statistics such as the average number of hits against
the current pitcher. We call these statistical associa-
tions priors.

• In those cases where the amount of data available to
derive an association is small, we shrink the prior using
global averages to prevent overfitting.

We evaluate our method on the MLB 2006-2010 data set
from STATS Inc.1, which contains a record of each pitch
thrown in MLB games in both the regular and post seasons.
We train our model using the first 80% of the games of each
season and test it on the last 20%.

We evaluate our model relative to what actually occurred
in the games in the test set. First, we learned a model that
closely reflects the actual decisions made by MLB managers.

1http://www.stats.com/baseball.asp
KDD’13, August 11–14, 2013, Chicago, Illinois, USA.
Copyright 2013 ACM 978-1-4503-2174-7/13/08 ...$15.00.
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It is well known that managers rely heavily on pitch count
and the opposing team’s scoring to determine when to re-
lieve the starting pitcher [2, 17, 12]. This manager model
learns pitcher-specific parameters that fit these two variables
against the manager’s decisions on the training data.

For the 76 pitchers who pitched at least 500 pitches in each
year, our manager model accurately models the manager’s
decision in 95%(±1.2%) of the innings, i.e., it is a reasonably
accurate model of what major league managers actually do.
When the manager model is used to predict whether or not
a run will be scored, it correctly predicts 75%(±4.6%) of the
innings. In contrast, our model makes a correct prediction
for 81%(±4.9%) of the innings. Our model also outperforms
the manager model in F-score (0.41 vs 0.26) and odds ratio
(3.2 vs 1.2).

Second, we demonstrate that applying our model would
have led to a different decision 48% of the time after the
fourth inning in close games. For those close game situa-
tions in which a manager actually left a pitcher in that the
model would have removed, 60% of the time the pitcher sur-
rendered a run. Unfortunately, it is impossible to say what
would have happened in those situations where a manager
removed a pitcher that the model would have allowed to
continue, since we don’t know whether or not the removed
pitcher would have given up a run had he not been removed.

In Section 2 we present some background on baseball and
related work. In Section 3 we describe our method. In Sec-
tion 4 we discuss the measures of performance used to eval-
uate our method, and present the results of a series of tests
in which comparisons are made using several performance
measures. Section 5 discusses the real world applications
of our method. In Section 6 we discuss the limitations and
outline future work. Section 7 provides a conclusion.

2. RELATED WORK
Baseball was one of the first sports to attract statistical

analysis. As a sport, it has all the necessary characteris-
tics for performing a quantitative analysis: a rich dataset
with detailed records for several decades, ordered game pro-
gression that allows activity to be nicely segmented, and a
reasonable amount of independence between events. This
has led to the development of many statistical methods for
assessing individual baseball players over the years [14, 1,
11, 3].

Bill James used statistical data in the 1980s to analyze
why teams win and lose. He termed his approach sabermet-
rics. In an effort to quantify the contribution of players to
wins and losses he invented many statistical measures such
as runs created, Component ERA, and similarity scores[16].

Baseball Prospectus, published by Gary Huckabay from
1996, uses a system called Vladimir to predict a player’s
performance in the next season using the context of the
player’s statistics such as the venue in which the game is
played. It projects how the performance evolves as a player
ages [8, 15].

In 2003, Nate Silver published a state-of-the-art sabermet-
ric system for forecasting MLB player performance, termed
PECOTA. It is a nearest neighbor based similarity metric
that searches through thousands of players to find the ones
with similar profiles. It computes the odds of a draft player
having a successful future[14]. It extended the method to
compute the statistical similarity between any two major-
league players published in Baseball Abstract by Bill James

in 1986 [10]. Since then there have been many commercial
systems developed to model the progression of players[1, 11,
3, 13, 15].

Other than [6], which described a method for predicting
the next type of pitch, almost all of the existing baseball sta-
tistical methods address high level problems that span multi-
ple games: projecting a player’s performance over the years,
evaluating a player’s contributions to the wins and losses,
and optimizing a team budget. In contrast, we present a
machine learning method to assist decision making during
a game. In particular we present a method for producing
predictive models that can be used to help decide whether
a pitcher should be replaced at various points in the game.

Pitchers are divided into two categories, starters (the first
pitcher for each team) and relievers (all subsequent pitch-
ers). Starters rarely pitch the complete game, and deciding
when to replace the starter is often the most important in-
game decision that a manager has to make. Early in the
game the decision is based upon many factors, including the
effectiveness of the starter and the managers desire to con-
serve the bullpen. Later in the game, the decision is based
primarily on the manager’s estimate of the relative expected
effectiveness of the starter and the pitcher who would replace
him. Our work is designed to provide useful information in
the second half of close games.

