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ABSTRACT 
Classic paradigm of scientific modeling is mainly based on a set 
of previously, accepted or assumed theories about the target 
phenomena and a validation procedure by limited observations. 
Therefore, normally data has a supporting role in the modeling 
process. On the other hand, recent advances in computing 
technology have brought us a data deluge that may change the 
classic paradigm of scientific modeling. Information flows and 
data streams have reached a level of maturity that they can play 
the main role in modeling of the real systems, without relying on 
lots of assumptions and rules in the first step. This turn may cause 
an inversion in the concept of modeling as a rational process.   

The proposed theoretical idea in this work is that traditional 
theory-driven models have a theoretical limit in modeling 
complex systems, known as curse of dimensionality and further, 
to highlight the fact that massive urban data streams can open up a 
new data-driven modeling approach, which goes beyond simple 
data driven analytics or eye catching info-graphics toward 
operational models of complex phenomena.  

In this work we describe a conceptual framework for modeling 
city wide traffic dynamics that proposes a way to encapsulate the 
complexity based on abstraction power of Markov chains in a 
coexistence with continuous data streams. Therefore, finally as an 
experimental set up, we applied the proposed model to a real data 
set, consisting of GPS traces of taxi cabs in Beijing and the results 
have been explained.     

Categories and Subject Descriptors 
I.6.5 [SIMULATION AND MODELING]: Model Development 
– Modeling methodologies 

General Terms 
Algorithms, Experimentation 
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1. INTRODUCTION 
During the last decade, the developments in computer and 

communication technology have expanded to such an extent that 
the concept of computing not only applies to isolated computers 
anymore, but to entire networks of computing devices, which are 
pervasive and ubiquitous. As a result, new technological 
frameworks such as urban computing, mobile computing and 
crowd sourcing are emerging quickly and we have new forms of 
harvesting computing and communication power in social media 
[1]. These new ways of using technology induce a change in how 
we can understand the role of modeling in urban environments, 
while the classic paradigms for observation and empirical 
inference are challenged to integrate vast sources of data. In a 
field like urbanism and city planning we increasingly have a 
situation that flows of information from recorded urban data are 
more and more forming into continuous and live streams of data. 
This can be regarded as a potentially important extension of the 
empirical basis of urban planning and design.  

However, specifically in transportation and traffic modeling 
research areas, traditional approaches such as partial differential 
equation systems [2,3] or multi-agent systems [4,5] rely on 
theoretical models to describe the underlying logic of the real 
system and then the models are validated by a set of expensive 
and inaccurate observations typically collected through survey 
data or via static sensors such as traffic cameras and loop 
detectors, which this information is often out-of-date, difficult to 
collect and aggregate, difficult to analyze and quantify, or all of 
the above[6]. In fact, in these classic approaches, theories are 
playing the main role in the modeling process, and data is for 
support and validation.  

This analytical and rational approach, in which is mainly through 
a decomposition of real phenomena to a set of elements (analysis) 
and then to compose them back (synthesis) in order to mimic the 
real time behavior, has been used for a long time during centuries 
in simple mechanical systems. However, they reach to a limit in 
coping with complex systems, which is known as curse of 
dimensionality [7] in scientific modeling. Therefore, traditional 
transportation models either macro-simulation [2,3] or micro-
simulations [4,5] are theoretically limited in approximating the 
real traffic systems and then, by adding more features or giving 
more data, models become more complicated, but not complex.    

Meanwhile, with advancements in computer and communication 
technologies and democratization of data sharing as a part of daily 
life activities, large scale collected data can make a difference. [8] 
Our idea in this work is that with availability of urban data 
streams, an inversion in the process of modeling is happening, in 
which the data streams no longer play a supporting role, but the 
main part of modeling process. Therefore, new infrastructures are 
needed to be able to observe and manage data streams in a real 
time fashion. This is the case in several active research projects 
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such as in London1, IBM smart city initiative [9], mobile 
millennium Stockholm [10], WIKICITY [11] or Urban 
Computing at Microsoft [12-15].  

