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ABSTRACT
Given a set of trajectories on a road network, the goal of the
All-Pair Network Trajectory Similarity (APNTS) problem is
to calculate the similarity between all trajectories using the
Network Hausdorff Distance. This problem is important for
a variety of societal applications, such as facilitating greener
travel via bicycle corridor identification. The APNTS prob-
lem is challenging due to the high cost of computing the
exact Network Hausdorff Distance between trajectories in
spatial big datasets. Previous work on the APNTS prob-
lem takes over 16 hours of computation time on a real-world
dataset of bicycle GPS trajectories in Minneapolis, MN. In
contrast, this paper focuses on a scalable method for the
APNTS problem using the idea of row-wise computation,
resulting in a computation time of less than 6 minutes on
the same datasets. We provide a case study for transporta-
tion services using a data-driven approach to identify pri-
mary bicycle corridors for public transportation by leverag-
ing emerging GPS trajectory datasets.

Categories and Subject Descriptors
H.2.8 [Database Management]: Database Applications–
(Spatial Databases and GIS)

General Terms
Algorithms, Performance, Experimentation

Keywords
Trajectory Similarity, Spatial Data Mining, Network Haus-
dorff Distance

1. INTRODUCTION
Problem: Given a set of trajectories on a road network,

the goal of the All-Pair Network Trajectory Similarity (AP-
NTS) problem is to calculate the Network Hausdorff Dis-
tance (NHD) between all pairs of input trajectories. The

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
UrbComp’13 August 11–14, 2013, Chicago, Illinois, USA.
Copyright 2013 ACM 978-1-4503-2331-4/13/08 ...$15.00.

Figure 1: Road network represented as an undi-
rected graph with four trajectories illustrated with
bold dashed lines.

classical Hausdorff distance is defined as the “maximum dis-
tance of a set (of points) to the nearest point in the other
set [17].” For example, the Network Hausdorff Distance
from Trajectory B to Trajectory A in Figure 1 is 4 units
(edge traversals), as every node in Trajectory B is at least
4 units or less away from any node in Trajectory A. Note
that the Hausdorff distance is not symmetric. It is a com-
monly used similarity measure in computer vision [11] and
computational geometry [10], but recently has been used
to define similarity between trajectories, both in Euclidean
space [15] and recently on graphs [16]. As the Hausdorff
distance is set-based, it has no notion of order and therefore
when applied to trajectories, traditionally time is ignored.
Depending on the application domain, this may be accept-
able as it is the underlying route choices that are of interest
in our case study on urban bicycle corridor planning.

Motivation: Trajectory similarity measures are used in
a number of important societal applications, such as sum-
marizing population movement within a city, or to optimize
bus route placement. Using network-based trajectories en-
forces topological constraints that are inherently present in
road networks. Let us consider the problem of determining
primary bicycle corridors through a city to facilitate safe
and efficient bicycle travel. GPS trajectory data shows us
where in the city bicycle commuters travel, allowing for data-
driven decisions of bike corridor placement. By selecting
representative corridors for a given group of commuters, we
can minimize the overall alteration to their routes and en-
courage use of the bicycle corridors. Facilitating commuter
bicycle traffic has been shown in the past to have numerous
societal benefits, such as reduced greenhouse gas emissions
and healthcare costs [14].

Challenges: The APNTS problem is challenging due to
the computational cost of computing the Network Hausdorff
Distance (NHD) between all pairs of input trajectories, as



it requires a large amount of node-to-node distance compar-
isons. In our previous work [5], we proposed an exact but
expensive baseline algorithm to compute the NHD, requiring
multiple invocations of common shortest-path algorithms
(e.g., Dijkstra’s [4]). For example, given two trajectories
consisting of 100 nodes each, a baseline approach to calcu-
late NHD would need to compare the distances for all pairs
of nodes within those two trajectories (104), which over a
large trajectory dataset (e.g., pair-wise comparison of 10,000
trajectories) would require 1012 distance comparisons. This
quickly becomes computationally prohibitive without faster
algorithms.

