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ABSTRACT
We study the accuracy of evaluation metrics used to estimate
the efficacy of predictive models. Offline evaluation metrics
are indicators of the expected model performance on real
data. However, in practice we often experience substantial
discrepancy between the offline and online performance of
the models.

We investigate the characteristics and behaviors of the
evaluation metrics on offline and online testing both ana-
lytically and empirically by experimenting them on online
advertising data from the Bing search engine. One of our
findings is that some offline metrics like AUC (the Area Un-
der the Receiver Operating Characteristic Curve) and RIG
(Relative Information Gain) that summarize the model per-
formance on the entire spectrum of operating points could
be quite misleading sometimes and result in significant dis-
crepancy in offline and online metrics. For example, for click
prediction models for search advertising, errors in predic-
tions in the very low range of predicted click scores impact
the online performance much more negatively than errors in
other regions. Most of the offline metrics we studied includ-
ing AUC and RIG, however, are insensitive to such model
behavior.

We designed a new model evaluation paradigm that sim-
ulates the online behavior of predictive models. For a set
of ads selected by a new prediction model, the online user
behavior is estimated from the historic user behavior in the
search logs. The experimental results on click prediction
model for search advertising are highly promising.

Categories and Subject Descriptors
H.4 [Information Systems Applications]: Miscellaneous;
D.2.8 [Software Engineering]: Metrics—complexity mea-
sures, performance measures
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1. INTRODUCTION
In the field of machine learning, evaluation metrics are of-

ten used to judge and compare the performance of predictive
models on benchmark datasets. It is quite clear that good
quantitative assessments of their accuracies are essential to
build successful predictive systems. Though a large array of
evaluation metrics are already available [5, 13] and de facto
standard metrics may exist for specific prediction problems,
they do not come without limitations and drawbacks. Previ-
ous research has shown that some metrics may overestimate
the model performances for skewed samples [9, 10, 14], and
there exist variations of a metric that lead to different results
under certain circumstances like cross validation [14].

For a typical machine learning problem, training and eval-
uation (or test) samples are selected randomly from the pop-
ulation the model needs to be built for, and predictive mod-
els are built on the training samples. Then the learned mod-
els are applied on the evaluation data, and the qualities of
the models are measured using selected evaluation metrics.
This is called offline evaluation.

In addition, highly complex modern applications, such as
search engines like Google and Bing, and online shopping
engines like Amazon and eBay, often conduct online evalu-
ations of best performing offline models on a controlled AB
testing platform (online evaluation). The online AB test-
ing platform may set up two isolated testing environments
that are identical except one is set up with the baseline (or
control) model, and the other one with the new model to
be tested. They send a predefined amount of live traffic to
each environment for the same time period. The differences
in online user behaviors, such as clicks and the number of
searches per user, and some other performance metrics, such
as revenue per search, are evaluated to determine whether
the difference is statistically significant before making a final
launch decision of the new model. The assumption here is
that the online performance metric would be better, if the
new model delivered better quality results.

One problem with the model evaluations in reality is that
sometimes the improvement of model performance in offline
evaluation does not get realized as much, or sometimes gets
reversed in online evaluation. Unlike static offline evalua-
tion, online testing even under the controlled environment
is highly dynamic, of course, and many factors not consid-
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ered during the offline modeling play a role in the results.
Nevertheless, these observations raise a question if there ex-
ist fundamental biases or limitations of the offline evaluation
metrics that lead to such discrepancies.

Another problem is comparing performance of predictive
models built with different kinds of data, especially data
with rare events. Rare events occur in disproportionately
lower frequency than the counterparts, thus result in skewed
sample distributions between the classes. This is a quite
common phenomenon in real world problems. Examples of
rare events include clicks on web search result links, clicks on
display ads, and making a purchase after clicking on prod-
uct ads. Previous research has shown that some metrics may
overestimate the model performance for skewed samples[9].
The observations lead into the following questions. With
the bias, how can we interpret and compare the model per-
formance applied to different kinds of data ? For example,
when we build prediction models for text ads and display
ads, can we use the offline metrics as comparative measures
to predict their true performance ? Suppose we know the
true performance of a model, and we get equivalent offline
metrics of the other model. Can we estimate the true per-
formance of the other model ? If we can’t, what kind of
metrics should we use instead ?