However, this connectedness and data deluge has recently 
motivated more researchers in areas such as urban scaling [16] or 
those are claimed to be universal human mobility patterns [17, 
18], which can be seen as a more efficient rational modeling 
paradigm but with the same curse of dimensionality problem.  

Therefore, considering these new urban data streams as a new 
capability, the better research question could be whether one 
could directly encapsulate the richness of urban data streams into 
operational models without going through theorizing step, which 
is a limited theoretically in complex systems, and how to connect 
this richness to decision making processes.  

In fact the conceptual approach that this work is proposing is how 
to construct data driven models with a continuous coexistence 
with real time data streams, in which the logic of the real behavior 
is not explicated in the model, but implicitly encapsulated in the 
streams of data and then if for example the underlying system is 
changing it is being reflected in the data streams and consequently 
in our data-driven models. This is the case, for example, for 
successful search engines like Google and its products such as 
Google map, which are heavily dependent to their connectivity to 
the real world [19] or the case of evolution of spoken languages 
among young generations, which can be tracked and recognized 
by a person with continuous engagement in real communications. 
Otherwise, it will be really hard to find the logic of change in 
these complex adaptive systems [8]. 

In this research which extends theoretical aspects of modeling in 
complex systems [20], we propose a technical framework for city 
wide traffic modeling based on the application of Markov chains 
[21] as the core mathematical technology. We implement an 
experimental set up with available GPS streams of taxicabs in 
Beijing, which is freely available [14]. In the next chapters, first 
we present our understanding of Markov chains and similar cases. 
Finally, we present the experimental set ups and finally the results 
and possible future research. 

2. MARKOV CHAINS 
2.1 Historical Account 
A.A. Markov showed long ago (1913) [22, 23] how one can grasp 
the complexity of written language based on sequences of 
observations. In this work he considered the sequence of 20,000 
letters in A.S. Pushkin’s poem “Eugeny Onegin” as sequence of a 
set of symbols (letters, morphemes and words). He showed that in 
principle, Markov chain could produce an approximate result of 
the real text without considering any idealized model of the 
language, including, provided that we have enough observations. 
He says, “Many mathematicians apparently believe that going 
beyond the field of abstract reasoning into the sphere of effective 
calculations would be humiliating.” And in fact for a long time 
until advent of computing technology [24] there was no main 
citation of Markov chain. However, during last decade because of 
the availability of lots of sensory data in a form of data stream, 
Markov chain is getting more appealing. The main reason for this 
delay would be because Markov transition matrix as the main 
building block of Markov chain is data-driven and without enough 
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observed data, Markov chain by itself cannot grasp the underlying 
logic of the real phenomena. And this is the opposite of traditional 
approaches (theory-driven models) that can be calibrated with few 
data sets. In fact, Markov chain is a light but powerful data-driven 
approach that does not ask directly for theoretical models of the 
target real systems, but can encapsulate the logic of observed 
behavior in a probabilistic way, after a certain threshold in size of 
data. Because of these conditions, may be one of the largest 
applications of Markov Chain and other similar probabilistic 
methods such as Bayesian networks can be found in Google 
search engine algorithm [19] and Google translate service [8], 
which are built on top of huge corpus of text. And these cases are 
great successful projects, when for example the classic search 
engines were not able to deal with ever growing amount of digital 
data.   

The main idea in this paper is that urban systems are complex 
systems2 and as it is mentioned, traditional rational models reach a 
limit in coping with complex phenomena. Therefore, now 
available urban data streams offer a similar approach as for the 
text and language modeling [24], which can be applied for city 
wide traffic modeling.  Then, in this set up, each mover in the city 
(e.g. a taxi cab) can be assumed as an author, who is producing a 
text by his own intent (i.e. a personal driving behavior) and then, 
the observed GPS traces on city network are similar to the 
sequences of words in a text. Therefore, by observing a certain 
amount of sequences and building a Markov model on top of 
them, one can encapsulate the traffic dynamics in a flexible way. 