Related Work: Trajectory pattern mining is a popular
field with a number of interesting problems both in geomet-
ric (Euclidean) spaces [22] and networks (graphs) [7]. A
key component to traditional data mining in these domains
is the notion of a similarity metric, the measure of same-
ness or closeness between a pair of objects. A variety of
trajectory similarity metrics, both geometric and network,
have been proposed in the literature. One popular metric
is Hausdorff distance, a commonly used measure to com-
pare similarity between two geometric objects (e.g., poly-
gons, lines, sets of points) [11]. A number of methods have
focused on applying Hausdorff distance to trajectories in ge-
ometric space [2, 3, 9, 15].

Hausdorff distance has been shown to be a useful tool
in geometric space for measuring similarity between tra-
jectories for applications that do not use the temporal in-
formation of trajectories, but applying Hausdorff distance
to network-based trajectories is non-trivial. A number of
papers have proposed heuristics to approximate the Haus-
dorff distance on networks [12, 13, 16, 18, 19]. This is due to
the large number of graph-distance computations needed to
compute the NHD. These approximations allow for interest-
ing and useful pattern discovery, but do not compute exact
similarities between trajectories and may alter results. In
our previous work [5], we proposed a correct but computa-
tionally expensive algorithm for clustering network trajecto-
ries on road networks using Network Hausdorff Distance to
identify new bicycle corridors through a city to facilitate safe
and efficient bicycle travel. However, while the optimized al-
gorithm was a significant improvement over the baseline, it
still remained computationally prohibitive for large trajec-
tory datasets. We illustrate a classification of related work
in Figure 2, highlighting the various approaches of Hausdorff
distance computation for trajectories. In this paper, we pro-
pose a new algorithm that improves performance by over an
order of magnitude on synthetic and case study datasets.

Figure 2: Classifications of Hausdorff Trajectory
Similarity Algorithms.

Proposed Approach: In this paper, we formalize the
Network Hausdorff Distance for weighted graphs and pro-

pose a novel approach that is orders of magnitude faster than
the baseline approach and our previous work, allowing for
Network Hausdorff Distance to be computed efficiently on
large trajectory datasets. We propose a novel approach that
computes the exact NHD while remaining computationally
efficient. While the baseline approach computes node-to-
node distances, the Network Hausdorff Distance (NHD) es-
sentially requires node-to-trajectory minimum distance val-
ues. We take advantage of this insight to compute the NHD
between nodes and trajectories directly by modifying the
underlying graph, inserting a super-source node [6] and com-
puting from a trajectory to an entire set of trajectories with
a single shortest-paths distance computation.
Contributions: This paper proposes a number of key con-
tributions:

• We formalize the All-Pair Network Trajectory Similar-
ity (APNTS) problem for computing similarities be-
tween a set of trajectories.

• We propose a fast and exact algorithm, ROW-TS, to
solve the APNTS problem.

• We provide a case study on real-world GPS trajectory
data of bicycle commuters in Minneapolis, MN.

• We validate the ROW-TS algorithm with experimental
analysis.

Scope This paper focuses on network trajectory similarity
computation, being a crucial step for a number of trajectory
pattern mining algorithms (e.g., trajectory clustering algo-
rithms), as illustrated in our previous work which focuses on
clustering for primary corridors in transportation [5]. A key
component of the Network Hausdorff Distance is shortest-
path distance computations and values. In this paper, we
will discuss a Dijkstra-like [4] framework for computing these
paths during trajectory similarity computation. This as-
sumes that the underlying network is too large to precom-
pute and store the all-pair shortest-path distance matrix
(e.g., Floyd-Warshall [4]). We ignore order-dependent tra-
jectories (chronological ordering, etc.) for simplicity, but the
discussed techniques can be transferred to a spatio-temporal
network if a relation between space and time is needed.