We propose a new model evaluation paradigm: simulated
metrics. We implemented auction simulation for offline sim-
ulation of online behaviors and used the simulated metrics
to estimate the online model performance of click predic-
tion models. Since simulated metrics are designed to simu-
late online behaviors, we expect they would suffer less from
the performance discrepancy problem. Also, since simulated
metrics directly estimates the online metrics such as user
CTR (Click-Through Rate), they can be directly compara-
ble even if they are for models built on different kinds of
data.

The contributions of this paper are four-fold:

• We analyze the characteristics and limitations of offline
evaluation metrics and share our findings about their
behaviors on offline and online data.

• We share our experience on training, evaluation, and
deployment of click prediction models for production
online advertising system on the Bing search engine,
and offer best practice guidelines for large-scale pre-
dictive model evaluation.

• To our knowledge, this is the first paper in open liter-
ature that proposes and applies simulated metrics as
model evaluations paradigm.

• To our knowledge, this is again the first paper in open
literature that analyzes the problems of offline evalu-
ation metric behaviors that lead to online and offline
performance discrepancy of predictive models.

The remaining parts of this paper are organized as follows.
In the next section, we briefly review online advertising and
binary classification error measurement. In Section 3, we
survey predictive model evaluation metrics in open litera-
ture. We then review some of the metrics frequently used
in the surveyed literature in Section 4. In Section 5, we de-
scribe the problems and limitations of the AUC and RIG
measures on large scale click prediction models for spon-
sored search. In Section 6, we discuss the discrepancy of the

offline and online performance of the models deployed on
real-time production traffic of the Bing search engine. Fi-
nally, we summarize our findings and suggest best practice
guidelines based on our analysis and lessons from real world
experiences on online advertising data.

2. PRELIMINARIES
The target application of our study is online advertising.

Some of the problem areas discussed in this study might be
specific to the domain. In this section, we briefly review
major areas of online advertising, and those who are inter-
ested may find excellent tutorials on the references provided
below.

2.1 Online Advertising
Sponsored (or paid) search [11, 21, 28, 34] such as Google

AdWords and Bing’s Paid Search, is search advertising that
shows ads alongside algorithmic search results on search en-
gine results pages (SERPs). Sponsored search reaches out
to people actively looking for information about products
and services online, thus has relatively higher click-through
rate (CTR) compared to other types of advertising.

Advertisers bid on keywords through a Generalized Second-
Price (GSP) auction [11]. Bidders with highest rank scores
(r) win the auction:

r = b · pα (1)

where b is a bid amount, p is estimated position-unbiased
CTR, and α is a parameter, called click investment power.
If α>1, the auction prefers ads with higher estimated CTRs,
otherwise, ads with higher bids. Rank score is estimated
CTR weighted by cost per click bid.

Ads are allocated in the descending order of estimated
rank scores, and the auction winners pay price per click
(a.k.a. cost per click, or CPC) for their ad impression only
when people click on their ads. In a GSP auction, CPC
depends on the next higher bidder’s bid amount, ci:

ci =
bi+1 · pαi+1

pαi

User clicks are highly dependent on the position of the
ads[7, 15]. Typically ads shown on the section above algo-
rithmic search results (called mainline) get higher CTR than
those shown to the right of the algorithmic results (called
side bar). Within the same section, the higher the ad loca-
tion, the more clicks it gets for the same ad.

Display ads[32] are graphical ads that appears on web-
sites, content pages, or applications such as instant messag-
ing, email, etc. Contextual ads[7], such as Google AdSence
or Bing’s Contextual Search are contextually optimized ads
placed on publisher’s sites often with customized look and
feel of the publisher’s site.

Accurate estimation of the probabilities of user clicks is
critical for the efficiency of ad exchange [25]. The problem
of estimating click probabilities has been studied extensively
both for algorithmic search [24, 30, 31, 36] and for ads[6, 8,
16, 27].