Therefore, one of the applications of the proposed Markov chain 
could be the simulation of individual movement patterns [26]. 
Moreover, Markov chains have some other interesting features 
that can be used for specific tasks such as finding critical urban 
segments, empirical expected travel times, community detection, 
road engineering and traffic management [27].  

2.2 Main Definitions 
In this part, we briefly bring the main basic definitions related to 
Markov chain that will be used in the next parts. 
State:  s(t), t=0,1,… is a random variable that can take values 
from 1,…,n which are possible states in a stochastic process. 
States can be finite or infinite. 
Sequences of observed states: As the starting point for a Markov 
chain, observations are arranged such that data form a timely 
sequence of states as follows: 

…,s(t),s(t+1),s(t+2),… 
The time difference between s(t) and s(t+1) which is called 
transition time, is a unique time step such as location of a car in 
every 10 minutes. Note that time steps could be different as well 
or to be a continuous range. However, in this work we assume 
homogenous and discrete transition time. 

Probabilistic transitions between states: if a Markov chain is in 
first order, then from the observed sequences, transition 
probabilities between two sequential states, pij can be calculated 
as a conditional probability as follows. 

pij= Pr(s(t+1)=j | s(t)=i) 
Markov transition matrix: as a result of mutual transition 
probabilities, we have a square matrix P, with n rows and n 
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columns, which shows the transition probability of flows from one 
state to another state.  

In this work we used a discrete-time finite-state first order Markov 
chain, as a row stochastic matrix that means that the sum of 
probabilities in each row is equal to one. 

Now by starting from any state, s(t), the kth step transition of the 
system can be calculated by kth power of Markov transition 
matrix, Pk as follows: 

s(t+k)= Pk * s(t),   t,k=0,1,… 
However, in addition to this macro-level simulation, one could do 
a Monte Carlo simulation of Markov Chain, in short (MCMC) to 
simulate the corresponding system on the micro-level similar to 
agent based approaches. In [24] it has been shown that the 
resulting Markov Chain based on GPS traces can approximate the 
traffic flow in a city scale road network. However, Markov chain 
has some other interesting properties, which are not so well-
known outside of mathematics, but can be helpful for real analysis 
and assessment of traffic flow. In [25] it has been discussed in 
detail that if the constructed Markov matrix has certain conditions 
to be irreducible and aperiodic, it can be applied into the 
following tasks:  

• Expected density of each state: According to Perron-
Frobenius theorem, the matrix P has an Eigenvalue 1 and 
the corresponding Eigenvector is showing the steady state 
probability of the Markov chain, which in case of traffic 
dynamics, it shows the normalized distribution of cars in the 
urban network.  

• Mean first passage time, is the expected number of steps to 
arrive at destination j when the origin is i. Therefore, in the 
case of traffic flow, we have a new matrix, which shows the 
expected empirical travel times between each pair of points 
in the city. 

• Kemeny constant is a holistic measure of the Markov 
network, which shows the expected transition time (steps) 
from any state to a randomly selected state as destination, 
which is astonishingly invariant for any state as the origin. 
Therefore, it can be used to compare different networks 
with different structures or to be used for the effect of each 
state (e.g. road segment) on the total performance of the 
network. 

Further, considering Markov chain as a directed and weighted 
network, one could calculate all the possible classic network 
measures such as different centrality measures, but instead of a 
plain road network, now in a rich one. 

3. SIMILAR WORKS 
Availability of huge GPS-equipped taxi cabs in cities can be 
considered as a great potential for probing city dynamic through 
these pervasive mobile sensors, but the biasedness or sufficiency 
of this data for city wide traffic modeling could be an issue. 
However, a recent research [5] concludes that GPS tracks of taxis 
can be used to approximate traffic patterns in a city-scale road 
network accurately.  