Outline: The rest of the paper is organized as follows. A
brief description of the basic concepts and problem formu-
lation is presented in Section 2. A description of the com-
putational structure of the APNTS problem is presented in
Section 3. In Section 4 we propose the ROW-TS algorithm.
We provide a case-study on a real-world bicycle GPS tra-
jectory dataset in Section 5 and experimental analysis on
synthetic datasets in Section 6. Finally, we conclude in Sec-
tion 7 with a discussion of future work.

2. PROBLEM FORMULATION
In this section, we describe the basic concepts required

to describe the All-Pair Network Trajectory Similarity (AP-
NTS) problem. We provide an example dataset and a formal
problem statement.

2.1 Basic Concepts
We begin with a review of trajectories, networks, and how

they are used to calculate the Hausdorff distance.

Definition 1. Road Network



A road network is defined in this paper as an undirected,
weighted graph G = {V,E} illustrated in Figure 1 where
V = (1, 2, 3, ..., 18, 19, 20) are the vertices or nodes in the
graph G and E = (1−2, 1−6, ..., 18−19, 14−19, 19−20...)
are the edges connecting the vertices (edge weights of 1
unit). This representation is commonly used for transporta-
tion networks, where intersections are modeled as nodes.
Note that the graph could be directed without a change to
the proposed approach.

Definition 2. Network Trajectory

A spatial trajectory traditionally refers to a series of points
(a trace) of a moving object in geographic space [22]. In this
paper, we will be focusing on network trajectories, or, tra-
jectories that consist as a set of nodes and edges in a graph.
A common operation for GPS trajectory data on road net-
works involves map-matching the GPS points to the net-
work [22]. This allows describing the trajectory using graph
notation (a set of nodes and edges) and perform graph-based
calculations, such as shortest-path distance. In this paper,
we define network trajectories as a set of connected vertices:
tx = [v1, ..., vn]. Figure 1 contains four network trajectories:
tA = [16, 17, 18, 19, 20]; tB = [1, 2, 3, 4, 9, 10]; tC = [16,
17, 18, 19, 20, 15, 10]; tD = [6, 7, 8, 9, 10].

Definition 3. Shortest-Path Distance

To measure shortest-path distance on a network or graph,
we sum of the length of edges required to traverse the graph
between two specific nodes. A number of well-known al-
gorithms compute shortest-paths (shortest path tree) on
graphs [4]. In this paper, we will use the generic function
dist(n,m) to indicate the shortest-path distance between
nodes n and m. The choice of algorithm used to calcu-
late this value may vary (Dijkstra’s, A*, Floyd-Warshall if
network size is small). In our pseudocode and implemen-
tation, we use Dijkstra’s single-source shortest-paths algo-
rithm [4] taking a source node v and a graph G as input:
distMap[] = Dijkstra(G, v). It returns the shortest-path
distance to all other nodes in G. In Figure 1, an example
dist(3, 8) would be a distance of 3, traversing the shortest-
path 3-2-7-8 or 3-4-9-8.

Definition 4. Network Hausdorff Distance

As discussed in the related work, there are a number of
variations and approximations of Hausdorff distance on net-
works [12, 13, 16, 18, 19]. Based on these and the original
Hausdorff distance in geometric space [1], we formulate Net-
work Hausdorff Distance (NHD) between two trajectories
tx and ty in Equation 1. An example of NHD, and its
asymmetric distances is NHD(tA, tB) and NHD(tB , tA).
NHD(tA, tB) = 3 as the farthest node in tA from tB
is 3 edges away and tied between a number of pairs:
(dist(16A, 1B) = 3), (dist(17A, 2B) = 3), (dist(18A, 9B) =
3). NHD(tB , tA) = 4 as the farthest node in tB from tA is 4
edges away with: (dist(3B , 17A) = 4 and dist(3B , 19C) = 4.

NHD(ti, tj) = max
n∈ti

min
m∈tj

dist(nti ,mtj ) (1)

Definition 5. Trajectory Similarity Matrix

Table 1: Output for the All-Pair Network Trajectory
Similarity problem: a Trajectory Similarity Matrix
for the input data in Figure 1 using Network Haus-
dorff Distance.