2.2 Binary Classification Error Measurement
Consider a feature vector x, and observed binary responses,

y ∈ {0, 1}. x is considered as a realization of a random vec-
tor X, and y as a Bernoulli random variable Y. The class
1 probability η = P [Y = 1] is a function of x: η(x) =
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P [Y = 1|X = x]. A binary classifier predicts samples with
η(x) > c as class 1, where c is a parameter: otherwise, pre-
dicts as class 0.

The efficacy of the predictions is estimated using vari-
ous criteria including the primary criteria such as prediction
error, and surrogate criteria such as log-loss and squared er-
ror loss [4]. Primary criteria are used to estimate the class
directly, and surrogate criteria are to estimate the class pre-
diction probability. Prediction (or misclassification) error is
intrinsically unstable for estimating model performance. In-
stead, log-loss and square error loss are often used for prob-
ability estimation and boosting, and defined as follows:.

• Log-loss:

L(y|p) = −log(py(1− p)1−y)

= −ylog(p)− (1− y)log(1− p)

• Squared error loss (or quadratic loss):

L(y|p) = (y − p)2 = y(1− p)2 + (1− y)p2

where p is the estimated probability of η(x). The equality
of squared error loss holds only for binary classifiers: i.e.,
y ∈ {0, 1}.

Log-loss is the negative log-likelihood of the Bernoulli
model. Its expected value, -ηlog(p) - (1 − η)log(1 − p), is
called Kullback-Leibler loss[19] or cross-entropy.

2.3 Experimental Data Set
Throughout the paper we show motivating examples and

the analyses of the click prediction model performance on
Microsoft Bing search engine. We sampled data from Bing’s
sponsored search logs during the time period of Jun. thru
Aug., 2012. We used two sets of data: one sampled from
paid search data on Bing, and another from the contextual
ads on partner websites on Microsoft publisher network.

3. SURVEY OF METRICS
We studied papers from the proceedings of the Interna-

tional World Wide Web Conference (WWW), the ACM In-
ternational conference on Web Search and Data Mining Con-
ference (WSDM), and the ACM SIGKDD International Con-
ference on Knowledge Discovery and Data Mining Confer-
ence (SIGKDD) in years 2011 and 2012 in the area of al-
gorithmic search and online advertising. We manually cat-
egorized the topic areas of the papers and the evaluation
metrics they used. Table 1 summarizes the results.

There are four major topical categories we found: recom-
mendation, search, online advertising, and CTR estimation.
Search and online advertising are further divided into sub-
categories. The count of higher level category is sum of the
counts of its sub-categories.

The categories of metrics are divided into offline and on-
line metrics. Online metrics include model performance
statistics such as ad impression yield, ad coverage, and user
reaction metrics, such as CTR and the length of user ses-
sions. Offline metrics are categorized into the following six
types [18, 1, 26, 35]:

• probability-based: AUC, MLE (Maximum Likelihood
Estimator), etc

• Log Likelihood-based: RIG, cross-entropy, etc

• PE (prediction Error): MSE (Mean Square Error),
MAE (Mean Absolute Error), RMSE (Root Mean Square
Error), etc

• DCG-based: DCG (Discounted Cumulative Gain), NDCG
(Normalized DCG), RDCG (Relative DCG), etc

• IR (Information Retrieval): Precision/Recall, F-measure,
AP(Average precision), MAP(Mean Average Precision),
RBP (Rank-Based Precision), MRR (Mean Reciprocal
Rank), etc

• misc: everything else that does not belong to one of
the other categories

NDCG is a de facto standard metric of choice for search
ranking algorithms. Even though probability based met-
rics are relatively popular for advertising domain, there still
doesn’t exist a single metric that dominates the domain like
NDCG for search ranking problems,. Despite previous re-
search that suggest AUC is much more reliable[3, 29, 22],
there were only 2 papers we found that measured AUC. We
applied AUC on the click prediction (pClick) problem on
advertising domain, and found that it was one of the most
reliable metrics, but not without problems. We will discuss
about individual metrics in detail in the next section.

4. EVALUATION METRICS
We focus our review on the metrics primarily used for

click prediction problems. A click prediction model esti-
mates position-unbiased CTRs of ads for the given query.
We treat it as a binary classification problem.

