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ABSTRACT
In order to satisfy and positively surprise its users, a recom-
mender system needs to recommend items the users will like
and most probably would not have found on their own. This
requires the recommender system to recommend a broader
range of items including niche items. Such an approach also
supports online-stores that often offer more items than tradi-
tional stores and need recommender systems to enable users
to find the not so popular items as well. However, popular
items that hold a lot of usage data are more easy to rec-
ommend and, thus, niche items are often excluded from the
recommendations. In this paper, we propose a new collab-
orative filtering approach that is based on the items’ usage
contexts. That is to say, an item is described by the items
it is significantly often used with rather than by its users or
content attributes. The approach increases the rating pre-
dictions for niche items with fewer usage data available and
improves the aggregate diversity of the recommendations.

Categories and Subject Descriptors
H.3.3 [Information Storage and Retrieval]: Information
Retrieval and Search—information filtering

Keywords
Aggregate Diversity, Item-Item Similarity, Long Tail, Niche
Items, Recommender Systems, Usage Context

1. INTRODUCTION
Recommender systems are steadily becoming more im-

portant in an expanding number of domains (movies, music,
books, etc.) to filter relevant items for users. Recommend-
ing relevant items alone, though, is often not sufficient to
satisfy user expectations, but other characteristics, such as
diversity, novelty, serendipity and trust must be considered
as well [4, 21, 27].

We focus on increasing the aggregate diversity, i.e. the
number of distinct items recommended across all users [3],
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by improving the calculation of the expected ratings espe-
cially for niche items. It has been shown that popular items
are recommended disproportionately often because they pro-
vide extensive usage data and, thus, can be recommended
to more users [17, 32]. However, a system focussing on pro-
viding a wider range of items and not mainly popular items
more likely recommends novel and diverse items to its users
which often favour recommendations that are for items they
would not have thought of by themselves [4, 27]. A large re-
cent study analysing rating data shows that, for instance in
the case of movies, users regularly give high ratings to niche
items, suggesting that users value speciality items [19].

A broader range of recommended items is not only impor-
tant for the users’ satisfaction but plays an important role in
online stores as well [8, 20]. Many markets have historically
been dominated by a small number of bestselling products
(Pareto Principle [8]). Internet markets, though, exhibit a
significantly less concentrated sales distribution. Anderson
describes the phenomenon that niche products can grow to
become a large share of total sales as ”The Long Tail” [5].
There are two explanations for this phenomenon. First, an
online store can easily offer a larger amount of items than
a traditional store. Second, by using tools such as recom-
mender systems, users can be encouraged to buy items they
would not have found by themselves [8]. For some online
stores it might even be more beneficial to recommend niche
items. For instance, Netflix1 could encourage users to rent
movies from the long tail, which are less costly to license
than blockbusters [20]. However, a higher aggregate diver-
sity often lowers the accuracy since it requires the recom-
mendation of idiosyncratic items as well [3].

We address the task of recommending items from the long
tail and increasing the aggregate diversity without lowering
the accuracy by introducing a new collaborative filtering ap-
proach - called usage context-based collaborative filtering
(UC-BCF) - where an item is described by the items it sig-
nificantly often co-occurs with rather than by its users or
content attributes. The idea is taken from linguistics where
relations between words can be inferred from the words’ con-
texts, e.g. the words they co-occur with in sentences [12].

The task of finding correlations between items in a dataset
is well-known as association mining [10]. Association mining
started with the analysis of shopping basket data to better
understand and target the consumers’ behaviour by discov-
ering inferences and rules between items and item sets, e.g.
a user who buys item A and item B also buys item C with
a probability of 80%. Since then, association mining has

1http://netflix.com/
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been applied to many different domains in which the rela-
tionships between objects can provide useful knowledge, e.g.
risk analysis and clinical medicine.

However, our approach differs from association mining in
that we do not assume two items to be related if they co-
occur with each other, but if they significantly often co-occur
with the same items. Thus, two items can be highly related
even if they were never used together. For example, items A,
B, and C are often used together as well as items A, B, and
D. Thus, we assume the items C and D to be highly related
because they are described through the same co-occurrences,
here items A and B. Using this approach, we are able to cre-
ate characteristic vectors also for rarely used items and to
improve the calculation of the niche items’ rating predic-
tions. Thus, the aggregate diversity of recommendations
can be improved without lowering the accuracy.