NHD(tx, ty) Track A Track B Track C Track D
Track A 0 3 0 2
Track B 4 0 3 2
Track C 2 3 0 2
Track D 2 1 2 0

A similarity matrix contains the values based on some mea-
sure comparing each pairwise combination of objects in a
dataset. They are input for a number of data mining prob-
lems (e.g., clustering, classification). In this paper, our fo-
cus is to quickly and efficiently produce a similarity matrix
of input trajectories for use in popular trajectory pattern
mining algorithms [22]. Table 1 contains the trajectory sim-
ilarity matrix for the APNTS problem on the input data in
Figure 1. Each cell value is the result of the NHD(tx, ty)
equation given the two corresponding tracks (row, column).

2.2 Problem Statement
The All-Pair Network Trajectory Similarity (APNTS)

problem can be formulated as follows:

Input:
• Road Network: G = {V ,E}
• Collection of Trajectories: T

Output:
• Trajectory Similarity Matrix: M : T × T → R

Objective:
• Minimize computation time

Constraints:
• M values are correct given Equation 1 (Network Haus-

dorff Distance)
• G is a undirected, weighted graph with nonnegative

edge weights

• Trajectories in T are paths in G
Example: Given the input road network and four tra-

jectories in Figure 1, the corresponding trajectory similarity
matrix is shown in Table 1. For each cell in the matrix, the
NHD value was calculated based on the two input trajecto-
ries.

3. COMPUTATIONAL STRUCTURE
Network Hausdorff Distance is a recently popular topic

in the literature [12, 13, 16, 18–20]. However, each of these
papers cite performance issues with a network-based Haus-
dorff distance computation, with [16] saying “the baseline
algorithm requires a large number of distance computations
which significantly degrades performance...”. This idea is
echoed in the other papers, each proposing interesting and
novel algorithms to approximate a network-based Hausdorff
distance computation. In this section, we will discuss the un-
derlying computational structure of this baseline algorithm
and mention a few of the approximation algorithms and their
limitations.

Essentially, the related work provides algorithms to re-
duce the number of Network Hausdorff Distance computa-
tions between trajectories using clustering techniques (e.g.,



density-based [20] or k-nn [16]) or by converting network
trajectories to geometric space [21]. These clustering ap-
proaches degrade to the baseline brute-force approach when
threshold values (density and neighborhood) are not appro-
priately set. In addition, as some portion (depending on
thresholds) of trajectories are not being compared via the
Network Hausdorff Distance, the resulting distance values
are not exact and may affect the quality of the results of
any algorithm using such values. In this paper, we focus
on an exact approach, ensuring each trajectory pair similar-
ity is computed with the exact Network Hausdorff Distance
while retaining computational scalability.

Table 2: Network distance between node pairs; re-
quired for NHD(tB , tA) (Input: Figure 1, Full trajec-
tory similarity matrix shown in Table 1.
NHD(tB , tA) 16tA 17tA 18tA 19tA 20tA Min

1tB 3 4 5 6 7 3
2tB 4 3 4 5 7 3
3tB 5 4 5 4 5 4
4tB 6 5 4 3 4 3
9tB 5 4 3 2 3 2
10tB 6 5 4 3 2 2