We exclude NDCG from our review because it is designed
to prefer a ranking algorithm that places more relevant re-
sults at earlier ranks. As discussed in section 2.1, in search
advertising, the ranks are determined not by the pClick (i.e.,
the estimated click) scores, but by the rank scores. There-
fore, measuring the performance of pClick by the rank orders
using NDCG is inappropriate.

We also exclude Precision-Recall (PR) analysis on our re-
view because there is a connection between PR curve and
ROC (Receiver Operator Characteristic) curve, thus a con-
nection between PR curve and AUC [9]. Davis and Goadrich
show that a curve dominates in ROC space if and only if it
dominates in PR space [9].

4.1 AUC
Consider a binary classifier that produces the probability

of an event, p. p and 1-p, the probability the event does not
occur, represent the degree to which each case is a member
of one of the two events. A threshold is necessary in order
to predict the class membership. AUC, or the Area under
the ROC (Receiver Operating Characteristic) Curve[12, 33],
provides a discriminative measure across all possible range
of thresholds applied to the classifier.

Comparing the probabilities involves the computation of
four different fractions in a confusion matrix: the true posi-
tive rate (TPR) or sensitivity, the true negative rate (TNR)
or specificity, the false positive rate (FPR) or commission
errors, and false negative rate (FNR) or omission errors.
These four scores and other measures of accuracy derived
from the confusion matrix such as precision, recall, or accu-
racy all depend on the threshold.
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Table 1: A summary of evaluation metrics used by papers accepted to the WWW, the ACM WSDM, and the
ACM SIGKDD conferences in years 2011 and 2012 in the area of algorithmic search and online advertising.

Offline Metrics
Probability Log Likelihood PE NDCG IR misc Online Total

Recommendation 1 1 2 3 3 1 11
Search 1 2 10 16 4 1 34

ranking 1 1 8 7 1 1
personalized search 1 4

social search ranking 1
result clustering 4 1

query classification/suggestion 1 1
topic assignment 1

distributed search 1
Online Advertising 6 1 2 1 6 2 18

pricing/bid estimation 1 1 1 1
ad auction 2
bid agents 1 1
targetting 3 3
commerce 2 1 1 2

CTR Estimation (Algo + Ads) 3 1 2 1 7

Total 8 7 5 15 20 11 4 70

The ROC curve is a graphical depiction of sensitivity (or
TPR) as a function of commission error (or FPR) of a binary
classifier as its threshold varies. AUC is computed as follows:

• sort records with descending order of the model pre-
dicted scores

• calculate TPR and FPR for each predicted value

• plot ROC curve

• Calculate the AUC using trapezoid approximation

Empirically, AUC is a good and reliable indicator of the
predictive power of any scoring model. For sponsored search,
AUC, especially AUC measured only on mainline ads, is one
of the most reliable indicators of the predictive power of the
models. A good model (AUC>0.8) usually has statistically
significant improvement if AUC improves by 1 point (0.01).

The benefits of using the AUC for predictive modeling
include:

• AUC provides a single-number discrimination score sum-
marizing overall model performance over all possible
range of thresholds. This enables avoiding the subjec-
tivity in the threshold selection.

• It is applicable to any predictive model with scoring
function.

• The AUC score is bounded between [0,1] with the score
of 0.5 for random predictions, and 1 for perfect predic-
tions.

• AUC can be used for both offline and online monitoring
of predictive models.

4.2 RIG
RIG (Relative Information Gain) is a linear transforma-

tion of log-loss [15, 36]:

RIG = 1− log loss

Entropy(γ)

= 1− −c · log(p)− (1− c)log(1− p)
−γ · log(γ)− (1− γ)log(1− γ)

(2)

where c and p represent observed click and pClick, respec-
tively. γ represents the CTR of the evaluation data.

Log-loss represents the expected probability of click. Min-
imizing log-loss means that pClick should converge to the
expected click rate and the RIG score increases.

4.3 MSE
MSE (Mean Squared Error) measures the average of squared

loss:

MSE(P ) =

∑n
i=1(ci · (1− pi)2 + (1− ci) · p2i )

n

where pi and ci are pClick and the observed click, respec-
tively, of sample i.