The rest of the paper is structured as follows: In chapter
2 we give an overview of recommendation approaches that
try to increase the diversity of recommendations and com-
pare them to the usage context-based collaborative filtering
that is specified in chapter 3. In chapter 4 we describe the
set-up of the experiments including the used data sets and
evaluation metrics to discuss the results of the experiments
in detail in chapter 5. Finally, in chapter 6, we summarize
the presented work and give an outlook on future work.

2. RELATED WORK
Recently, several recommendation approaches have been

invented that do not focus on accuracy alone but on new
evaluation metrics such as diversity, novelty, unexpected-
ness, and serendipity of the recommended items to increase
the user satisfaction [4, 21, 27]. So far, most work has been
conducted for increasing the diversity which is divided in
the individual and the aggregate diversity. The individual
diversity describes the diversity of the items in a user’s rec-
ommendation list, thus, increasing the individual diversity
means avoiding overspecialisation. Strategies developed so
far for increasing the individual diversity mostly calculate
the quality of an item based on its similarity to the user and
its dissimilarity to the items that are already selected for
this user’s recommendation list [7, 33, 34]. The aggregate
diversity describes the total amount of items recommended
to the users. Improving the individual diversity does not
mean improving the aggregate diversity, e.g. if each user
gets recommendations for the same 10 movies from 10 dif-
ferent genres, the individual diversity is high, but the aggre-
gate diversity is still low. In the following, we will describe
approaches that increase the aggregate diversity of recom-
mender systems and compare these to our approach.

There are two lines of research that try to improve the
aggregate diversity. The first line calculates the rating pre-
dictions using existing filtering approaches to then re-rank
the items with the highest predicted ratings to push items
from the long tail in the recommendation lists. The second
line of research tries to improve the estimation process espe-
cially for rarely used items. We first present two approaches
from the first and then two approaches from the second line.

Adomavicius and Kwon [3] propose to re-rank the list of
candidate items for a user to improve the aggregate diversity.
First, an ordered list of recommendations is calculated using
any filtering technique. Second, for all items having a better
expected rating than a given threshold, additional features
are calculated, for instance the absolute and relative like-

ability of an item (how many users liked the item among all
users or among all users who rated that item, respectively)
and the item’s rating variance. According to these features,
the candidate items are re-ranked and only the top-N items
are recommended. This way, niche items are pushed to the
recommendation lists and very popular items are rejected.
While this re-ranking technique can improve the aggregate
diversity, it comes at the expense of accuracy.

In [2], Adomavicius and Kwon propose a graph-theoretic
approach to select the top-N items for each user while yield-
ing the maximum aggregate diversity. At first, the sys-
tem calculates all candidate items for each user by apply-
ing any filtering technique. Then, a bipartite graph is cre-
ated with the users and the selected items as vertices con-
nected through edges that hold the predicted ratings as edge
weights. By solving the ”maximum bipartite matching prob-
lem” using a suitable algorithm, the maximum aggregate
diversity is reached as each item is restricted to only one
user. Users that receive less than N items in that process
also receive recommendations for items that scored best in
the first step. The accuracy and diversity of this graph-
theoretic approach depends on the selection criteria for the
items included in the graph. The more items are selected
as candidate items for each user, the more diverse and less
accurate are the recommendations and vice versa.

Park and Thuzhilin [28] group items from the long tail
into clusters based on their attributes (e.g. name, descrip-
tion, price) to compensate the missing usage information.
For each cluster, they build a model predicting ratings based
on the known ratings and the items’ attributes. Items from
the head are not clustered, but for each of these items an
individual predictive model is built. The splitting of the
head and the tail is based on features like the items’ average
ratings or their popularity. This approach improves the es-
timation of rating predictions, but also relies on additional
semantic metadata which is often not available.

Levy and Bosteels [25] explicitly push items from the long
tail (here: songs from not well known artists) in the recom-
mendation lists. After analysing the last.fm data set2 they
define each artist with less than 10.000 listeners as long tail
artist. For each artist in the last.fm data set they calculate
the k most similar long tail artists based on their listening
history and tags applied to each artist. In order to create rec-
ommendations for a user, the similarities between the long
tail artists and the artists in the user profile are calculated
and the user gets recommendations for songs from those long
tail artist that are most similar to her favourite artists. No
evaluation has been published so far.