Max - - - - - 4

3.1 Graph-Node Track Similarity Baseline
(GNTS - B)

The baseline algorithm to compute the Network Hausdorff
Distance Track Similarity Matrix M computes the shortest-
path distance between each pair of nodes within each pair
of trajectories, choosing the maximum of the values of this
set. Due to this enumeration, the approach is given the
name Graph-Node Track Similarity, as it focuses on repeated
graph computations between all pairs of nodes within the
two trajectories being compared. For example, in Figure 1,
to compute the similarity between Trajectory tB and Tra-
jectory tA, we need to find the minimum distance from each
node in Trajectory tB = [1tB , 2tB , 3tB , 4tB , 9tB , 10tB ] to any
node in Trajectory tA = [16tA , 17tA , 18tA , 19tA , 20tA ], as de-
scribed in Equation 1. These necessary shortest-path dis-
tances are shown in Table 2. These values can be computed
via any number of shortest-path algorithms, but for sim-
plicity we will focus on the popular Dijkstra’s single-source
shortest-paths algorithm [4]. Computing Table 2 would re-
quire 6 (or |tB |) invocations of Dijkstra’s algorithm to find
the shortest-path distance from each node in tB to each node
in tA with a runtime of O(|V |log|V |+ |E|) [4]. That amount
of computation is necessary to find NHD(tB , tA), one cell
in the trajectory similarity matrix (TSM) shown in Table 1.
Therefore, in the baseline case, a number of shortest-path
algorithm invocations are required for each cell in the TSM.

4. PROPOSED APPROACH
In this section we will describe our proposed approach to

efficiently solve the APNTS problem. We begin by propos-
ing our novel row-wise trajectory similarity (ROW-TS) al-
gorithm. The ROW-TS algorithm calculates an entire row
of the trajectory similarity matrix described in the APNTS
problem with a single shortest-path computation.

4.1 Row-Wise Track Similarity (ROW-TS)

Figure 3: Inserting a virtual node (Avirtual) to rep-
resent Track A for efficient Network Hausdorff Dis-
tance computation.

Computing the Network Hausdorff Distance NHD(tx, ty)
between two trajectories does not require the shortest dis-
tance between all-pairs of nodes in tx and ty. Instead, it
requires the minimum distance from each node in tx to the
closest node in ty. In Figure 3, to calculate NHD(tB , tA),
we begin by inserting a virtual node (Avirtual) represent-
ing Trajectory tA into the graph. This node has edges with
weights of 0 connecting it to each other node in Trajectory
tA. We then run a shortest-path distance computation from
the virtual node as a source, with the destination being ev-
ery node in Trajectory tB . The result was the shortest dis-
tance from each node in Trajectory tB to the virtual node
Avirtual. Since the virtual node is only connected to nodes
in Trajectory tA, and all the edge weights are 0, we had the
shortest-path from each node in Trajectory tB to the closest
node in Trajectory tA, exactly what NHD(tB , tA) requires
for computation. However, this focused on computing a sin-
gle cell in the trajectory similarity matrix per invocation of a
single-source shortest-paths algorithm. That means at least
O(|T |2) shortest-path invocations to compute the TSM for
the APNTS problem, still quite expensive. We propose a
new approach, ROW-TS, to compute an entire row of the
TSM with one invocation of a single-source shortest-paths
algorithm. Using a row-based approach, we can essentially
calculate NHD(t ∈ T, tA) with one single-source shortest-
paths invocation from Avirtual. This approach reduces the
overall number of shortest-paths invocations to O(|T |) at
the cost of additional bookkeeping, as we will show below.

The pseudocode for ROW-TS is given in Algorithm 1. To
compute the TSM in Table 1, ROW-TS iterates through
each input trajectory tx. In Lines 2 - 6, a virtual node
is added to the graph and connected to each node tx by
an edge of length zero. In line 7, ROW-TS runs an undi-
rected shortest path tree algorithm (Dijkstra’s [4]) to find
the shortest-path distance between all tracks and the vir-
tual node, updating a distance map. In lines 9-10, ROW-TS
iterates through trajectories in T and tests if the network
Hausdorff Distance from one trajectory to itself is being
computed, which is always zero. In lines 13-19 ROW-TS
checks the distance map returned by the shortest-path com-
putation to get the Hausdorff distance. In line 19, ROW-TS
updates the track similarity matrix M with the newly cal-
culated Network Hausdorff Distance between tx and ty and
returns M in line 23.