NMSE (Normalized MSE) is MSE normalized by CTR, γ:

NMSE(P ) =
MSE(P )

γ · (1− γ)

4.4 MAE
Mean Absolute Error (MAE) is given by:

MAE(P ) =
1

n

n∑
i=1

ei

where ei =| pi − ci | is an absolute error.
MAE weighs the distance between the prediction and ob-

servation equally regardless of the distance to the critical
operating points. MAE is commonly used to measure fore-
cast error in time series analysis.
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Empirically it also has a good performance on estimating
the pClick model efficacy for sponsored search. It is one of
the most reliable metrics together with AUC.

4.5 Prediction Error
Prediction Error (PE) measures average pClick normal-

ized by CTR:

PE(P ) =
avg(p)

γ
− 1

PE becomes zero where the average pClick score exactly
estimates the CTR. On the other hand, PE could be still
very close to zero even when the estimated pClick scores are
quite inaccurate with mix of under- and over-estimation of
the probability as long as the average is quite similar to the
underlying CTR. This makes prediction error quite unstable,
and it can not be used to estimate the classification accuracy
reliably.

4.6 Simulated Metric
Although online experiments on controlled AB testing en-

vironment provides the real performance metrics of models
under comparison by user engagement, AB testing environ-
ments are pre-set with a fixed set of parameter values, thus
the model performance metrics on the testing enviroment
is only for the given set of operating points. Conducting
online experiments over numerous sets of operating points
is not practical because online experiment is not only very
time consuming, but also could be very expensive in terms of
both user experience and revenue, if the new model under-
performs.

Instead of using expensive and time consuming online
evaluation, the performance of a model over the entire span
of feasible operating points can be simulated using the his-
toric online user engagement data. Kumar, et. al. devel-
oped an online performance simulation methods for feder-
ated search [20].

Auction simulation, first, reruns ad auctions offline for
the given query and selects a set of ads based on new model
prediction scores and/or various sets of operating points.

We implemented auction simulation [15] using sponsored
search click logs data and produced various simulated met-
rics. Auction simulation, first, reruns ad auctions offline for
the given query and selects a set of ads based on the new
model prediction scores. During the simulation, user clicks
are estimated using historic user clicks of the given (query,
ad) pair available in the logs as follows:

• If the user click data of the (query, ad) pair is found
in the logs at the same ad diaplay location (call it
ad-position) as the simulated ad-position, the historic
CTR is directly used as the expected CTR.

• If the (query, ad) pair is found in the logs, but the sim-
ulated ad-position is different from the position in the
logs, the expected CTR is calibrated by the position-
biased historic CTR (or click curve). Typically, main-
line ads get drastically higher CTR than sidebar ads1

for the same (query, ad) pair, and ads at a higher lo-
cation within the same ad block gets higher CTR for
the same (query, ad) pair [7].

1Sidebar ads are ads shown on the ad block at the right side
of algorithmic search results.

• If the predicted (query, ad) pair does not appear in the
historic logs, the average CTR (called reference CTR)
of ads on the ad-position is used.

Click curve and reference CTR are derived from the historic
user responses in the search advertising logs.

Empirically, auction simulation produces highly accurate
set of ads selected by the new model for the given set of op-
erating points. Simulated metric often turns out to be one of
the strongest offline estimators of online model performance.

5. EXPERIENCES WITH THE METRICS ON
REAL-WORLD PROBLEMS

In this section we analyze the behaviors, limitations and
drawbacks of various metrics in detail in the context of click
prediction for search advertising. Note that we do not mean
to suggest these metrics be dismissed all together due to
the limitations and drawbacks. We rather suggest the met-
rics be carefully applied and interpreted, especially on the
circumstances where the metrics may produce misleading
estimations.

5.1 AUC
While AUC is a quite reliable method to assess the perfor-

mance of predictive models, it still suffers from drawbacks
under certain conditions of sample data. The assumption
that AUC is a sufficient test metric of model performance
needs to be re-examined [23].