The UC-BCF approach we propose tries to improve rat-
ing predictions especially for niche items and thus falls in
the latter research line mentioned above. In contrast to
the other approaches of this line, however, it does not re-
quire any semantic metadata (which is often not available
or imcomplete) but calculates the item vectors based on the
items’ usage contexts. Thus, it is not a hybrid but a new
collaborative filtering approach. The first research line re-
ranks candidate items based on their usage to push niche
items from the long tail with the predicted ratings being
calculated using any filtering technique. When using the
UC-BCF approach to calculate the predicted ratings, these
approaches can benefit from it as we show in subsection 5.3.

2http://www.last.fm/
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3. USAGE CONTEXT-BASED RECOMMEN-
DATION

3.1 Introducing Usage Context
Similar to user- and item-based collaborative filtering, the

UC-BCF takes the user-item matrix as input. However, be-
fore calculating the item pair similarities, the user-item ma-
trix is transformed into an item-item matrix. In this matrix,
each item is described by the k items it significantly often
co-occurs with in a user profile. After the matrix transfor-
mation, the item pairs are compared using traditional infor-
mation retrieval approaches, e.g. by calculating the cosine
similarity of their vectors. This way, the UC-BCF combines
features of the user- and the item-based approaches:

1) If two items share a significant amount of users that
rated them similarly, they are described through similar item
vectors because they often co-occur with the same items in
a user profile.

2) If two items are rated similarly by a significant amount
of similar users (not necessarily the same users), they are
also described by similar item vectors because similar users
co-rated the same items similarly.

Additionally, there is a third feature not contained in the
user- or item-based approach:

3) If two items are rated dissimilarly by a significant amount
of dissimilar users, they hold similar item vectors, because
dissimilar users co-rated the same items dissimilarly.

Let’s take the following examples to clarify the mecha-
nisms of the UC-BCF. Table 1 shows the ratings of the two
users u1 and u2 for the movies m1 - m5. For this exam-
ple, the user-based collaborative filtering (UBCF) approach
recommends movie m2 to user u1 and movie m1 to user u2.
The item-based collaborative filtering (IBCF) approach fails
because of the items’ usage data sparsity.

Table 1: Exemplary Rating Data
m1 m2 m3 m4 m5

u1 5 - 4 5 3
u2 - 5 4 4 2

The UC-BCF approach first transforms the user-item ma-
trix into an item-item matrix by calculating the most signifi-
cant co-occurences for each item. For simplicity in this small
example, we consider movies to be significant co-occurrences
if at least one user rated them similarly (here: with a dif-
ference of 1 star or less). Additionally, we just use 0 and 1
for stating if movies are co-occurrences or not, later, we will
exchange the binary attribute for the significance value of
the co-occurrence. Table 2 shows the vectors describing the
movies m1 - m5 calculated this way.

Table 2: Item Vectors
m1 m2 m3 m4 m5

m1 0 0 1 1 0
m2 0 0 1 1 0
m3 1 1 0 1 1
m4 1 1 1 0 0
m5 0 0 1 0 0

The movies m1 and m2 are described by the same item
vectors, therefore they receive a high similarity score and

users who like m1 are assumed to like m2 as well and vice
versa (of course also depending on the user’s other ratings).

Table 3 shows exemplary rating data for the users u3,
u4 and u5 on the movies m6 - m9. Here, the UCBF suffers
from the sparsity of user u5’s profile. The IBCF recommends
movie m6 to user u5.

Table 3: Exemplary Rating Data
m6 m7 m8 m9

u3 4 5 5 3
u4 2 2 4 2
u5 - 4 - -

The item vector calculation of the UC-BCF for the movies
m6 - m9 results in the vectors given in table 4. Similar to
the item-based approach, the movie m6 gets recommended
to user u5.

Table 4: Item Vectors
m6 m7 m8 m9

m6 0 1 1 1
m7 1 0 1 1
m8 1 1 0 0
m9 1 1 0 0

The last exemplary rating data is given in table 5. The
users u6 and u7 are very dissimilar according to their ratings.
Therefore, the ratings of u6 will not be considered when cal-
culating recommendations for user u7 and vice versa when
using a user-based approach. The item-based approach suf-
fers from sparsity as in the first example.

Table 5: Exemplary Rating Data
m10 m11 m12 m13

u6 2 - 3 1
u7 - 5 5 4

The transformation of this matrix into the usage context-
based approach’s item-item matrix results in the vectors
given in table 6, which shows that the movies m10 and m11

are assumed to be similar. This is because the movies m12

and m13 were co-rated similarly (1 star difference or less)
with the movies m10 and m11 by users u6 and u7. Here, it
does not matter that u6 rated the movies low and user u7

rated them high. Thus, the approach would assume user u7

to like movie m10 because he likes movie m11.