3. METHOD
We first build a pitcher-specific predictor for the expected

PTB in the next inning. We then use this prediction to build
a classifier that predcits whether a run will be given in the
next inning.

3.1 Features
The independent variable x of our model incorporates the

following groups of information available to a manager at
the time a decision has to be made:

• Current game statistics: team scores, outs, inning num-
ber, and pitch count,

• Averages of all previous innings in the season: strike
and ball count, base codes (bases advanced), home
runs, hits in play, walks (intentional walk discounted),
steals, strike outs, and the distributions of pitch veloc-
ity and zones,

• Next three batters in the opposing line-up, and

• Venue (home team), batting team, inning, and defense
configuration

Table 1 lists our feature vector.

3.1.1 Categorical Variables
By construction, our feature vector contains only contin-

uous variables. However, many variables such as batter,
batting team, and home team are naturally categorical. We
use prior statistics to transform these variables into con-
tinuous variables. For example, the batting team is rep-
resented by prior statistics of how many times the pitcher
faced the team, the runs given, and number of hits. We
compile pitcher-home team, pitcher-batting team, pitcher-
inning, and pitcher-defense configuration priors. For each of
the next three batters in the line-up, we compile the aver-
ages of pitcher-batter priors and batter priors (independent
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of pitcher). These priors are represented by how many times
they faced each other, Component ERA (ERC) for the pair,
slugging percentage (SLG) for the pair, and number of hits
and runs between them.

Our predictors incorporate at-bat information, game statis-
tics, and the context of the game statistics. For instance, the
pitcher-venue prior implicitly captures information about
the dimensions of the stadium where the game is played.
Such information can provide critical predictive information
for some pitchers and batters. For example, in 2012, the
Boston Red Sox pitcher Felix Doubront’s ERA was almost
a full run higher in his home stadium (which has a short left
field wall) than elsewhere.

These baseball statistics attempt to quantify certain char-
acteristics and skills of the players that are not captured by
runs alone. SLG measures the power of a hitter, ERA dis-
counts luck by excluding non-earned runs, and component
ERA includes partial runs, i.e., hits and walks.

3.1.2 Shrinkage
Sometimes, these priors may be unreliable because of small

support. A particular pitcher might not have faced a partic-
ular batter, or thrown only a few pitches to that batter. In
such cases, the prior statistics may not be meaningful. We
improve the utility of values with low supports by shrinking
them towards the global average [4]. For example, global av-
erage of pitcher-batter prior (e.g., SLG) is the pitcher prior
against all the batters.

Suppose a random variable s ∼ N(μ, σ2) is observed via
ŝ|s ∼ N(s, σ2

s). Under the Bayesian interpretation, posterior
mean s for observation ŝ is given by

E(s|ŝ) =
σ2.ŝ + σ2

s .μ

σ2 + σ2
s

(1)

For the pitcher-variable prior ŝ, global average p, support n,
and some constant β, by making the assumption that σ2

s is
proportional to 1/n, we derive the shrunk pitcher-variable
prior s

s =
n.ŝ + β.p

n + β
(2)

3.1.3 Luck and Randomness
When choosing the predictors, we try to minimize the in-

fluence of luck, and focus on variables that are less erratic
and capture the root causes. For instance, we slugging per-
centage to capture the skill of batsman better than RBI.
Similarly, strikeouts, walks, and steals yield predictive in-
formation about the skills of the pitching team. Also, when
using balls and walks count, we discount intentional balls
and intentional walks.

The actual number of runs fails to take into account luck
and near misses. In baseball near term outcomes are often
dominated by randomness. In order to take that into ac-
count, we use Pitcher’s Total Bases (PTB) (Equation 3) in
place of runs as the dependent variable. PTB is a factor in
Component ERA, a baseball statistic invented by Bill James
[3,9].

PTB =0.89 × (1.255 × (H − HR) + 4 × HR)

+ 0.56 × (BB + HBP − IBB) (3)

Here, H is hit, HR is home run, BB is walk, HBP is hit by
pitch, and IBB is intentional walk.