First, it ignores the predicted probability values. This
makes it insensitive to the transformation of the predicted
probabilities that preserve their ranks. On one hand, this
could be an advantage as it enables comparing tests that
yield numerical results on different measurement scales. On
the other hand it also is quite possible for two tests to pro-
duce dramatically different prediction output, but with sim-
ilar AUC scores. It is possible that a poorly fitted model
(overestimating or underestimating all the predictions) has
a good discrimination power [17], while a well-fitted model
has poor discrimination if probabilities for presences are only
moderately higher than those for absences, for example.

Table 2 shows an example of a poorly fitted model that
has even higher AUC score where a large number of negative
samples have very low pClick scores, thus lower CTR. This
has an effect of lowering the FPR in the relatively higher
range of pClick scores, thus raising the AUC score.

Second, it summarizes the test performance over the en-
tire spectrum of the ROC space including the area one would
rarely operate on. For example, for sponsored search, plac-
ing an ad in mainline impacts the CTR significantly, while
it is not as much of a concern how the predicted CTR fits
to the actual CTR once it is shown on mainline or where it
is not shown at all. In other words, the extreme right and
left side of the ROC space are generally less useful. Baker
and Pinsky proposed partial ROC curves as an alternative
to entire ROC curves[2].

It has been observed that higher AUC does not necessarily
mean better ranking always. As shown in Table 3, changes
in the sample distribution on either end of FPR impacts
the AUC score quite substantially. Nevertheless the impact
on the performance of the model in terms of CTR could
be the same especially at the practical operating point of
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Table 2: The AUC Anomaly 1: A poorly fitted model has even higher AUC in the presence of a large number
of negative samples concentrated on the low end of pClick score range. (The first table shows a betterl-fitted
model.)

Avg pClick # clicks # no-clicks Actual CTR TPR FPR Trapezoid Avg pClick
ActualCTR

0.030000 300 9,700 0.030000 0.2500 0.0086 0.0011 1.0
0.020000 200 9,800 0.020000 0.4167 0.0173 0.0029 1.0
0.010000 100 9,900 0.010000 0.5000 0.0260 0.0040 1.0
0.005000 500 99,500 0.005000 0.9167 0.1142 0.0624 1.0
0.000100 100 999,900 0.000100 1.0000 1.0000 0.8499 1.0

total 1,200 1,128,800 AUC 0.9193

Avg pClick # clicks # no-clicks Actual CTR TPR FPR Trapezoid Avg pClick
ActualCTR

0.030000 300 9,700 0.030000 0.2500 0.0010 0.0001 1.0
0.0200 00 200 9,800 0.020000 0.4167 0.0019 0.0003 1.0
0.010000 100 9,900 0.010000 0.5000 0.0029 0.0004 1.0
0.005000 500 99,500 0.005000 0.9167 0.0127 0.0070 1.0
0.000100 100 9,999,000 0.000010 1.0000 1.0000 0.9461 10.0

total 1,200 10,127,900 AUC 0.9540

Table 3: The AUC Anomaly 2: Changes in the sample distribution on either end of FPR impacts the AUC
score quite subtantially, although the actual model performance is quite similar at the practical operationg
point.

Avg pClick # clicks # no-clicks Actual CTR TPR FPR Trapezoid Avg pClick
ActualCTR

0.030000 3,000 97,000 0.030000 0.4545 0.0093 0.0021 1.0
0.020000 2,000 98,000 0.020000 0.7576 0.0188 0.0057 1.0
0.010000 1,000 99,000 0.010000 0.9091 0.0283 0.0079 1.0
0.005000 500 99,500 0.005000 0.9848 0.0379 0.0091 1.0
0.000010 100 9,999,900 0.000010 1.0000 1.0000 0.9548 1.0

total 6,600 10,392,500 0.000635 AUC 0.9797

Avg pClick # clicks # no-clicks Actual CTR TPR FPR Trapezoid Avg pClick
ActualCTR

0.030000 3,000 97,000 0.030000 0.4545 0.0093 0.0021 1.0
0.020000 2,000 98,000 0.020000 0.7576 0.0188 0.0057 1.0
0.010000 1,000 99,000 0.010000 0.9091 0.0283 0.0079 1.0
0.005000 100 9,999,900 0.000010 0.9242 0.9904 0.8820 500.0
0.000010 500 99,500 0.005000 1.0000 1.0000 0.0092 0.0

total 6,600 10,392,500 0.000635 AUC 0.9069

Table 4: The AUC Anomaly 3: A poorly fitted model has the same AUC as a well-fitted model. (The first
table shows a better-fitted model.)