Table 6: Item Vectors Excerpt
m10 m11 m12 m13

m10 0 0 1 1
m11 0 0 1 1
m12 1 1 0 1
m13 1 1 1 0

These simple examples show, how the UC-BCF can com-
bine the strength of the two standard UBCF and IBCF ap-
proaches and compensate their weaknesses. In the next sec-
tions, we will discuss how to choose the most significant co-
occurrences for an item and how to calculate the similarity
of two items based on their co-occurrences.
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3.2 Significant Co-occurrences
We define two items to be co-occurrences if they are con-

tained in at least one user profile in which they are rated
similarly. We assume two items to be rated similarly if their
rating difference is below a given threshold t or if both items
are rated above or below the user’s average rating. Not ev-
ery co-occurrence is significant, rather most co-occurrences
are coincidental, thus, we need to calculate a significance
score for each co-occurring item pair.

Basic association measures calculate a significance score
by comparing the observed frequency O of a co-occurrence
with its expected frequency E, e.g. MI (mutual information)
and z-score, see [26]. These simple association measures of-
ten give close approximation to the more sophisticated as-
sociation measures (as described below) and are therefore
sufficient for many applications. They also have some limi-
tations as they, e.g. tend to fail when calculating the signif-
icance value for a frequent and an infrequent object [16].

In statistical theory, association measures are always based
on a cross-classification of a set of items, e.g. using contin-
gency tables. Table 7 shows the contingency table for the
items i and j which are co-rated O11 times. Additionally,
i was rated by O12 users who did not rate j, j was rated
by O21 users who did not rate i and O22 users who did not
rate any of these items at all. The expected values for these
observed values are E11, E12, E21, and E22, respectively.

Table 7: Contingency table
j ¬ j

i O11 O12 =R1

¬ i O21 O22 =R2

=C1 =C2 =N

Commonly used association measures that are based on
contingency tables are the χ2 test and log-likelihood, see
[26]. The χ2 test adds up the squared z-scores for each cell
in the contingency table and puts it in relation to the ex-
pected frequencies. Since the normal approximation implicit
in the z-scores becomes inaccurate if any of the expected fre-
quencies are small [16], the Yates’ continuity correction [13]
shown in equation 1 offers a better approximation (corrected
χ2-test). Equation 2 shows the log-likelihood measure [14].

χ2-corr =
(|O11O22 −O12O21| − N

2
)2

R1R2C1C2
(1)

log-likelihood = 2
∑

ij

Oij ln
Oij

Eij
(2)

The association measure shown in equation 3 is based on
the Poisson distribution. [22] gives a formal proof that justi-
fies the assumption of a Poisson distribution for co-occurring
objects in a data set if the frequency of most objects is much
smaller than the size of the data set. Using the Poisson dis-
tribution requires the calculation of the faculty of the nat-
ural logarithm of O11, which is numerically hard to handle
for a large O11, thus, using an approximation such as the
Stirling’s formula, it can be simplified [6].

poisson = O11(lnO11 − lnλ − 1) +
1

2
ln(2πO11) + λ

with λ =
R1C1

N

(3)

3.3 Detection of a Suitable Significance
Threshold

After the calculation of the co-occurrences’ significance
values, the most significant ones must be selected for each
item by choosing its k most significant co-occurrences or
by using a threshold. Since there is no standard scale of
measurement to draw a clear distinction between significant
and non-significant co-occurrences [15], the calculation of
a suitable k or a threshold is an exploratory investigation.
In our experiments, we will vary the vector sizes but only
consider items if they hold a significance value that is over-
average for the described item to avoid noise.

3.4 Item Similarity Calculation
We calculate the similarity for each item pair using the

cosine similarity which measures the angle between their co-
occurrence vectors, see equation 4. Each item i is described
by its vector Vi. The cosine similarity always takes a value
between 0 and 1.

cosine-sim =
Vi · Vj

||Vi|| ||Vj || (4)

3.5 Expected Rating Calculation
We compute the expected rating p(u, i) on an item i for

a user u by averaging the ratings given by the user to the
other items in her profile P (u) while each rating is weighted
by the corresponding similarity sim(i, j), see equation 5.

p(u, i) =

∑
j∈P (u),i�=j(sim(i, j) ∗ r(u, j))
∑

j∈P (u),i�=j |sim(i, j)| (5)

3.6 Computational Complexity
The computational complexity of the UC-BCF approach

depends on the amount of time required to build the model
(i.e. calculating the item-vectors and the item pair simi-
larities) and the amount of time required to compute the
recommendations using this model.

