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ABSTRACT
Location-based social networks serve as a source of data for
a wide range of applications, from recommendation of places
to visit to modelling of city traffic, and urban planning. One
of the basic problems in all these areas is the formulation of a
predictive model for the location of a certain user at a certain
time. In this paper, we propose a new approach for predict-
ing user location, which uses two components to make the
prediction, based on (i) coordinates and times of user check-
ins and (ii) social interaction between different users. We
improve the performance of a state-of-the art model using
the radiation model of spatial choice and a social compo-
nent based on the frequency of matching check-ins of user’s
friends. Friendship is defined by the presence of reciprocal
following on Twitter. Our empirical results highlight an im-
provement over the state-of-the-art in terms of accuracy, and
suggest practical solutions for spatio-temporal and socially-
inspired prediction of user location.

Categories and Subject Descriptors
H.2.8 [Database Management]: Database Applications—
data mining, spatial databases and GIS

Keywords
Location-based social networks, urban mobility, radiation
model, social influence

∗The source code that implements all the proce-
dures described in this paper, as well as the dataset,
is available at https://github.com/alexeytarasov/
spatial-temporal-social-model.
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1. INTRODUCTION
Location-based social networks—as well as locational ser-

vices built into social networks—allow individuals to per-
form so-called check-ins, i.e. to voluntarily denote their cur-
rent location and to share it with people they know. Such
services are becoming more and more popular, as they pro-
vide a connection between virtual social life and real-world
activities. For instance, Foursquare1 allows users to share
their experience with different venues such as restaurants or
cinemas, and to get special awards called badges for logging
many check-ins. Beyond traditional location-based social
networks, social and spatial elements are becoming a pop-
ular feature in many services. An example is Bikely2, a
website for mapping and sharing cycling routes and moun-
tain bike trails. Such networks can serve not only as en-
tertainment, but also as a source of data for a wide range
of applications. One of the basic problems in such applica-
tions is how to predict the location of a certain user at a
certain time. For instance, solving this problem is essential
to empower traditional location-based services operating on
mobile devices [8], and gain knowledge for various areas in-
cluding venue recommender systems [2], modelling of city
traffic [9], and urban planning [6].

State-of-the-art approaches in prediction of user location
in location-based social networks operate both on spatio-
temporal (when and where the user checked in in the past)
and social information (who are the user’s social connec-
tions). This is the approach used by Periodic & Social Mo-
bility Model (PSMM) [4]. However, the PSMM makes cer-
tain assumptions which are not absolutely valid for this task.
For instance, discrete check-ins are modelled using continu-
ous Gaussian distributions. However, selecting a travel des-
tination (and performing a check-in at a selected venue) is
essentially a discrete choice process [3]. In this paper, we
focus on modelling a set of possible destinations with multi-
nomial distributions in order to improve the performance of
the PSMM. We propose a new approach which uses spatio-
temporal information from user check-ins by applying the
radiation model [14] instead of Gaussians used by PSMM.

1https://foursquare.com/
2http://www.bikely.com/

https://github.com/alexeytarasov/spatial-temporal-social-model
https://github.com/alexeytarasov/spatial-temporal-social-model


Also, we describe a novel approach to predict user location
based on information about past check-ins from the user’s
social connections. We show that both approaches signif-
icantly outperform the PSMM baseline. In addition, our
findings suggest that even if nothing is known about a user’s
own check-ins, social connections and their check-ins provide
a significant amount of information. Previous work applied
dynamic Bayesian networks to learn a user location from
friends’ locations [13]. Our social model alone was able to
predict the user location with as high accuracy as the ap-
proach using both social and spatio-temporal information.

The paper is structured as follows. Section 2 describes
related research including the PSMM and radiation model,
while Section 3 describes the experiment methodology. The
results are described and discussed in Section 4. Section
5 concludes the paper and suggests possible directions for
future work.