Avg pClick # clicks # no-clicks Actual CTR TPR FPR Trapezoid Avg pClick
ActualCTR

0.030000 300 9,700 0.030000 0.2500 0.0086 0.0011 1.0
0.020000 200 9,800 0.020000 0.4167 0.0173 0.0029 1.0
0.010000 100 9,900 0.010000 0.5000 0.0260 0.0040 1.0
0.005000 500 99,500 0.005000 0.9167 0.1142 0.0624 1.0
0.000100 100 999,900 0.000100 1.0000 1.0000 0.8499 1.0

total 1,200 1,128,800 AUC 0.9193

Avg pClick # clicks # no-clicks Actual CTR TPR FPR Trapezoid Avg pClick
ActualCTR

0.030000 300 97,000 0.003083 0.2500 0.0086 0.0011 9.7
0.020000 200 98,000 0.002037 0.4167 0.0173 0.0029 9.8
0.010000 100 99,000 0.001009 0.5000 0.0260 0.0040 9.9
0.005000 500 995,000 0.000502 0.9167 0.1142 0.0624 10.0
0.000100 100 9,999,000 0.000010 1.0000 1.0000 0.8499 10.0

total 1,200 11,288,000 AUC 0.9193
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Figure 1: ROC curves of sponsored search and con-
textual ads

the threshold. Because AUC does not discriminate the var-
ious regions of the ROC space, a model may be trained to
maximize the AUC score just by optimizing the model per-
formance on the either end of data. This may lead to lower
than expected performance gain on the real online traffic.

Third, it weighs omission and commission errors equally.
For example, in the context of sponsored search, the penalty
of not placing the optimal ads in mainline (omission error)
far exceeds the penalty of placing a sub-optimal ads (com-
mission error). When the misclassification cost are unequal,
summarizing over all possible threshold values is flawed.

Lastly, AUC is highly dependent on the underlying dis-
tribution of data. The AUC measures computed for two
datasets with different rate of negative samples would be
quite different. See Table 4. A poorly fitted model with
lower intrinsic CTR has the same AUC as a well-fitted model.
This also implies that higher AUC score for a model trained
with higher rate of negative samples does not necessarily
imply the model has better predictive performance. Fig-
ure 1 plots the ROC curves of pClick models for sponsored
search and contextual ads. As indicated on the figure the
AUC score of contextual ads model is about 3% higher than
AUC of sponsored search, even though the former is less ac-
curate: avg pClick

actual CTR
= 1.02 for sponsored search vs 0.86 for

contextual ads.

5.2 RIG
One problem with RIG is, like AUC, it also is highly sensi-

tive to the underlying distribution of evaluation data. Since
the range of the RIG scores of evaluation data vary quite
widely depending on the data distribution, one may not be
able to judge how good a prediction model is just by having
the RIG scores.

Figure 2 illustrates how RIG (solid curve) and PE (dot-
ted curve) varies over a typical CTR range of interest. We
observe the RIG scores drop as the CTR of the dataset in-
creases even with the same prediction model. The prediction
error plotted on Figure 2 roughly indicates how close the
prediction score is to the true CTR. As expected, the click
prediction error is higher with the low pClick score range.

This behavior coincides with our earlier observations on
various click prediction data sets with varying level of the
intrinsic CTR. The observations suggest the followings in
practice:

Figure 2: The RIG and PE scores over varying CTR
of sample data: The RIG scores drop with increasing
CTR.

Table 5: Offline and online metrics of a new model
(model-2) compared to the baseline model.

offline metrics Online metrics
AUC RIG CY Mainline CY

model-2 metrics 8.6% 19.5% -9.96% -8.07%

• One should not use the face value of the RIG scores di-
rectly to compare two prediction model performances
if the scores are from multiple data sets with different
distribution.

• The RIG scores can be used to compare the relative
performance of multiple models trained and tested on
the same data.