During the model building phase, we first need to compute
the co-occurrence vectors by calculating the significance val-
ues of all co-occurrences and select the k most significant
ones for each item. The upper bound on the complexity of
this step is O(n2m) with n being the amount of items and
m being the amount of usage contexts, i.e. user profiles,

as we potentially need to calculate n∗(n−1)
2

significance val-
ues, each requiring up to m operations. However, the actual
complexity is significantly smaller because we only need to
calculate significance values for those item pairs that were
actually used together and the user profiles are generally
sparse and the rated items are clustered [23]. In the second
step of the model building phase, we need to compute the
similarity of all item pairs using their co-occurrence vectors.
The upper bound on the complexity is O(n2k) as we need

to compute n∗(n−1)
2

similarities, each potentially requiring k
operations, with k typically being small (< 100, see section
5), thus, it can be simplified to O(n2).

Finally, the upper bound of complexity to compute the
top-N recommendations for a given user profile P (u) is de-
scribed by O(n|P (u)|) as for all items that have a similarity
greater than 0 to at least one of the rated items (which is
potentially n, but usually much smaller) a predicted rating
is calculated by considering all rated items.
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4. EXPERIMENTS
This section describes the data sets, the evaluation metrics

and the experimental set-up used for the evaluation of the
UC-BCF approach in comparison to baseline approaches, i.e.
UBCF and IBCF as well as matrix factorization techniques.
In the next section, we present the results and give a detailed
discussion about the gathered insights.

4.1 Test Sets

4.1.1 MovieLens
The MovieLens3 data set comprises 1 million ratings from

6,040 users for 3,952 movies (95,81% sparsity) on a rating
scale from 1 to 5. We randomly split the data set in five sub-
sets to perform a 5-fold cross validation. Following [3], all
users that hold less than 20 high ratings in the test set are re-
moved from it and the ratings are added to the training set.
We do so because the recommendation lists we create have
a length up to 20 and we want to be able to distinguish be-
tween relevant (liked) and irrelevant (not liked) items (rather
than between liked and not yet reviewed items). As com-
monly done in recommender systems literature, we define an
item as highly rated if the user rated it with at least 4 out
of 5 stars [4]. This results in test sets containing on average
147,494 ratings (85,309 high and 62,185 low ratings) from
2,152 users on 3,423 movies, the remaining ratings form the
training sets.

4.1.2 Netflix
The Netflix data set is the one used for the Netflix4 prize.

Because of the size of the data set and the number of exper-
iments we conducted, we pre-processed the data set by ran-
domly selecting 9,006 users who rated 17,208 movies. Over-
all, the data set comprises 1,863,197 ratings which results in
a sparsity of 98,81%. In the same manner as for the Movie-
Lens data set we split the data set in five subsets to perform
a 5-fold cross validation and removed all users from the cur-
rent test set that hold less than 20 high ratings. The test
sets comprise on average 304,932 ratings (177,551 high and
127,581 low ratings) from 3,439 users for 12,515 movies.

4.2 Evaluation Metrics

4.2.1 Aggregate Diversity
Following [3], we present the aggregate diversity of a rec-

ommender system as the total number of distinct items rec-
ommended among all users, see equation 6, with PH(u) be-
ing the set of items highly rated by user u from the user set
U and Rec(u) being the set of items recommended to her.

aggregate-diversity = |
⋃

u∈U

(PH(u) ∩Rec(u))| (6)

Note that we only consider correctly recommended items,
i.e. movies highly rated by the user in the test set. We do
so, because we only allow the recommender to recommend
items that were actually rated by the user in the test set
(see subsection 4.1). Thus, we know if an item was highly
rated by the user or not and we do not want to increase the
aggregate diversity by recommending items not relevant for
the users.

3http://grouplens.org
4http://www.netflixprize.com/

4.2.2 Novelty
Novelty is defined differently in several publications de-

pending on the context and its purpose, e.g. the item’s
novelty in respect to the user (which is related to the in-
dividual diversity) or the item’s novelty in respect to the
total amount of recommended items (which is related to the
aggregate diversity). We apply the population-based item
novelty evaluation metric proposed in [31] which is called ex-
pected popularity complement (EPC) to measure the ability
of a recommender system to recommend items from the long
tail, see equation 7.