2. RELATED WORK
One of the fundamental research questions in location-

based social networks is prediction of user location. Many
sources of location-based information are currently available,
including cellphone usage logs [15], “check-ins” in location-
based social network services [10] or geo-tagged Twitter texts
[12, 13], as well as databases of high precision GPS traces [17].
There is some evidence that user location is highly corre-
lated with his previous check-in activity and the activity of
his social connections [16]. One of the most recent mod-
els for prediction of user location is the Periodic Mobility
Model (PMM) [4]. While the model proposed in [16] does
not take time into account, the PMM, in contrast, assumes
that short-range travel, such as commuting from home to
work or going to lunch, is periodic both spatially and tem-
porally. The PMM uses the notion of two states which can
be called Home and Work. While in Work state, an indi-
vidual might check in at his workplace or around it, keep-
ing the venues mostly work-related. At the same time, his
mobility pattern in Home state is likely to be different: he
should be in the vicinity of his home and might visit different
entertainment-related venues. In other words, both Home
and Work check-ins tend to be centred around a particular
venue. The PMM consists of two parts: spatial and tempo-
ral. The spatial part of the PMM represents both clusters as
2D Gaussian distributions. The temporal part models the
probability of the individual being in Home or Work state
at a particular time of the day and is represented as a 1D
Gaussian distribution. The PMM has eighteen parameters:

• Six temporal: mean and variance of time when the
individual is in Home or Work state and two proba-
bilities that any check-in belongs to either Home or
Work state.

• Twelve spatial: two 2D means and two corresponding
2x2 covariance matrices.

These parameters are fitted using an expectation-maximisation
(EM) algorithm. The probability that the individual checks
in at venue x at time t is

P [x(t) = x] = P [x(t) = x|z(t) = H] · P [z(t) = H]

+ P [x(t) = x|z(t) = W ] · P [z(t) = W ],

where P [z(t) = H] and P [z(t) = W ] are the temporal part

(1D Gaussians). The expressions

P [x(t) = x|z(t) = H] and

P [x(t) = x|z(t) = W ]

represent the spatial part (2D Gaussians fitted to Home and
Work check-ins respectively).

Predictive modelling of human movement beyond regular
periodic commutes, such as that modelled by PMM, is a
challenging task. Empirical observations [1, 4, 13] demon-
strate the social influence on the formation of atypical pat-
terns of mobility. People tend to follow the recommenda-
tions of their friends in planning travel. They may also join
them on a trip to explore new areas or visit particular places
for recreation, leisure or tourism. Accommodating the so-
cial influence in such scenarios is also a recognised challenge
within urban transportation design [5]. In this domain dis-
crete choice models [3] are a generally accepted underlying
methodology.

The creators of the PMM also argue that check-ins that
cannot be properly modelled by it are mostly caused by so-
cial influence, i.e. visiting a friend or going with a friend to
some distant location [4]. In order to model this behaviour,
they offered the Periodic & Social Mobility Model (PSMM)
which is an extension of PMM. PSMM consists of two com-
ponents: the spatio-temporal component, which is in fact
the PMM, and a social component. The first component
is trained as described above. The second is based on the
assumption that the check-ins that do not fit well with the
PMM are the result of social activity. The social component
of the PSMM is fitted to these check-ins. The main intuition
behind the PSMM social component is that the probability
of the individual checking in at a certain venue is high if
many of his friends checked in at a neighbouring venue at
approximately the same time. The probability of the indi-
vidual performing a social check-in at time t to a venue with
coordinates x is

P [x(t) = x|z(t) = S] ∼
∑

(tj ,xj)∈J
|tj − t|−α · ‖x− xj‖−β , (1)

where J is the set of check-ins made by the individual’s
friends on the same day. Each check-in j ∈ J happened at
time tj at coordinates xj . Parameters α and β are to be
tuned using an EM algorithm. When the training of the
PSMM model is complete, both the spatio-temporal and
social components are used to calculate the probability of
the individual checking in at the venue with coordinates x
at time t as

P [x(t) = x] = P [x(t) = x|z(t) = H] · P [z(t) = H]

+ P [x(t) = x|z(t) = W ] · P [z(t) = W ]

+ P [x(t) = x|z(t) = S].

(2)

Unfortunately, the authors of the PSMM did not provide
a great deal of detail on the fitting of parameters α and β.
It is also unclear how the PMM distinguishes between social
and non-social check-ins.