Using GPS traces, several interesting research have been 
conducted recently. From micro-level applications, in [12] a 
framework for large-scale taxi ridesharing service, which 
efficiently serves real-time requests sent by taxi users and 
generates ridesharing schedules that reduce the total travel 
distance significantly, is presented. In [13] the aim is to mine the 

time-dependent and practically quickest driving route for end 
users using GPS-equipped taxicabs traveling in a city. 

From macro-level point of view of modeling, in [11], different 
spatial clusters of land-use functions have been discovered 
combining Point Of Interests (POI) and GPS traces data set. In 
[14], GPS traces of taxicabs have been used to detect flawed 
urban planning and regions with traffic problems.  

Regarding the application of Markov chain, majority of the cases 
are from a micro-level point of view, mainly for predicting the 
most expected movement paths in urban networks. For example in 
[26] they have shown with Markov chain it is possible to predict 
the path between two points in the road network up to 100% 
accuracy. And therefore, it can be used for traffic simulation.  

In similar cases such as [28, 29] vehicle trajectories in urban road 
network have been predicted. However, according to [27], 
Markov Chain as an abstract mathematical tool has some other 
features that can be used for macro-level modeling of citywide 
traffic dynamics. In this work, we proposed a method for 
constructing time-dependent and scalable Markov chains from 
GPS traces with applications of some macroscopic features of 
Markov chain. We implemented the framework based on a 
released data set of taxicabs in Beijing from Microsoft research 
Asia [14]. 

4. EXPERIMENTAL SET UP 
Figure 1, shows the proposed conceptual framework. As it is 
shown, a Markov chain is being constructed periodically in 
coexistence with a continuous data stream, being emitted from 
moving taxi cabs as a part of the daily life in the city. Also since, 
Markov chain is an abstract tool, it can be used for different 
segments of road network, different time periods (e.g. week days, 
weekends or time slots of the day and based on different 
observation periods), and with different time resolutions 
depending on the frequency rate of GPS traces. Then, for each 
constructed Markov chain, several properties, such as community 
detection, time-dependent expected travel times, real time path 
planning and road network engineering can be calculated, which 
is not easy to calculate directly from data or via traditional theory 
driven approaches. These results finally can lead to planning 
interventions in the urban network.  

However, it is important to have a continuous loop of model 
building and assessment and in fact Markov models can be 
meaningful in a full interaction with real systems and can have 
value added if connected with real time monitoring 
infrastructures.  

In this work, as an experimental set up, we used a sample data set 
consisting of GPS trajectories of 10,000 taxicabs during first week 
of February 2008 in Beijing [14]. Therefore, the presented result 
in this paper is just like a snapshot of one iteration of this 
conceptual framework.   

 
Figure 1. A conceptual framework for Markovian modeling of 

traffic flow in coexistence with urban data streams 



 

For segmentation of urban network, three different approaches 
have been presented in [30], but in this framework because of the 
simplicity and further, in order not to just focus on road networks 
(as just one aspects of the real cities) we divided the area of 
Beijing to simple rectangular cells. The selection of cell size is 
important since, for very small size cells, there are not enough 
samples, while for large sizes the sequences will be aggregated 
into one cell.  

In addition to cell size, the time unit for transition steps is 
important, but depends on the frequency of GPS traces. It should 
be noted that, including the time difference between to GPS tracks 
in Markov chain has an important advantage. Because for 
example, if a car is moving in traffic jam slowly, the probability 
of transition from that state (road segment) to another state (next 
road segment) in a fixed time unit is less than the times with no 
traffic jams, and this will be reflected in a Markov transition with 
higher value for diagonal element, pii. On the other hand, if the 
driving speed is high it is more probable to leave one state in one 
transition time. Therefore, the resulting Markov model 
encapsulates implicitly, several important factors such as speed, 
traffic flow and traffic lights, which are neglected in traditional 
network analysis that are based on plain road networks and some 
rule sets for modeling the individual movements. 