EPC =

∑
u∈U

∑N
r=1

rel(u,ir)∗(1−pop(ir))
log2(r+1)∑

u∈U

∑N
r=1

rel(u,ir)
log2(r+1)

(7)

Here, we calculate the average ”non-popularity”1−pop(ir)
of each item ir (i.e. the item that is at ranking position r of
the actual recommendation list with sizeN). The popularity
pop(i) is calculated based on the times the item has been
rated so far, hence, the item’s popularity is the ratio between
the number of its ratings Rat(i) and the number of ratings
of the most rated item in the item set I , see equation 8.

pop(i) =
|Rat(i)|

maxi∈I |Rat(i)| (8)

Just as for the aggregate diversity calculation, only rele-
vant items are considered, this means rel(u, ir) can take the
values 0 or 1. Additionally, the items are weighted according
to their position r in the recommendation list by using a log-
arithmic discount. Thus, a recommender gets a higher EPC
value when it not only recommends items from the long tail
but also ranks them highly in the recommendation lists.

4.2.3 Classification Accuracy
Classification metrics measure the amount of correct and

incorrect decisions, i.e. whether an item is correctly or in-
correctly recommended or not recommended, respectively.
The most popular metrics in this category are precision and
recall that state the percentage of correctly recommended
items in respect to all recommended items (precision) and
the percentage of correctly recommended items in respect to
all items that are highly rated (recall), see [11].

However, in a considerable amount of recommender sys-
tems a fixed number of recommendations is offered to the
user. Additionally, we need a uniform number of recom-
mended items to evaluate our approach in respect to the
aggregate diversity described below. Therefore, we use the
accuracy in top-N approach, i.e. the average precision of
the recommended items for all users, see equation 9.

accuracy-in-top-N =

∑
u∈U |PH(u) ∩Rec(u)|

|U | ∗N (9)

4.3 Baseline Algorithms
In order to create a baseline to evaluate our approach

against, we use the standard collaborative filtering meth-
ods IBCF (with adjusted cosine similarity) and UBCF (with
Pearson correlation based similarity). Although these meth-
ods do not explicitly support the notion of novelty, diversity
or the long tail, they constitute fairly reasonable baselines
for performance measures besides classical accuracy mea-
sures as pointed out in [9] and supported by [1].
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Additionally, we tested the matrix factorization methods
(MF) offered by the PREA (Personalized Recommendation
Algorithms) toolkit [24] (i.e. Single Value Decomposition
(SVD), Non-negative MF, Probabilistic MF, and Bayesian
Probabilistic MF) as well as the MF methods offered by
the Java port of the MyMediaLite Recommender System
Library [18] (i.e. a standard MF as well as a Biased and a
Factorized MF). Based on the performances of the different
methods on our test sets and to not overload the diagrams,
we choose to present the SVD [29] method from the PREA
toolkit and the Biased Matrix Factorization (BMF) [30] from
the MyMediaLite library.

4.4 Experimental Setup
We start our evaluation with predicting the top-N movies

for each user in the MovieLens and the Netflix data set.
Then, we calculate the aggregate diversity, the EPC, and
the classification accuracy of the recommendation lists. We
run the experiments with the result list size N = 5, 10,
15, and 20. The UC-BCF approach is tested with the as-
sociation measures χ2-corr (Chi), log-likelihood (Log), and
Poisson-based (Poisson), see section 3.2. Altogether, we run
240 experiments combining the different features and vary-
ing the co-occurrence vector size from 10 to 100 (with the
specific sizes 10, 20, 25, 30, 40, 50, 75 and 100). Due to
size constraints and because the algorithms perform similar
for the different values of N , we only present the results for
N=10.

5. RESULTS

5.1 Aggregate Diversity, Novelty, and
Classification Accuracy

Fig. 1 shows the aggregate diversity, i.e. the total amount
of distinct recommended items for the different techniques.
The baseline algorithms perform dissimilar for the two data
sets, for instance the Biased Matrix Factorization method
is the best performing baseline on the MovieLens data set
while on the sparser Netflix data set, it is the worst per-
forming one. Overall, the user-based collaborative filtering
approach performs best in terms of aggregate diversity.

For both data sets, the UC-BCF approach is able to out-
perform the baseline algorithms whereupon the UC-BCF ap-
proach using the association measure χ2-corr in combination
with vector size 10 is the most promising one. For the Movie-
lens data set it increases the amount of recommended items
on average by 38.10% (from 26.59% compared to BMF to
46.10% compared to IBCF). For the Netflix data set it in-
creases the amount of recommended items on average by
68.31% compared to the baseline algorithms (from 52.25%
(UBCF) to 88.77% (BMF)).