The task of predicting user location was also addressed by
[11], who used the same information as PSMM, but also pro-
posed to use knowledge about categories of venues (cinema,
coffee shop, football stadium etc.) as well as global patterns
of mobility, i.e. number of check-ins at venues performed by
all users, not only social connections of a given user.

An alternative but untested approach to modelling check-
ins is the radiation model [14] which was originally proposed
as a way of modelling mobility and migration patterns. One
of the main advantages of the radiation model is that it
does not require tuning of parameters. The radiation model



is used to calculate the intensity of flow Tij between loca-
tions i and j, located at distance rij from each other, having
populations m and n respectively:

Tij = Ti ·
m · n

(m + sij) · (m + n + sij)
,

where Ti is the total number of people leaving the location
i and sij is the total population in the circle of radius rij
centred at i (this number does not include the population of
i and j). The illustrative example used in the original paper
is job hunting: an individual moves from his home location
i to some other location j to find a job as close to his home
location as possible. It was assumed that the number of
job opportunities strongly correlates with the population of
the location. Thus, the individual will have a better chance
of finding a job in a location with high n, and move there.
Also, if the area around i is highly populated, it is probable
that the individual will find some location, which is closer
to i than j, but also has good employment possibilities. In
order to account for that factor the radiation model uses sij .

Originally the radiation model was used to model large
scale mobility patterns, i.e. movement from one U.S. state
to another. However, [9] used the radiation model to simu-
late the movement of individuals between shops, restaurants
and other venues in the Dublin area. It was shown that the
probability of an individual moving from location i to loca-
tion j is

Pij =
m · n

(m + sij) · (m + n + sij)
,

where m and n represent capacities of venues rather then
populations of a given location. This interpretation of the
radiation model uses an assumption that individuals will be
more attracted to venues with higher capacities; such venues
are more likely to be attractive in the same way that highly
populated areas are more likely to present more employment
opportunities.

3. EXPERIMENT
This paper proposes a novel model of predicting user lo-

cation. Its structure is similar to PSMM, as it also has two
components. The first is based on spatio-temporal informa-
tion and uses the radiation model, while the second operates
on social information and uses an intuition similar to that
used in PSMM. We test these components separately and
compare them to the respective components of the PSMM.
Thus, our experiments involve two spatio-temporal and two
social components. We are interested in three research ques-
tions:

1. What is the best combination of spatio-temporal and
social components?

2. What is the best social component?

3. What is the best spatio-temporal component?

This section is structured as follows. Section 3.1 describes
the dataset we used, Section 3.2 explains in detail our im-
plementation of PSMM. We then proceed with a description
of our spatio-temporal (Section 3.3) and social (Section 3.4)
components. We finish with a description of the experimen-
tal setup in Section 3.5.

3.1 Dataset
For our experiments, we used our own dataset of check-

ins gathered in July 2012. The dataset consists of tweets,
associated with check-ins that users made on Foursquare
between 13/07/2012 and 24/07/2012. There are 90 users
in the dataset, each having from 12 to 212 check-ins (31.13
check-ins on average). Each user has 7.48 social connections
on average, with the minimum being 2 and maximum being
37. For each check-in, we captured latitude, longitude, date,
time, venue ID, and tweet text associated with the check-in.
To facilitate tweet text analysis we focused on users from
English-speaking countries. The distribution of check-ins is
shown in Figure 1.

Figure 1: Distribution of check-ins from the dataset.
Relatively big clusters of check-ins located in New
York, Chicago, Miami, San Francisco, Los Angeles
and Edinburgh.

This dataset was created in several steps, as follows. The
check-in data was collected through the Twitter streaming
API, filtering for tweets containing “4sq” keyword. Further
tests were applied to ensure that each such tweet was indeed
a check-in. Along with the message and check-in URL, each
response contained information about the user on Twitter.
To get a more specific location for the check-in, as well as
information about the venue, we extracted data from the
check-in URL and queried the Foursquare check-in API. Fi-
nally, to identify the social connections, we used Twitter’s
REST API and retrieved the friend lists for each user. We
considered that two users were friends if both of them mu-
tually followed each other.