Another issue is about the selected border on the city map, which 
causes that the trajectories outside of the grid not to be considered. 
Therefore, if one uses Markov chain with fixed number of grid 
cells, there could be some transitions to outside of the grid (we 
call it state null) and then back to one of the states in Markov 
chain in a few time units later, while in theory, we include all the 
possible movements in the Markovian states. Therefore, in order 
to solve this problem, final Markov matrix can be updated as 
follows, which makes the matrix irreducible as well.   

Pij
^= α Pij + (1-α).1/n,                 α<1 

The added element on the right side, assumes that with (1-α). 1/n 
probability, one car goes from state i to the outside of grid and 
will return to state j.    

5. RESULTS 
Figure 2 shows a sample sequence of a taxicab in a selected part 
of the grid on Beijing.  

 
Figure 2. Selected area of Beijing with rectangular grid and a 

sample sequence from a Taxi cab as a random walk                      
In this work, we selected a 30 by 30 grid (900 states) and 600 
seconds as transition time. Then, for each taxi, we have the 
records as follows: 

                   
Then, after translating all the locational data to sequences, a 
Markov matrix (900 by 900) was constructed considering the 
transition time between two sequential traces. The following 
results have been calculated based on this set up. 

5.1 Expected Car Density in the Network  
As it is mentioned in previous section, the first eigenvector of the 
Markov chain shows the expected long term vehicular density in 
the network. If, we take taxis as samples of overall traffic flow 
[6], this result can be considered as the expected hot spots in 
urban road network, with high traffic jams. However, in case of 
availability of other information such as taxi status (i.e. hired or 
vacant) the same method could be used to estimate the distribution 
of taxis and potential passengers.  Figure 3 shows the expected 
traffic jams in different areas of the Beijing. 

 
Low  High 

 
Low  High 

Figure 3. Expected car density in the network (the first eigenvector of Markov matrix) 

5.2 Identification of Critical Road Segments 
As it has been mentioned before, Kemeny constant provides a 
global measure for travel times within the network. Therefore, it 
can be used for sensitivity analysis of a network to its nodes (i.e. 
road segments). Then, by removing a segment of the network and 

calculating the Kemeny constant of the new matrix, it is possible 
to see the contribution of that road in the whole traffic flow. In 
principle new constant value can be higher (slower traffic in the 
case of closure or removal of this segment) or lower (better and 
faster travel flow).  In figure 3 (left), the color of each region 

CarID , Date, Lon, Lat, State (cell number) 

100,2008-02-02 21:22:11,116.36263,39.93097,374 
100,2008-02-02 21:24:56,116.36708,39.92274,405 
100,2008-02-02 21:29:57,116.34696,39.92226,403 
100,2008-02-02 21:32:14,116.34557,39.91717,403 
100,2008-02-02 21:34:59,116.33843,39.92169,402 
100,2008-02-02 21:37:16,116.32875,39.92175,401 
100,2008-02-02 21:40:01,116.31468,39.9225,400 
100,2008-02-02 21:42:18,116.29511,39.92328,398 
100,2008-02-02 21:45:02,116.29542,39.9306,368 

 
…,374,405,403,403,402,401,400,398,368,
… 



 

shows the difference of Kemeny constant of the network with 
absence of that region to the Kemeny constant of the full network. 
As it can be seen, the majority of road segments do not have 
specific effect in the whole network (values around zero), but a 
few of them are playing important communicative roles either in 
positive or negative way. 
Comparing the values of two measures in figure 3 shows an 
interesting phenomenon. It can be seen that removal or closure of 
several segments with high expected traffic density (red colors in 

figure 3, right), will improve the total quality of the flow (blue 
colors in figure 3, left), while removing some roads with low 
expected density will have very bad results for the network. This 
result is in agreement by the famous network paradox, known as 
Braess’s paradox, which can be interpreted that when a network is 
not congested adding a new street will indeed make things better. 
But in the case of congested networks, sometimes instead of 
adding more capacity, it is better to reduce the capacity [31]. 