Execution Trace of ROW-TS: We begin by iterating
through each trajectory tx in T . Let’s use Trajectory tA in
Figure 1 as an example trajectory through this algorithm.
In Line 2 we create a virtual node to represent Trajectory
tA (Avirtual in Figure 3). Connecting Avirtual to each node
in Trajectory tA (16, 17, 18, 19, 20) with 0-length edges,



Algorithm 1 Row-Wise Track Similarity (ROW-TS)

Input:
• Road Network G = {V,E}
• Tracks T : Set of trajectories

Output:
• Track Similarity Matrix M

1: for tx in T do
2: vTrack = newNode()
3: G.add(vTrack)
4: for nodes n in tx do
5: Create 0-length edge from vTrack to n
6: end for
7: distMap[] = Dijkstra(G, vTrack)
8: G.remove(vTrack)
9: for ty in T do

10: if tx == ty then
11: M [ty][tx] = 0
12: else
13: max = −∞
14: for nodes m in ty do
15: if distMap[m] ≥ max then
16: max = distMap[m]
17: end if
18: end for
19: M [ty][tx] = max
20: end if
21: end for
22: end for
23: return M

we can compute the single-source shortest-paths distance
from Avirtual to every other node in the graph G in Line 7.
Since the edges connected to Avirtual had a length (weight)
of 0, we know that each node n distance returned in the
distMap[] on Line 7 is actually the shortest-path distance
from n to some node in A. This set of minimum distances
is what we need to calculate the NHD from each trajectory
t in T , which we loop through in Line 9. For each node
m in trajectory t, we already have the minimum distance
from m to any node in trajectory A in the distMap[], and
therefore need to find the maximum of those minimums as
defined in Definition 4 for the NHD(t,tA). For an example,
lets use Trajectory tB as t starting in Line 9. We iterate
through each node mB in tB (1tB , 2tB , 3tB , 4tB , 9tB , 10tB )
and lookup the distance from Avirtual to mB in distMap[]
(1tB :3, 2tB :3, 3tB :4, 4tB :3, 9tB :2, 10tB :2) as shown in Ta-
ble 2. The maximum of those minimum distances is 4, which
we set as the value of NHD(tB , tA) in Line 19. This repeats
for every other trajectory t in T to compute the entire row
corresponding to Trajectory tA in the trajectory similarity
matrix M .

5. CASE STUDY: K-PRIMARY CORRI-
DORS FOR COMMUTER BICYCLISTS

In Summer 2006, University of Minnesota researchers col-
lected a variety of data to help gain a better understanding
of commuter bicyclist behavior using GPS equipment and
personal surveys to record bicyclist movements and behav-
iors [8]. One possible issue they looked at was identifying
popular transportation corridors for the Minnesota Depart-
ment of Transportation to focus funds and repairs. At the

(a) Recorded GPS points from bicyclists in Min-
neapolis, MN. Intensity indicates number of points.

(b) Original, hand-crafted primary corridors iden-
tified by our co-author and fellow geographers in [8]

Figure 4: Example input and output of the k-
Primary Corridor problem.

time, they hand-crafted the primary corridors. Shortly after
this study, the U.S. Department of Transportation began a
four-year, $100 million pilot project in four communities (in-
cluding Minneapolis) aimed to determine whether investing
in bike and pedestrian infrastructure encouraged significant
increases in public use. As a direct result of this project, the
US DoT found that biking increased 50%, 7,700 fewer tons
of carbon dioxide were emitted, 1.2 million fewer gallons of
gas was burned, and there was a $6.9 million/year reduc-
tion in health care costs [14]. In our previous work [5], we
proposed a data-driven approach (the METS algorithm) to
identify these primary bike corridors. While this approach
identified interesting corridors, it remained computationally
expensive as shown in Table 3. We re-ran the case-study
in [5] on the Minneapolis, MN bicycle GPS dataset using the
METS and ROW-TS algorithms in Table 3, given the input
of the Hennepin County road network (57,644 nodes), 819
trajectories (shown in Figure 4(a) and the number of desired
corridors, k, set to 8. As expected, the ROW-TS algorithm
significantly outperformed the METS algorithm. The faster



(a) 8-Primary Corridors chosen from input GPS.