3.2 Implementation of baselines
We implemented the PMM, the spatio-temporal compo-

nent of the PSMM, as described in the original paper [4].
The process of PSMM fitting began by training the original
PMM, as described in [4]. We considered that any check-in
has a certain probability of being social. This probability
was calculated according to Equation 1. These probabilities
were normalised such that all values were bounded by [0; 1].
That allowed us to take α = β = 1. Following values were
calculated when the social component of the PSMM was fit-



ted to the collection of n check-ins (ti, xi) ∈ I (i = 1, 2, ..., n):

∆t
min = min

(ti,xi)∈I
(tj ,xj)∈Ji

|ti − tj |

∆t
max = max

(ti,xi)∈I
(tj ,xj)∈Ji

|ti − tj |

∆x
min = min

(ti,xi)∈I
(tj ,xj)∈Ji

‖xi − xj‖

∆x
max = max

(ti,xi)∈I
(tj ,xj)∈Ji

‖xi − xj‖,

(3)

where Ji is the set of check-ins by the user’s social connec-
tions on the same day as ti. Thus, our implementation of
the PSMM had parameters ∆t

min, ∆t
max, ∆x

min, ∆x
max in-

stead of α and β. After this trivial fitting was complete, the
PSMM was ready to calculate the probability of the check-in
(t, x) being social in the following way:

P [x(t) = x|z(t) = S] ∝

 ∑
(tj ,xj)∈J

|t − tj |

|∆tmax −∆t
min

|
·

‖x − xj‖

‖∆xmax −∆x
min

‖


−1

,

where J is the set of check-ins by user’s social connections
on the same day as t. Both multipliers under the sum can
take a value in [0; 1], thus, each addend of the sum will also
be in [0; 1]. This means that the sum can have values bigger
than 1. To interpret it as probability, we normalised this
sum by maximal and minimal values of |tj − t| · ‖x− xj‖ in
a manner similar to Equation 3.

Although this methodology draws heavily from the proce-
dure described in [4], the authors omitted some important
implementation details. As a result, our implementation
might differ slightly from the original.

3.3 Spatio-temporal component
We handle time in the same manner as PMM, i.e. we use

1D Gaussians. However, we calculate spatial probability in
a different way: instead of Gaussians, we use a radiation
model. Separate radiation models are trained for Home and
Work check-in clusters. We assume that in each cluster
there is one central venue, a venue at which the user checks in
very often and from which the user usually moves to different
venues within the same cluster. A building where the user
works is a good example of a central venue for the Work
cluster. For a given cluster, we consider the probability of
checking in at venue X to be equal to the probability of the
user moving from the central venue to venue X. For the
sake of simplicity, we assume that movements occur only
from the central venue to other venues. Our interpretation
of parameters m and n is similar to [9]. The n parameter
is the attractiveness of the venue, and we consider it to be
equal to the total number of check-ins made at that venue
by all 90 users in the dataset. The m parameter is on the
same scale as n, but is used only for Home and Work central
venues. It denotes the attractiveness of the central venue.
A user would rather stay at the central venue if it has a high
m value. Thus, if the central venue is more attractive than
other venues in the same cluster, it is unlikely that a user
will move from the central venue.

The spatio-temporal component training algorithm (Al-
gorithm 1) starts by assigning all check-ins to Home and
Work clusters in a random fashion (line 1) and estimating
m for each cluster as a mean popularity score of venues
from that cluster (line 2). At the E-step of the algorithm
(lines 4-8) the parameters of the model are re-evaluated as

Algorithm 1: Algorithm for training the spatio-
temporal component based on the radiation model (see
Section 3.3)

Data:
check ins (set of all user’s check-ins)
n (popularity scores of all venues, where the user has checked in)
Result:
σH , σW : circular standard deviation of time when the user
checks in at home and work venues
τH , τW : circular mean of time when the user checks in at home
and work venues
PcH , PcW : proportions of home and work check-ins
centralH , centralW : central home and work venues
mH ,mW : m values for home and work
// RandomAssignment (X): divides venues X into two clusters

randomly
// MaxLikelihood (H, W): calculates σH , σW , τH , τW

parameters via maximum likelihood estimation for home
check-ins H and work check-ins W

