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ABSTRACT
In recent years due to the rise of social, biological, and other
rich content graphs, several new graph clustering methods
using structure and node’s attributes have been introduced.
In this paper, we compare our novel clustering method,
termed Selection method, against seven clustering meth-
ods: three structure and attribute methods, one structure
only method, one attribute only method, and two ensemble
methods. The Selection method uses the graph structure
ambiguity to switch between structure and attribute clus-
tering methods. We shows that the Selection method out
performed the state-of-art structure and attribute methods.

Categories and Subject Descriptors
H.2.8 [Database Management]: Database Applications-
Data Mining

General Terms
Algorithms Experimentation

Keywords
Social Network Analysis, Community Detection, Structure
and Attributes Clustering

1. INTRODUCTION
Complex network community detection (i.e., graph cluster-
ing) is a long studied problem in machine learning and graph
theory. The original goal of community detection is to group
the graph vertices (i.e., nodes) into components (i.e., clus-
ters) that contain dense connections (i.e., edges) within those
components, and small number of connections to other com-
ponents. The goal has been extended in recent years to go
beyond the structure of the graph (vertices and edges) to the
consideration of the vertices’ attributes. The motivation of
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considering the vertices attributes is driven by the popular-
ity of social network with rich content associated with the
vertices. The new goal is to cluster the graph by using both
its structure and attributes.
Structure and attributes clustering is based on three key well
established assumptions in the research: 1) There are under-
lined clusters in the graph. 2) Members of the clusters have
strong ties between them and weak ties to other clusters. 3)
Member of the clusters exhibit attributes similarity between
them compared to members of other clusters. The tendency
to exhibit attributes similarity within a cluster is known as
homophily or assortative mixing [16]. The homophily be-
havior can be observed in many complex network, such as
social network, citation network, and others [15].

Several new clustering methods that use both structure and
attributes of graphs are introduced in recent years [23, 4,
5, 22, 2]. Some of these methods are SA-Cluster, Entropy
Based, SAC, and BAGC. SA-Cluster convert the attributes
to edges and use random walk along the structure and at-
tribute edges to determine the clusters. Entropy Based
and SAC methods use modified similarity objective func-
tions, while the BAGC introduced a new Bayesian model
approach. Benchmarking the performance of community de-
tection methods has been identified as critical step for im-
proving these methods. Testing the performance of structure
and attributes methods is conducted using real networks and
several quality measure (i.e, modularity, entropy, density).
Unfortunately due to the lack of ground truth in the used
real network, it is not possible to objectively compare the
methods performance.

To overcome the lack of ground truth in most of the real net-
work, several computer generated model graphs have been
proposed [10, 14, 9, 6, 20]. Most of existing benchmarks
focus on the structure aspect of the graphs. Some of these
benchmark are LFR, and Girvan and Newman.

In this research, LFR benchmark graphs is selected as foun-
dation for our structure and attribute benchmark. The LFR
benchmark is an improvement over the benchmark proposed
by Girvan and Newman [6], which is a graph of 128 vertices
divided into four equal communities of 32 each. LFR use
power law distributions for both vertex degree and commu-
nity size, a mixing parameter which is a more realistic rep-



resentation of real life network than Girvan-Newman bench-
mark. Mixing parameter is the ratio between the node ex-
ternal degree (edges to nodes outside the node’s cluster) and
the node degree. Both of the two benchmarks are realization
of the planted l-partition model by Condon and Karp [3].

The main goal of this research is to provide objective bench-
mark to analyze and assess the performance of structure and
attributes clustering methods. Further more, we propose a
new structure and attribute clustering method that is flexi-
ble and adaptable to different type of complex networks.

Our key contributions in this paper are as follow:

• We evaluate the performance of seven clustering meth-
ods on a new benchmark using NMI heat maps.

• Describes an attributes extension to widely used LFR
benchmark [12, 18, 11, 19]. The new benchmark is
called LFR-EA. It provides the capability to evalu-
ate all of three types of clustering algorithms: struc-
ture only, attribute only, and structure and attributes
methods.