(b) 8-Primary Corridors chosen from subset of sin-
gle streets (e.g., Park Ave)

Figure 5: Set of 8 -primary corridors chosen based
on minimized intra-cluster distance. The set of can-
didate corridors varies in each figure.

execution allowed a modification to the case-study to help
identify more appropriate corridors.

Table 3: CPU Execution Time on Bicycle GPS tra-
jectories in Minneapolis, MN

Dataset METS ROW-TS
57,644 Nodes, 819 Tracks 55,823 sec 353.9 sec

In the previous case-study, the chosen primary corridors
where selected from the input trajectories (a k-medoid ap-
proach). While this ensured that chosen corridors were
routes that had been biked in the real world and shared
commonalities with the hand-crafted corridors chosen in Fig-
ure 4(b), they had problems of being too long or having too
many turns and deviations. In Figure 5(a), we show the
corridors chosen from the input trajectories. For this case-
study, we generated a set of candidate corridors based on in-
put from geographers and had the ROW-TS algorithm com-
pute the similarity between these candidates and the input
GPS trajectory data. The candidate corridors were gener-
ated with two restrictions: 1) the corridor was a shortest-
path between two nodes on the network, and 2) the corridor
could only consist of n different streets, defined by their

street name (e.g., a corridor traversing Park Ave and Cedar
Ave would consist of 2 streets). This approximated the types
of corridors our geographer collaborators were looking for
while retaining the data-driven approach by comparing them
to the actual GPS trajectory data. For this study, we gen-
erated 5,000 trajectories using these two constraints (source
and destination nodes chosen at random) to be used as can-
didate corridors. The faster ROW-TS algorithm allowed us
to generate a large number of candidate corridors and com-
pute the similarity for the clustering. In Figure 5(b), we
show the chosen clusters generated from single-road candi-
dates (e.g., a subset of Park Ave would be a candidate).

6. EXPERIMENTAL EVALUATION
In this section, we explain our experimental design for in-

vestigating a number of computational questions related to
the APNTS problem and our proposed solution. We begin
with the overall experimental design, followed by an expla-
nation of the explored parameters, and finally the experi-
mental validation.

6.1 Experimental Goals
We explored a number of computational questions related

to the scalability of the algorithms we proposed. Our in-
tention was to examine how varying certain key parameters
would affect the runtime of the GNTS, METS, and ROW-
TS algorithms. Each question was run on a small dataset
and a large dataset for each algorithm. The questions we
explored were:
• How does the number of trajectories affect the compu-

tational cost of each algorithm?
• What is the impact of the number of nodes in the road

network on the computational cost of the various tra-
jectory similarity algorithms?
• Does the trajectory length significantly affect the run-

time of each algorithm?

Figure 6: Experiment Design

6.2 Experimental Design
The experiments in this section were performed on syn-

thetic datasets. We generated the underlying roadmap
(graph), along with suitable trajectories. To generate the
roadmap, we created a generator that required a number
of nodes as input, and then generated a grid-like planar
graph, similar to urban road networks. For the trajecto-
ries, we chose two random nodes on the graph and found
the shortest-path, using that as a trajectory. We did not
attempt to simulate how bikers would move about our net-
works, as we have real data (in the previous section) to test
on. Here we are simply testing for scalability. These exper-
iments were carried out on a Quad-core 2.4 Ghz Intel Core
Duo 2 Ubuntu Linux machine with 8 GB of RAM. All of
the algorithms were coded and run with Java SE 1.6. Each
test measured CPU execution time and was run 10 times for
each parameter value, then averaged for a final score shown
in the plots. Our intention with these experiments was to



vary key input parameters to measure how they affect the
performance of our proposed work ROW-TS using the ex-
periment design in Figure 6. We will be comparing against
related work with the following algorithms:

Graph-Node Track Similarity (GNTS - Baseline):
The baseline algorithm to compute the Network Hausdorff
Distance Track Similarity Matrix M computes the shortest-
path distance between each pair of nodes within each pair
of trajectories, choosing the maximum of the values of this
set.