Table 1: Feature vector

Current game statistics:
1 Batting team score
2 Pitching team score

3-5 Outs, Inning number and pitch count
Previous inning Statistics (averages):

6-7 Strikes, balls (intentional balls discounted)
8-10 Bases advanced, home runs, hits in play
11 Walks (intentional walks discounted)

12-13 Steals, strike outs
14-21 Pitch Velocity & Pitch Zone (binned)

Priors:
22-26 Pitcher-Inning (Count, SLG, ERC, Runs, Hits)
27-31 Pitcher-Batting team (Count, SLG, ERC, Runs, Hits)
32-36 Pitcher-Venue (Count, SLG, ERC, Runs, Hits)
37-41 Pitcher-Defense (Count, SLG, ERC, Runs, Hits)
42-56 Pitcher-Batter (1-3) (Count, SLG, ERC, Runs, Hits)
57-68 Batter (1-3) (SLG, ERC, Runs, Hits)

3.2 Problem Formulation
First, we formulate our problem as a regression prob-

lem, and solve it using regularized least squares [7]. For
pitcher j, our training data is a set of nj points of the form
{(xj

i , r
j
i )|xj

i ∈ �p, rj
i ∈ �}nj

i=1, where rj
i is PTB and x is

feature vector (Table 1).

min
ŵj

1

nj

njX
i=1

(rj
i − xj

i .wj
T )2 + λ|wj |2 (4)

We next move to the binary problem of predicting whether
there will be a run given in the next inning. We do this by
binarizing the outputs of the regression rj

i , and finding a

pitcher specific cut-off b̂j on the estimated PTB that maxi-
mizes the prediction accuracy on the validation set.

max
b̂j

njX
i=1

yi(x
j
i .ŵj

T − bj)
2 (5)

Prediction outputs are given by sign(xj
i .ŵj

T − b̂j).

3.2.1 Multi-task Learning
Our model is pitcher-specific, and we learn feature weights

independently for each pitcher. However, we want to take
advantage of the intuition that feature weights should have
some relationship across pitchers (e.g., Fenway Park presents
challenges for most left handed pitchers). Therefore, we
rewrite Equation 4 with a multi-task learning formulation
[5] to share information across pitchers j = 1, 2, ..., J .

min
ŵ0,v̂j

JX
j=1

n 1

nj

njX
i=1

(rj
i − xj

i .wj
T )2 +

λ1

J
|vj |2

o
+ λ2|w0|2 (6)

where wj = w0 + vj .
Regularization parameters λ1, λ2 and shrinkage coefficients

β are found by maximizing the area under the ROC curve
for true class labels yj

i (whether a run is given in the next

inning) and the prediction scores rj
j (estimated PTB) on the

validation set.
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4. EXPERIMENTAL RESULTS
We evaluate our method on the MLB data for years 2006-

2010 from STATS Inc., which contains a record of each pitch
thrown in both the regular and post seasons [6]. We train
our model using the first 80% of the games of each season,
and test it on the last 20%. We choose the regularization pa-
rameter and the threshold cut-off to binarize the regression
outputs using cross validation on the training set.
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Figure 1: Histogram of the pitch counts when the
starting pitcher is relieved

We first evaluate our model (Ours) relative to a model
designed to mimic the way managers made decisions (Man-
ager). We learn a manager model based on actual decisions
of MLB managers. Managers often use pitch count (e.g.,
pitch count > 75) (Figure 1) and opposing team score to
decide when to relieve the starting pitcher [2, 17, 12]. Our
manager model learns pitcher-specific parameters that fit
these two variables against the manager’s decisions on the
training data. For the 76 pitchers who pitched at least 500
pitches in each year, this heuristic model accurately models
the manager’s decision in 95%(±1.2%) of the innings (F-
score 0.87 ± 0.02), i.e., it is a reasonably accurate model of
major league managers.

The manager model predicts whether or not a run will
be scored in 75%(±4.6%) of the innings. In contrast, our
model makes a correct prediction for 81%(±4.9%) of the
innings. Figure 2 plots the histogram of accuracies for both
methods. Notice that the methods are far more accurate for
some pitchers than for others.

4.1 Useful features
The weights of a linear regression can be used to identify

the most useful predictors. Table 2 lists the top 5 predictors
based on the mean of the weights across pitchers (|w0|).

Table 2: Top predictor weights across pitchers (|w0|)
Pitcher-Inning prior (SLG)
Pitcher-Batting team prior (SLG)
Pitcher-1st batter (in the lineup) prior (Runs)
Pitcher-3rd batter (in the lineup) prior (Runs)
Pitcher-Inning prior (number of times)

Surprisingly, pitch count does not appear in Table 2. This
does not mean that pitch count is irrelevant in predicting
scoring. The inning (in the form of pitcher-inning prior
based on SLG), a variable that correlates well with pitch
count, turned out to be the most important predictor.
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Figure 2: Model accuracy across pitchers

Table 3 lists predictors with the highest variance across
pitchers based on the standard deviation of the weights across
pitchers (

PJ
j=1 |vj |2). Notice that the last two features in

this table also appear in Table 2. This emphasizes the im-
portance of the role played by having both w0 and vj in
Equation 6.