It can be seen in Fig. 1 that an increasing vector size re-
sults in a decreasing amount of distinct recommended items.
The less items are used to describe an item the more di-
verse are the item vectors and the more distinct items get
recommended to the users. It is important to state that
only correctly recommended items are used to calculate the
amount of distinct recommended items as we want to avoid
incorrectly recommended items no matter if they increase
the aggregate diversity or not. For the sparser Netflix data
set, even with vector size 100, the UC-BCF approach rec-
ommends more distinct items than the baseline algorithms.
For the MovieLens data set, the vector size needs to be at

maximum 10-30 depending on the used association measure,
to perform better than the BMF approach.

Fig. 2 shows the comparison of the classification accu-
racy in the top-10 recommendation lists for the different ap-
proaches. Here, the baseline algorithms perform similarly on
both data sets. As could be expected, the matrix factoriza-
tion methods SVD and BMF outperform the standard col-
laborative filtering techniques IBCF and UBCF with SVD
being the best and UBCF being the worst performing ap-
proach for both data sets.

The UC-BCF approach with association measure χ2-corr
reaches the best classification accuracy values with vector
size 30 for MovieLens and vector size 50 for Netflix. For the
MovieLens data set, the UC-BCF approach performs better
than the BMF (0.46%), IBCF (1.10%), and UBCF (1.96%)
approaches whereas the SVD performs better than the UC-
BCF approach (0.82%). For the sparser Netflix data set,
the UC-BCF approach is able to increase the classification
accuracy compared to all baseline approaches (from 0.32%
(SVD) to 2.72% (UBCF)).

As can be seen in Fig. 2, the accuracy of the UC-BCF ap-
proaches increases with an increasing vector size until a size
of 30-50 depending on the underlying association measure;
thereafter it slightly decreases again. This is due to the fact
that the more co-occurring items are used to describe an
item, the greater is the chance of including coincidental and
thus non-significant items which can be described as noise.

Fig. 3 shows the expected popularity complement (EPC)
which states how well a recommender system performs in
recommending items from the long tail. In terms of EPC,
SVD and UBCF are the best performing baseline algorithms.

All UC-BCF approaches are able to outperform the base-
line algorithms in terms of EPC. Similar to the aggregate
diversity, the UC-BCF approach using χ2-corr as associa-
tion measure with vector size 10 is the best performing one
for the MovieLens and the Netflix dataset. This UC-BCF
approach results in an improvement from 4.18% (UBCF) to
11.39 (IBCF) for the MovieLens data set and an improve-
ment of 8.33% (UBCF) to 17.78% (BMF) for the Netflix
data set.

5.2 Interpretative Summary
The goal of the UC-BCF approach is to increase the ag-

gregate diversity by pushing items from the long tail into
the users’ top-N recommendation lists without decreasing
the classification accuracy of the recommendations. There-
fore, we need to choose a co-occurrence vector size that is as
small as possible to increase the aggregate diversity and the
expected popularity complement (EPC). Additionally, the
size needs to be large enough to not decrease the classifica-
tion accuracy. These considerations result in a vector size
between 20 and 25 depending on the used association mea-
sure and the data set. Overall, χ2-corr with vector size 25
is the most promising association measure to be used with
UC-BCF.

For the MovieLens data set, the usage of the UC-BCF
approach with χ2-corr and vector size 25 raises the amount
of recommended items up to 21.7% compared to the UBCF
approach (from 919 to 1118) and at least by 5.45% compared
to the BMF approach (from 1060 to 1118). In terms of accu-
racy, the SVD approach receives a 0.86% better value than
the UC-BCF approach. Nonetheless, the UC-BCF approach
outperforms all other baseline algorithms by 0.41%-1.91%.
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Figure 1: Aggregate Diversity in Top-10

Figure 2: Accuracy in Top-10

Figure 3: Expected Popularity Complement (EPC) in Top-10
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Additionally, the EPC value shows that more items from the
long tail are recommended.

For the Netflix data set, the amount of recommended
items is improved up to 76.52% compared to the BMF ap-
proach (from 2101 to 3709 items) and at least by 42.37%
compared to the UBCF approach (from 2605 to 3709 items)
when using the UC-BCF approach with χ2-corr and vec-
tor size 25. The accuracy is slightly increased as well (from
0.1% (SVD) to 2.5% (UBCF)) and the EPC value shows an
improvement in recommending items from the long tail.