• A novel structure and attribute clustering method, termed
Selection method, based on estimating the clustered
graph mixing parameters.

The rest of the paper is organized as follow: Section 2 de-
scribes the related clustering methods. Section 3 details the
benchmark. Section 4 details the Selection method, while
section 5 contains the results. Section 6 provides conclusion
to this paper.

2. RELATED WORK
Clustering large complex network is crucial to be able to un-
derstand and analyze these networks. Most of the clustering
methods are focused on structure aspect of the complex net-
work or the attribute aspect. In this section we discuss two
examples of these methods (Louvain and Kmeans).

Later in this section, we summarize new type of clustering
methods that bring the two aspects of clustering (structure
and attributes) together. All of the the methods in this
section are contrasted in section 5 against Selection method,
which is detailed in section 4.

Louvain Method
Louvain [1] is a structure only method. The aim of this
method is the optimization of modularity [17] using a hi-
erarchical approach. The first pass partitions the original
network into smaller communities. This helps in maximiz-
ing modularity in regard to vertice local movement. The
step turns the first generation of clusters into super ver-
tices with lesser-weighted graphs. This procedure is then
repeated until modularity reaches a maximum point. The
strengths of this method are fastness and appropriateness to
analyze large graphs. Its weakness is its bias to the intrinsic
limits of modularity maximization [13]

Kmeans Method

Kmeans [7] is an attribute only method. This is considered
the most famous clustering algorithm. It comprises a simple
procedure of re-estimation where data points are randomly
assigned to K number of clusters. The centroid of each clus-
ter is calculated, and then every data point is allocated to
the cluster with the closest centroid to that point. These
steps are interchanged until no change to data points as-
signment to clusters, and a stopping criterion is reached.

BAGC Method
BAGC is a composite structure and attribute method. It is a
model-based approach for attributed graph clustering where
a Bayesian probabilistic model was developed for attributed
graphs and the clustering problem was formulated as a prob-
abilistic inference problem. The cluster label of each vertex
is depicted as a hidden variable. The model implements
the intra-cluster similarity by maintaining the dependence
of the attribute values and edge connections of a vertex on
its cluster label. The algorithm proposed by this method,
is considered to be an efficient and approximate approach
to solve the inference problem. Moreover, the probabilistic
model defines a joint probability distribution that covers all
possible clustering and all possible attributed graphs [22]

Entropy Based Method
Entropy Based is a composite structure and attribute method.
The algorithm proposed in this method works by maximiz-
ing the modularity by changing the composition of the com-
munities locally. The steps to create a graph of communi-
ties include modularity optimization followed by community
aggregation. Entropy optimization is included as an inter-
mediate step between optimization and aggregation. This
is done to minimize semantic disorder of the nodes by mov-
ing nodes among the clusters found during modularity op-
timization. These steps are iterated until the modularity is
not improving any further. [4]

SA-Cluster Method
SA-Cluster is a composite structure and attribute method.
This method proposes the usage of graph augmentation to
define the attribute similarity by edge connectivity. The
method uses the neighborhood random walk model on the
attribute-augmented graph to compute a unified distance
between vertices. This is based on the paths consisting of
both structure and attribute edges. This results in the nat-
ural combination of the structural closeness and attribute
similarity. [23]

HGPA Method
HyperGraph Partitioning Algorithm (HGPA) [21] is an en-
semble method we use to combine Louvain and Kmeans clus-
ters labels. This algorithm is a direct approach where clus-
ter ensemble problem is posed as a partitioning problem of
a hypergraph by cutting a minimal number of hyperedges.
It approximates the maximum mutual information objective
with minimum cut objective constrains.