Table 3: Top predictor weights with high variance
across pitchers (

PJ
j=1 |vj |2)

Pitcher-Inning prior (ERC)
Pitcher-home team prior (ERC)
Pitcher-batting team prior (ERC)
Pitcher-3rd batter (in the lineup) prior (Runs)
Pitcher-Inning prior (number of times)

Although features such as previous inning statistics (num-
ber of strike outs, ball and strike counts, etc.) do not appear
in the top 5 list, they offer critical information in certain sit-
uations, as we will see in Section 5.

4.2 Predictability
Next, we test the predictabilities of starting pitchers in

various situations. We use our method’s accuracy to quan-
tify the predictability. Figure 3 plots the average accuracy
against the inning number across all the pitchers for our
method and the manager model. The sizes of the circles
denote the number of games.

At the beginning of the game, both methods have similar
predictability. The difference increases drastically in later
innings. As the game progresses, especially after the 4th
inning (i.e., in the second half of a game), by exploiting the
information in previous innings to track the progression of
the game, our method becomes more accurate.

4.3 Evaluation
Since runs are scored in only about 10% of the innings

pitched, accuracy is not the best measure of performance. A
model that always predicts no-run innings would be accurate
90% of the time, but a prediction that always leads to leaving
the pitcher in would be of no use. Therefore, we use the
following set of measures for evaluation. The relationships
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Table 4: Evaluation results

Pitcher Accuracy(%) F-Score Odds Ratio
Ours Manager’s Ours Manager’s Ours Manager’s

Roy Halladay 80 79 0.48 0.19 1.3 0.88
CC Sabathia 89 80 0.50 0.13 5.5 0.86
Jon Lester 85 78 0.40 0.14 2.8 0.68
Average on 76 pitchers 81 (±4.9) 75 (±4.6) 0.41 (±0.1) 0.26 (±0.15) 3.2(±1.2) 1.2 (±1.1)
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Figure 3: Accuracy of the models for each inning

among the variables used in these evaluation measures are
depicted in Figure 4.

 
 

N: Total number of innings 

P: Innings where the pitcher 
gave up runs 

S: Innings where we predicted 
that pitcher would give up runs 

T: Innings where we predicted that the pitcher 
would give up runs, and he did 

Figure 4: Evaluation measures

• Accuracy: mean number of correct predictions

• F-Score: harmonic mean of precision and recall

F-Score =
2 × Precision × Recall

Precision + Recall

Precision = T/S

Recall = T/P

• Odds ratio: the odds of an inning with runs among
the innings that are predicted to have runs versus the
odds of an inning with runs among all the innings. An

odds ratio greater than one implies an improvement
compared to random.

odds ratio =
T/(S − T )

P/(N − P )

Table 4 presents the results for three well known pitchers
and a summary across the pitchers. Our method outper-
forms the manager model in all categories. The difference
in the average odds ratios is particularly striking. For our
model, in those the innings where a pitcher is predicted to al-
low a run, the likelihood of him giving a run is 220% greater
than his likelihood on all the innings. This improvement is
only 20% for the manager model. The relatively poor per-
formance of the manager model does not seem to be related
to managers removing starting pitchers earlier to ”save their
arms,” since on average our model removes pitchers sooner
than does the manager model.

5. POTENTIAL IMPACT
In this section, we discuss the potential impact of using

our method to decide when to remove a starting pitcher.
We consider only the fifth inning on, since in the early parts
of the game many factors other than expected effectiveness
figure into the decision of whether to remove the starting
pitcher. Out of 21, 538 innings, our model disagreed with
the manager’s actual decision (i.e., not what our manager
model would have done) a surprisingly high 66% of the time.

• There were 5, 012 innings which the manager removed
the starting pitcher and our model would reach the
same decision.

• There were 6, 201 innings in which the manager al-
lowed the starting pitcher to continue and for which
our model would reach the same decision. In roughly
17.7% of those innings the starting pitcher surrendered
at least one run.

• There were 9, 288 innings in which the manager elected
to leave the starting pitcher in, but our model would
make the opposite decision. In roughly 31.5% of those
innings the starting pitcher surrendered at least one
run.

• There were 1, 037 innings in which the manager re-
moved the starting pitcher and our model would have
allowed the starter to continue. There is no way to
know how the starter would have done had he not been
removed.