• A RIG score in isolation is not informative enough to
estimate the performance of the prediction model, as
the score not only depends on the quality of the model
performance, but also is heavily biased by the data
distribution.

6. OFFLINE AND ONLINE PERFORMANCE
DISCREPANCY

A more significant problem with the offline evaluation
metrics in practice is the discrepancy in performance be-
tween the offline and online testing. There are cases where
a predictive model that achieved significant gain on offline
metrics does not perform as well or sometimes even under-
perform when deployed on the online testing environment.

Table 5 summarizes offline and online metrics of a click
prediction model built with sponsored search data from the
Bing search engine, and tested on online AB testing environ-
ments on Bing with real-time user traffic. Click yield (CY)
is a metric of online user clicks that measures the number
of clicks on ads per search page views. Mainline CY is the
number of clicks on mainline ads per search page views. The
new model experienced significant drop in user clicks over
the baseline model on online environment even though both
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Table 6: Simulated metric of a new model (model-2) compared to the baseline model.

offline metrics simulated metrics online metrics
AUC RIG CY Mainlin CY CY Mainline CY

model-2 metrics 0.2% 78% 40% 46% 39% 44%

Figure 3: Relative contribution of log-loss over the
typical range of pClick of interest.

Figure 4: pClick prediction error(PE)

AUC and RIG exhibited significant gain on offline evaluation
data.

Figure 3 compares log-loss [4] of two click prediction mod-
els (model-1 for baseline and model-2 for test) of each quan-
tile within the typical range of pClick scores of interest.
Model-2 substantially overestimates the pClick scores on the
quantiles in lower pClick score range, and for the quantiles
with higher pClick scores with much less degree of over-
estimation. Figure 4 plots the prediction error of the same
data with similar pattern.

Over-estimation of click probability on higher range of
pClick scores, in practice, makes less impact on online per-
formance than over-estimation on low pClick score range,
because ads in the high pClick score range would have been
most likely selected by either model. And once shown to the
user, user clicks are mostly determined by the ad-position
and relevances of the ads, rather than the assigned pClick
scores.

On the other hand, over-estimation of pClick scores on the
low pClick range could make significant negative impact on

online metrics by giving low quality ads higher chance to be
selected compared to the base model. The lower quality ads
selected due to over-estimated pClick scores would result in
lower rate of user clicks, thus hurting the online metric.

Most of the offline metrics including RIG and AUC are not
able to capture thess behaviors, as the metrics cumulates the
impact throughout the entire range of pClick scores.

6.1 Simulated Metrics
We computed the simulated metric by auction simulation

as described in Section 4.6. The experimental results of
the simulated click metrics along with the offline and on-
line metrics are summarized in Table 6. We first trained
a new model and optimized parameter settings that offer
the best expected user click metric by auction simulation
based on historic logs data. The click metrics with the best
performing operating points of the models are reported as
simulated metric in the table. We then set up AB testing
environments with the best settings and ran the online AB
testing experiments to get the online metrics. You can see
that the online metrics highly coincides with the simulated
metrics, while the improvements on AUC and RIG metrics
differ drastically.

7. SUMMARY AND DISCUSSIONS
We reviewed and investigated the behaviors of various of-

fline metrics for predictive models, especially in the context
of click prediction for search advertising. To summarize:

• Simulated metrics are one of the most reliable met-
rics in predicting online performance of click predic-
tion models. And the simulation of online behaviors
is quite useful for various tasks including performance
estimation and auction optimization.

• For click prediction models, AUC estimates model effi-
cacy better than other offline metrics. Especially, AUC
measured only on mainline ads are most reliable for
search advertising. Nevertheless, AUC alone is not
sufficient enough to estimate the model performance
reliably.

• Both RIG and the AUC are highly sensitive to the
class distribution of the evaluation data.

• Cross comparison of model performance by the AUC or
RIG scores may be misleading if the class distributions
of evaluation data are different.

• It is suggested to measure model performance in var-
ious quantiles, and carefully analyze how the change
of model behavior over the range of quantiles would
impact in the online environment. One may review
various metrics together to discover any mismatch in
the results, which may suggest some problems in the
metrics.
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