CSPA Method
Cluster-based Similarity Partitioning Algorithm (CSPA) [21]
is an ensemble method we use to combine Louvain and Kmeans
clusters labels. In this algorithm, binary similarity matrix
is used to signify relationship between objects in the same



cluster in order to establish a pairwise similarity measure
that yield a combined clustering. CSPA is considered an
efficient, simple and obvious heuristic to solve the cluster
ensemble problem. However, its computational and storage
complexity are both quadratic in number of nodes, while
HGPA is almost linear.

3. STRUCTURE AND ATTRIBUTE BENCH-
MARK

In this section we details the LFR-EA benchmark, which as-
sumes that the assignment of both attributes domain labels
and attributes noise to a cluster is based on uniform random
distribution. The construction of the attributes data set of
our benchmark proceeds through the following steps:

1. The structure only data sets (nodes, edges and clus-
ters) are generated as in LFR benchmark [14], which
assumes that degree and the community size follow
power laws distributions.

2. The creation of the attributes data set is controlled by
the following inputs: i) number of attributes (nattr) ii)
size of domain values for each attribute (domi) where
i is the attribute index. iii) Assignment influence pa-
rameter (ainf), which specify the random selection with
replacing (ainf = 0) or random selection without re-
placing (ainf =1).

3. All the nodes in a cluster are assumed to share the
same attribute domain values.

4. The size of domain values domi is compared to the
number of clusters in the case ainf is set to 1. If do-
main size is less than number of clusters, we construct
the list of available domain values by repeating do-
main value until their number equal to the number of
clusters.

5. For each cluster, all of the nodes in a cluster is assigned
a random domain value.

6. Lastly, nodes in the cluster are selected to host the
noise. The noise is a random domain value that are
different that the cluster domain value. The noise level
can be set differently for each attribute.

7. Steps 3 through 5 are repeated for each attribute.

To be able to evaluate clustering methods on all of different
setting of structure mixing and attribute noise, a modified
NMI measure called CNMI is introduced. CNMI allow the
integration of clustering performance across structure and
attribute noise. CNMI is defined in Equation (1):

CNMI =

µ∑ ν∑
NMI

S
(1)

where: µ is mixing parameter (0.1 to 0.9), and ν is attributes
noise (0 to 0.9), and S is number of samples (normalization
factor).

4. NOVEL SELECTION METHOD
Most of the structure and attributes methods use modified
objective functions to combine the two aspects on the com-
plex network. In this section we detail a new approach that
switch between structure and attribute based on the ambi-
guity of the network structure.

The level of information in attributed graph can be grouped
in four cases as shown in Figure 1. These four groups are:
1) clear structure and clear attributes 2) clear structure and
ambiguous attributes 3) ambiguous structure and clear at-
tributes 4) ambiguous structure and ambiguous attributes.
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Figure 1: Graph Structure and Attributes Content

The structure only methods have proved to be scalable [1]
and more resilient in recovering the correct underlined clus-
ters (high NMI) even in the presence of many of edges to
the outside clusters (mixing parameter up to 0.5). However,
the structure methods suddenly loose the ability to recover
the correct clusters when the cluster nodes have more edges
to nodes in other clusters than to nodes in the same clus-
ter (ambiguous structure). While this behavior of failing to
recover the correct clusters is dependent on the structure
method and the type of the graph,but typically occurs when
graph mixing parameter is 0.6 or grater. In contrast, the
attribute only methods (e.g., Kmeans) are sensitive to noise
within the cluster because they try to make use of all data
point.

The goal of the Selection method is to be able to achieve the
following:

1. Rely on structure methods when the graph has clear
structure content.

2. Detect the boundary between clear and ambiguous graph
structure content.

3. Use the attributes only methods as an extension to
structure only method when the graph has ambiguous
structure content.



4. Allow the exchange of structure only and attribute
only methods as needed to suite the different type of
graphs.

It is critical to detect the boundary between clear and am-
biguous structure setting. Mixing parameter is one way to
accomplish that. The mixing parameter is used by the Se-
lection method to detect the boundary between clear and
ambiguous graph structure content. It can be obtained by
Equation (2)

µ =

N∑
i=1

dei
di

N
(2)

where: dei is node external degree, and di is node degree,
and N is number of nodes

The Selection method is formulated in Equation (3) :

Csm =

{
CS if µs < µlimit

CA otherwise
(3)

where: Csm is graph partition based on Selection method,
CS is partition based on structure method, CA is partition
based on attribute method, µs is the estimated mixing pa-
rameter for CS , and µlimit is the boundary between clear
and ambiguous graph structure content.