Our model has a “quicker hook” than most MLB man-
agers, i.e., it tends to remove starters earlier than is typical.
Given the relatively poor performance of pitchers when they
are left in despite what our model would suggest, there is
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reason to believe that applying our model will lead to fewer
runs being surrendered.

5.1 Case Study: Jul 19, 2010, Brewers at Pi-
rates

Table 5: Runs scored in each inning

Inning 1 2 3 4 5 6 7 8 9
Pirates 0 0 0 0 1 0 0 0 0
Brewers 0 0 0 0 1 2 0 0 0

In the July 19, 2010 Brewers at Pirates game, the Pitts-
burgh Pirates changed their pitchers 4 times in the game
(twice in the 7th inning). Table 5 lists the runs scored in
each inning. Innings where a pitching change happened are
highlighted. Jeff Karstens, the starting pitcher for the Pi-
rates in that game, was allowed to pitch through the 6th
inning and was relieved only after the damage was done. It
is possible that if the pitcher change had happened earlier,
the result of the game may have been different. We inves-
tigate whether our model would have recommended such a
change.
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Figure 5: Runs given by Jeff Karstens in each inning

Figure 5 shows the runs and PTB given the starting pitcher.
At first glance, it seems that we couldn’t have predicted the
sixth inning, because neither runs nor PTB of the previous
innings (1-5) are indicative of what happened next.
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Figure 6: Runs predicted by our model for Jeff
Karstens in each inning

Figure 6 shows the estimated PTB’s produced by three
different components of our method. Using only the pitcher-
inning prior statistics (orange), i.e., pitcher’s likelihood of
giving up a run in an inning, we estimate the expected PTB
to be 5.7 for the 6th inning. This is well below Jeff Karstens’
pitcher specific cut-off b̂j (PTB = 8.1). When other fac-
tors (e.g., pitcher-batter, pitcher-venue priors) are consid-
ered (light blue), estimated PTB rises to 7.6. However, this
model wrongly predicts a run for the 3rd inning. This is
because of a high prior for this pitcher for the 3rd inning.

Our final model (dark blue), which also incorporates previ-
ous innings’ results, avoids the mistake in the 3rd inning,
and correctly estimates a high PTB for the 6th inning.

Table 6: Game events

Inning Bases Events
Advanced

1 0 Ground out, Flied Out, Flied Out
2 0 Flied Out, Ground out, Line Out
3 0 Flied Out, Strike Out, Strike Out
4 0 Pop out, Strike out, Strike Out
5 4 Home Run

Table 6 lists the factors that played an important role in
our prediction. Since our model is also using the results
from previous innings, our model gradually decreases the
estimated PTB for the pitcher until the 5th inning, because
he appears to be effective (zero bases advanced in the first
4 innings). The four strike outs in the previous two innings,
which is indicative of the pitcher’s skill, result in a drastic
drop in the estimated PTB for the 5th inning. However,
a home run in the 5th inning coupled with his high prior
statistics for the 6th inning results in a reversion to a high
estimated PTB for the 6th inning, which turns out to be
correct in this case.

6. LIMITATIONS AND FUTURE WORK
There are several technical limitations in evaluating the

real world application of our method. First, it is impossible
to say what would have happened in those situations where
a manager removed a pitcher that the model would have
kept (i.e, we don’t have gold standard), since we don’t know
whether or not the removed pitcher would have given up a
run had he not been removed. Hence, our evaluations are
one sided.

We consider only whether a run will be given in the next
inning to decide whether to let the starting pitcher start the
next inning. In practice, many other considerations come
into play, particularly in early innings. Also, the starting
pitcher is often removed in the middle of the inning. Our
current method doesn’t address this scenario. We intend to
do pitch by pitch prediction in our future work.

We make no claim for the optimality of our choice of fea-
tures. In fact, we expect that further study will lead to
feature vectors that yield better performance.

We expect that our method can be applied to other sim-
ilar sports. For instance, in cricket, we can use the same
approach to predict the best bowler to bowl the next over.

7. CONCLUSION
Using information about the current at bat, game situa-

tion, and historical data, we estimate the number of runs
given in the next inning. Using our method, MLB team
managers can decide when a starting pitcher should be re-
lieved. The results suggest that using our model might have
led to better decisions than those made by major league
managers.

For those games in which a manager left a pitcher in that
our model would have removed, the pitcher ended up sur-
rendering a run 60% of the time in the next inning, despite
the fact that runs are scored in only about 10% of innings.
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