 
Negative  Positive 

 
Low High 

Figure 4. The effect of removing each cell in the total performance (Kemeny constant) of the network (left), compared to the 
expected car density in the network   

5.3 Detecting Spatiotemporal Communities 
Considering a Markov chain as a spatiotemporal encapsulation of 
real movements in the city, in comparison to a plain road network, 
one can cluster the Markov chain to detect the sub-communities of 
movements within the city. Each row (state) of the Markov chain 
is an n dimensional vector, which shows the probabilistic relation 
of that state to the other states. Further, one can construct an 
augmented matrix, in which each state is represented by a 2n 
dimensional vector, n dimensions from each row (probabilistic 
outgoing flows) and n dimensions by each column (probabilistic 
in-coming flows) of the Markov matrix. For the clustering a 
Markov network, there are several algorithms available from 
graph analysis research domain. In this case, we used a Self 

Organizing Map (SOM) as a nonlinear data clustering algorithm 
[32]. Briefly, a SOM is the collection of multidimensional sorted 
nodes, in which nodes that are close together representing similar 
data vectors. In this case, each point of the SOM is representing 
one or more road segments (states of Markov chain as n or 2n 
dimensional vectors). Then, one can find cluster of similar nodes 
and consequently similar road segments on the SOM. In this case, 
we used K-means clustering algorithm to perform the clustering 
on SOM.  The following figure shows the detected clusters on a 
SOM network and their spatial distribution on the road map. 
Therefore, considering Markov chain as encapsulation of car 
movements in the city network, the detected clusters shows the 
sub-communities of road segments. 

  

Figure 5. The color coded cluster indices in a SOM as a clustering algorithm (left) and on the spatial map (right) 

5.4 Other Important Measures 
The presented results can be considered as a part of possible by-
products of a Markov chain model of traffic dynamics, which can 
be used for different practical applications. In addition, there are 

other interesting properties of Markov chain that can be used for 
analysis of traffic networks. For example, being able to calculate 
the expected travel time from each point of the city to another 
point is very important for routing and scheduling problems. In 
traditional approaches, this is done based on a plain road network, 



 

physical distances and some assumptions such as shortest path 
selection, which can be different than reality. On the other side, 
the proposed Markov chain implicitly has considered lots of 
factors and then, for example, mean first passage time [27], which 
can be calculated from Markov chain, can be used as a spatio-
temporal travel times between any two points, and this acquired 
information can be used for real time scheduling [13] or can be 
embedded in real time path finding.  

Further, according to [27] a Markov chain (based on primal 
network, in which junctions of roads are representing states) can 
be used for timing of traffic lights, traffic congestion estimation in 
the junction of roads. 

6. Conclusions and Future Works 
Ever growing access to data streams coming from different probes 
in the city, gave us the opportunity of implementing data-driven 
mathematical models that can overcome the limits of theory-
driven models in dealing with complex urban system. In this 
work, we proposed a conceptual data driven traffic modeling 
framework, which is mainly based on the application of Markov 
chains in a continuous coexistence with data streams. The 
proposed framework is inspired by the idea of learning how two 
persons can communicate via a continuous dialogue in 
comparison to communication via referring to an idealized model 
of spoken language (as a reference model).  

In principle, this set up has an important methodological 
advantage over traditional traffic modeling and simulation 
approaches because the logic of real complex phenomena is not 
explicated by a set of rules or theories, but encapsulated in 
Markov chains, which is being updated by urban data streams 
frequently. Further, as a result of using Markov chain we can 
analyze different aspects of traffic dynamics or simulate the flows, 
which are difficult tasks in traditional simulations.  

In this case, as an experimental set up, we applied the proposed 
framework to a set of taxi cabs’ GPS traces in Beijing. However, 
in future, our aim would be to apply the proposed approach in a 
real set up, with real time access to GPS traces3. We claim that in 
a real time set up the proposed framework can grasp the 
complexity of city dynamics, which is theoretically beyond the 
limit of rational and theory driven models.  
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