The Selection method algorithm is listed in Algorithm 1.

Algorithm 1 Selection Method

Input:

Structure method, Attribute method, G(V,E,A), µlimit

Output: Node community assignment Csm

Phase 1:

Run structure only method to obtain CS

Calculate the graph mixing parameter µS

Phase 2:

if(µest < µlimit)then

return CS

else

Run attribute only method to obtain CA

return CA

end

5. EXPERIMENTAL RESULTS
The are two ways to evaluate the performance of cluster-
ing methods: computer generated datasets and real network
datasets. The computer generated datasets allow the cre-
ation of ground truth to assess the clustering methods abil-
ity in recovering them. The weakness of computer gener-
ated datasets is its limitation in representing a real network
behavior. Testing with real dataset solve this issue, how-
ever, the presence of ground truth is lacking in most cases.
Therefore, we always need to test using both methods. The

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

Benchmark Mixing Param (µ)

E
s
t.

 M
ix

in
g

 P
a

ra
m

 (
e

s
t.

 µ
)

 

 

Estimated

Benchmark

Figure 3: Estimated mixing parameter

following section details the tow types of datasets that are
used in this paper.

5.1 Data Sets
LFR-EA Dataset
The parameters to generate LFR-EA dataset is shown in Ta-
ble 1. The table shows the structure and attributes parame-
ters that allow the testing of all the eight methods described
in Sections 2 and 4. The values of node degree and commu-
nity size parameters are chosen to reflect a real mobile social
network. A subset of monthly call detailed records (CDR) of
a real mobile network (300K nodes) are analyzed. Only two
attributes were selected to accommodate a limitation in one
method code. The attribute assignment influence parame-
ter (ainf), is set to random selection without replacing, to
coverage each domain values across the difference clusters.

DBLP84K Dataset
This dataset is known as DBLP co-author network. It con-
tains 84,170 nodes for scholars in 15 research fields: database,
data mining, information retrieval, artificial intelligence, ma-
chine learning, computer vision, networking, multimedia,
computer systems, simulation, theory, architecture, natu-
ral language processing, human-computer interaction, and
programming language. Each scholar is associated with two
attributes: prolific and primary topic. Prolific attribute has
domain size of three: highly prolific for the scholars with
≥ 20 publications; prolific for the scholars with ≥ 10 and
< 20 publications; and low prolific for the scholars with <
10 publications. The domain of the attribute primary topic
consists of 100 research topics extracted by a topic model
from a collection of paper titles [8].

5.2 Performance Results
Figure 3 show the plot of estimated structure mixing param-
eter for Louvain method against actual mixing parameter
value that is used to generate the test graph by LFR-EA
benchmark. Each point corresponds to 100 graph samples.



Table 1: LFR-EA Benchmark Settings

Structure Parameters Attributes Parameters

Number of nodes (N) = 1000 Number of Attributes (nattr) = 2

Avg. node degree (k) = 25 Attribute’s domain cluster assignments (ainf) = 1

Max node degree (maxk) = 40

Mixing parameter (µ) = 0.1, 0.2, ..., 0.9 Attribute # 1:

Exponent for the degree (τ1) = 2 Attribute domain size (dom1) = 3

Exponent for the community size (τ2) = 1 Attribute noise (ν1) = 0.0, 0.1, ..., 0.9

Minimum for the community sizes (minc) = 60

Maximum for the community sizes (maxc) = 100 Attribute # 2:

Number of overlapping nodes (on) = 0 Attribute domain size (dom2) = 15

Number of memberships of the overlapping nodes (om) = 0 Attribute noise (ν2) = 0.0, 0.1, ..., 0.9

The results show that the estimated Louvain method mix-
ing parameter is very close to the benchmark value until it
reaches 0.6 value, which is the same point where Louvain
method NMI significantly drops as shown in LFR bench-
mark [14].