The improvement of the aggregate diversity and expected
popularity complement is more significant for the Netflix
data set than for the MovieLens data set, which can be ac-
counted for by the fact that the Netflix data set holds more
rarely rated objects (see section 4.1) that benefit from the
new approach.

5.3 Combination with Existing Approaches
In chapter 2 we present several techniques that explicitly

try to improve the aggregate diversity and that can be di-
vided in two research lines. The first line tries to increase
the aggregate diversity by re-ranking the most promising
items. The second line tries to increase the aggregate di-
versity by improving the rating predictions for niche items
usually using semantic metadata. The UC-BCF approach
falls in the latter research line as it tries to improve the rat-
ing predictions as well but differs in that it does not require
any additional semantic metadata which is an advantage as
such data is often not available or incomplete.

However, the UC-BCF approach is not meant to be a mere
concurrency for the presented approaches but can be used
as an enhancement. Firstly, similar to other collaborative
filtering approaches, it can be combined with approaches
using semantic metadata if available, thus, the techniques
from the second line can be applied to UC-BCF. Secondly,
it can be used as an underlying algorithm for the re-ranking
approaches from the first line.

In order to demonstrate such a combination, we select a
simple popularity-based re-ranking approach as introduced
in [3]. First, we calculate the missing ratings in the user-item
matrix by applying the UC-BCF. Then, we choose all items
having a higher rating prediction than a given threshold as
candidates. These items are re-ranked according to their
popularity (i.e. the number of ratings they hold) in reverse
order to recommend the first ten items. Thus, a very pop-
ular item gets rejected, even if its predicted rating is high.
We perform a 5-fold cross validation on the MovieLens and
Netflix data sets as before to evaluate the recommendations.
Additionally, in order to enable a better comparison, the
threshold is varied from 3.8-4.2 stars to receive a common
classification accuracy of 0.85 for each technique.

Fig. 4 shows the aggregate diversity reached using this re-
ranking method for the baseline algorithms and the UC-BCF
approach with χ2-corr and vector size 25 for the MovieLens
and the Netflix data set. Compared to the baseline algo-
rithms, the UC-BCF approach is able to increase the ag-
gregate diversity from 3.18% (BMF) to 24.42% (UBCF) for
the MovieLens data set and from 18.37% (SVD) to 55.8%
(UBCF) for the Netflix data set. Similar to the experiments
conducted before, the Netflix dataset which holds more niche
items than the MovieLens dataset benefits even more from
the UC-BCF approach in terms of aggregate diversity.

Figure 4: Aggregate Diversity after Re-ranking (for
an accuracy of 0.85 in top-10)

6. CONCLUSION AND FUTURE WORK
In this paper we present a new collaborative filtering ap-

proach – named usage context-based collaborative filtering
(UC-BCF) – in which items are described by items they sig-
nificantly often co-occur with. In this way, items are similar
if they often occur in similar usage contexts, i.e. in sim-
ilar user profiles, but not necessarily together in the same
user profiles. This approach combines and extends strengths
from the well-known user-based and item-based collabora-
tive filtering approaches and compensate their weaknesses.
Using this new usage context-based approach, even niche
items that do not hold an extensive usage history are rep-
resented by a characteristic co-occurrence vector and, thus,
the calculation of their rating predictions is improved.

We show that the UC-BCF increases the aggregate diver-
sity compared to the standard collaborative filtering and ma-
trix factorization techniques with only one case of accuracy
loss (in all other cases, the accuracy can even be improved).
Additionally, the rating prediction of seldomly used items is
improved and thus, more items from the long tail are rec-
ommended to the users. Therefore, the UC-BCF approach
is better suited than the standard approaches to provide a
user with idiosyncratic items and to increase the range of
products sold by an online shop. Additionally, the UC-BCF
approach is well suited to form the basis for approaches that
re-rank possible recommendations to push even more items
from the long tail.

In this paper we use user profiles as usage contexts, how-
ever, with more detailed usage data available usage contexts
can be formed considering e.g. the time a movie was watched
or the company it was watched with, which might result in
even better results. Furthermore, when creating recommen-
dations e.g. for songs or web pages, it might be more suitable
to consider one session (e.g. every listening or click without
a break of more than an hour) as one usage context. We will
further continue on this track to answer these questions.
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