Matrix-Element Track Similarity (METS [5]): In
our previous work [5], we proposed a correct but computa-
tionally expensive algorithm for clustering network trajecto-
ries on road networks using Network Hausdorff Distance for
identifying new bicycle corridors through a city to facilitate
safe and efficient bicycle travel. This algorithm used a vir-
tual node to reduce the number of shortest-path invocations
to one per cell in the trajectory similarity matrix. It proved
to be faster than the baseline, but remained computationally
prohibitive for large datasets.

6.3 Experimental Results
How does the number of trajectories affect the

computational cost of each algorithm? In the first ex-
periment, shown in Figure 7(a), we created a road network
with 500 nodes, an average trajectory length of 50 nodes.
The x-axis shows the number of trajectories given as input,
the y-axis shows the runtime in seconds on a logarithmic
scale. The figure shows all three algorithms varying over
the given numbers of trajectories, and as is clear, GNTS
and METS quickly become prohibitive even with this small
dataset size. ROW-TS grows slowly and appears to run at
least two orders of magnitude faster. In Figure 7(d) we in-
creased the number of trajectories to be tested, withdrawing
GNTS due to prohibitive computation time. METS was also
computationally prohibitive after an input of 4,000 trajecto-
ries, while ROW-TS continued to be reasonable (under 100
seconds) past 10,000 input trajectories.

Does the trajectory length significantly affect the
runtime of each algorithm? We ran this experiment
with 500 nodes and 500 trajectories at a trajectory length
shown on the x axis in Figure 7(c). METS and ROW-TS
are not significantly affected by the smaller dataset. Moving
to the larger dataset in Figure 7(f) of 1,000 nodes and 500
tracks with longer trajectory lengths on the x axis, METS
is not significantly affected, as expected because the main
cost is still the repeated shortest-path computations. ROW-
TS grows more quickly due to the extra bookkeeping in the
algorithm (see the pseudocode in Algorithm 1).

What is the impact of the number of nodes in the
road network on the computational cost of the var-
ious trajectory similarity algorithms? In Figure 7(b),
it is clear that the size of the underlying graph (number of
nodes as plotted on the x axis) is relevant to the runtime
of each algorithm as shortest-path algorithms make up a
large portion of the computational cost in each. We ran this
experiment with 100 trajectories and an average trajectory
length of 10. Figure 7(e) shows a larger dataset with the
number of nodes in the network going up to 10,000. Due
to the reduced number of distance calculations in ROW-TS,
not only is the overall runtime differing by orders of mag-
nitude, the growth of ROW-TS compared to GNTS is also
significantly slower.

7. CONCLUSION
In this paper, we formalized the All-Pair Network Tra-

jectory Similarity (APNTS) problem. We proposed a
novel algorithm (ROW-TS) for quickly solving this prob-
lem and compared it to previous and related work (METS,
GNTS). Calculating similarity between network trajectories
has shown to be important in a number of societal appli-
cations, such as bike corridor planning and transportation
management. Related work in the field have repeatedly used
the Network Hausdorff Distance (NHD) measure to com-
pute similarities, but have proposed approximation-based
approaches to reduce computation time. Our previous work
introduced an algorithm to compute NHD exactly and scaled
to a medium-sized dataset. Our novel row-wise approach in
this paper allowed us to scale to spatial big data and com-
pute the NHD between tens of thousands of trajectories in
a relatively short time. We demonstrated the scalability of
ROW-TS with experimental validation.

In the future, we plan to explore more applied use of the
APNTS solutions provided by this paper. While so far we
have focused on computing a fully-materialized trajectory
similarity matrix, we will explore computing Network Haus-
dorff Similarity between trajectories on the fly as clustering
algorithms are asking for similarities. This will reduce mem-
ory requirements allowing for trajectory clustering on larger
datasets.
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Figure 7: Experimental results on synthetic data. Note the y-axis is in logarithmic scale.
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