The following section illustrates the heatmaps for each method
in Figure 2. The color range is based on mean NMI, each
NMI mean value corresponds to 100 graph samples. The
x-axis represents the structure mixing parameter (µ) and
the y-axis represents the attributes noise (ν). Louvain NMI
results in heatmap (a) is constant in the y-axis because
the method is structure only, and the results along the x-
axis show stable high NMI until the boundary of ambiguous
structure of 0.6 mixing parameter is reached. In heatmap
(b), Kmeans NMI is constant in the x-axis because it is an
attribute only method. Its NMI in the y-axis is sensitive to
attribute noise. In heatmap (c), BAGC performed very well
and was sensitive to both structure and attribute. However,
The BAGC method didn’t use the clear attribute content to
overcome the structure ambiguity effect. In our setting, En-
tropy Based method shown in heatmap (d) didn’t use the at-
tributes information and its result was identical to structure
only method. SA-Cluster in heatmap (e) perform the worse
in our setting, and was not able to recover the correct clus-
ters. We use the ensembles methods in (f) and (g) to com-
bine structure only (Louvain) and attribute only (Kmeanse).
The results of the ensembles methods were affected by the
low Kmeans NMI in the clear structure region of Louvain,
which resulted in a low CNMI overall. Heatmap (h) shows
that Selection method was able to detect the boundary be-
tween the clear and ambiguous graph structure and com-
bined Louvain and Kmeans results.

CNMI for each method on the LFR-EA dataset is shown
in Table 2. The results show that the Selection method
outperformed all of the other tested methods.

The modularity result on DBLP84K Dataset is shown in Ta-
ble 3. Modularity measure is used instead of NMI or CNMI
because the DBLP84K dataset lacks the ground truth which
is a requirement for NMI based measures. The Selection
method reflects the structure only (Louvain) results because
the estimated mixing parameter value of 0.345 is less than
the 0.6 limit value.

Table 2: Methods Cumulative NMI Results on LFR-
EA dataset

Method Type CNMI

Louvain Structure 0.699

Kmeans Attributes 0.354

BAGC Composite 0.613

EntropyBased Composite 0.696

SA-Cluster Composite 0.193

Selection Switching 0.776

HGPA Ensemble 0.454

CSPA Ensemble 0.482

Table 3: Methods Modularity on DBLP84K Dataset

Method Modularity

Louvain 0.62

Kmeans 0.22

BAGC 0.53

SA-Cluster 0.15

Selection 0.62

6. CONCLUSION
In this research, the strengths and weakens of different com-
munity detection methods are evaluated under the spectrum
of the four graph information contents cases. Further more
the simple Selection method presented in this paper, outper-
form the rest of the tested methods on computer generated
and real network datasets. The Selection method allows a
flexible selection of structure only and attribute only meth-
ods. The Selection method requires careful selection of mix-
ing parameter threshold, which is dependent on the chosen
structure only method and the type of the graph.
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Figure 2: NMI Heatmaps of the evaluated methods on LFR-EA dataset

7. REFERENCES
[1] V. D. Blondel, J.-L. Guillaume, R. Lambiotte, and

E. Lefebvre. Fast unfolding of communities in large
networks. Journal of Statistical Mechanics: Theory
and Experiment, 2008(10):P10008+, July 2008.

[2] D. Combe, C. Largeron, E. Egyed-Zsigmond, and
M. Gery. Getting clusters from structure data and
attribute data. In Advances in Social Networks
Analysis and Mining (ASONAM), 2012 IEEE/ACM
International Conference on, pages 710–712, 2012.

[3] A. Condon and R. M. Karp. Algorithms for graph
partitioning on the planted partition model. Random
Structures and Algorithms, 18(2):116–140, 2001.

[4] J. Cruz, C. Bothorel, and F. Poulet. Entropy based
community detection in augmented social networks. In
Computational Aspects of Social Networks (CASoN),
2011 International Conference on, pages 163–168,
2011.

[5] T. A. Dang and E. Viennet. Community detection
based on structural and attribute similarities. In
International Conference on Digital Society (ICDS),
pages 7–14, Jan. 2012. ISBN: 978-1-61208-176-2. Best

paper award.

[6] M. Girvan and M. E. J. Newman. Community
structure in social and biological networks.
Proceedings of the National Academy of Sciences,
99(12):7821–7826, June 2002.

[7] J. A. Hartigan and M. A. Wong. A K-means clustering
algorithm. Applied Statistics, 28:100–108, 1979.

[8] T. Hofmann. Probabilistic latent semantic indexing. In
Proceedings of the 22nd annual international ACM
SIGIR conference on Research and development in
information retrieval, SIGIR ’99, pages 50–57, New
York, NY, USA, 1999. ACM.

[9] M. Kim and J. Leskovec. Modeling social networks
with node attributes using the multiplicative attribute
graph model. In UAI, pages 400–409, 2011.

[10] M. Kim and J. Leskovec. Multiplicative attribute
graph model of real-world networks. Internet
Mathematics, 8(1-2):113–160, 2012.

[11] A. Lancichinetti and S. Fortunato. Benchmarks for
testing community detection algorithms on directed
and weighted graphs with overlapping communities.
Physical Review E (Statistical, Nonlinear, and Soft



Matter Physics), 80(1):016118+, 2009.

[12] A. Lancichinetti and S. Fortunato. Community
detection algorithms: A comparative analysis. Phys.
Rev. E, 80:056117, Nov 2009.

[13] A. Lancichinetti and S. Fortunato. Limits of
modularity maximization in community detection.
Phys. Rev. E, 84:066122, Dec 2011.

[14] A. Lancichinetti, S. Fortunato, and F. Radicchi.
Benchmark graphs for testing community detection
algorithms. Physical Review E (Statistical, Nonlinear,
and Soft Matter Physics), 78(4), 2008.

[15] J. Moody. Race, School Integration, and Friendship
Segregation in America. American Journal of
Sociology, 107(3):679–716, 2001.

[16] M. E. J. Newman. Assortative Mixing in Networks.
Physical Review Letters, 89(20):208701+, Oct. 2002.

[17] M. E. J. Newman and M. Girvan. Finding and
evaluating community structure in networks. Physical
Review E, 69(2):026113+, Aug. 2003.

[18] G. K. Orman and V. Labatut. The Effect of Network
Realism on Community Detection Algorithms. In
Proceedings of the 2010 International Conference on
Advances in Social Networks Analysis and Mining,
ASONAM ’10, pages 301–305. IEEE Computer
Society, Aug. 2010.

[19] G. K. Orman, V. Labatut, and H. Cherifi. Qualitative
comparison of community detection algorithms. In
DICTAP (2), pages 265–279, 2011.

[20] D. A. Rachkovskij and E. M. Kussul. Datagen: a
generator of datasets for evaluation of classification
algorithms. Pattern Recogn. Lett., 19(7):537–544, May
1998.

[21] A. Strehl and J. Ghosh. Cluster ensembles — a
knowledge reuse framework for combining multiple
partitions. J. Mach. Learn. Res., 3:583–617, Mar.
2003.

[22] Z. Xu, Y. Ke, Y. Wang, H. Cheng, and J. Cheng. A
model-based approach to attributed graph clustering.
In Proceedings of the 2012 ACM SIGMOD
International Conference on Management of Data,
SIGMOD ’12, pages 505–516, New York, NY, USA,
2012. ACM.

[23] Y. Zhou, H. Cheng, and J. X. Yu. Graph clustering
based on structural/attribute similarities. Proc. VLDB
Endow., 2(1):718–729, Aug. 2009.