// Time (X): extracts time from the check-in X
// Coordinates (X): extracts coordinates (latitude and

longitude) from the check-in X
// Venue (X): extracts venue(s) from the check-in(s) X
// CentralVenue (X, n, m): returns a central venue from the

set of venues X, having popularity scores n, given m,
the popularity of the current central venue

// OptimiseM (m, centre, n, venues): returns a new value of
m performing a gradient descent optimisation, considering
that there are venues venues with popularity scores n
and the venue centre is the central one

// PRadiation (venue, central_venue, m, venues, n): returns
the probability that the user will check in at the venue
venue given a central venue, m value, list of all venues
and popularity scores of all venues

1 H,W ← RandomAssignment(check ins);

2 mH ←

∑
check in∈H

n(check in)

|H| ; mW ←

∑
check in∈W

n(check in)

|W | ;

3 repeat
4 σH , σW , τH , τW ← MaxLikelihood(H,W );

5 PcH ←
|H|

|H|+|W | ; PcW ←
|W |

|H|+|W | ;

6 centralH ← CentralVenue(Venue(H), n,mH);
7 centralW ← CentralVenue(Venue(W ), n,mW );
8 mH ← OptimiseM(mH , centralH , n, Venue(H));

mW ← OptimiseM(mW , centralW , n, Venue(W ));
9 foreach venue in Venue (H

⋃
W ) do

10 pspatialH (venue)←
PRadiation(venue, centralH , Venue(H

⋃
W ), n);

11 pspatialW (venue)←
PRadiation(venue, centralW , Venue(H

⋃
W ), n);

12 ΣH ←
∑

venue∈Venue(H
⋃
W )

pspatialH (venue);

13 ΣW ←
∑

venue∈Venue(H
⋃
W )

pspatialW (venue);

14 foreach venue in Venue (H
⋃
W ) do

15 pspatialH (venue)← pspatialH (venue)/ΣH ;

16 pspatialW (venue)← pspatialW (venue)/ΣW ;

17 ptemporalH ← 0; ptemporalW ← 0;

18 foreach check in in check-ins in venue do
19 t← Time(check in);

20 NH ←
PcH√
2πσ2

H

exp(−( π12 )2 (t−τH )2

2σ2
H

);

21 NW ←
PcW√
2πσ2

W

exp(−( π12 )2 (t−τW )2

2σ2
W

);

22 ptemporalH ← ptemporalH +
NH

NH+NW
;

23 ptemporalW ← ptemporalW +
NW

NH+NW
;

24 ptemporalH (venue)← ptemporalH /|check ins|;
25 ptemporalW (venue)← ptemporalW /|check ins|;
26 pH(venue)← pspatialH · ptemporalH ;

27 pW (venue)← pspatialW · ptemporalW ;

28 Hold ← H; Wold ← W ; H ← ∅; W ← ∅;
29 foreach check in in Hold

⋃
Wold do

30 if PH(check in) > PW (check in) then
31 H ← H

⋃
check in;

32 else
33 W ← W

⋃
check in;

34 until H = Hold;
35 return σH , σW , τH , τW , PcH , PcW ;



the contents of the Home and Work clusters have changed
since the previous iteration. At the M-step (lines 9-27) the
calculation of new probability values for all venues takes
place: spatial probabilities are calculated (lines 10-11) and
normalised (lines 12, 13, 15 and 16). The same happens
with the temporal probabilities (lines 17-23). The temporal
probability for a certain venue is a mean temporal proba-
bility of all check-ins made at this venue (lines 24-25). The
spatio-temporal probability for each venue is calculated as
a product of corresponding spatial and temporal probabil-
ities (lines 26-27). After spatio-temporal probabilities are
calculated, the venues are re-assigned to Home and Work
clusters (lines 28-33). The algorithm finishes if the assign-
ment to Home and Work clusters has not changed since
the previous iteration (line 34). Algorithm 2 explains how
the central venue is determined, while Algorithm 3 describes
how the spatial probability of checking in at particular venue
is performed.

When training is finished, the probability that the user
will check in at a certain venue happens as follows. First, the
temporal probability has to be calculated (similar to lines 14-
16 of Algorithm 1) to determine which—Home or Work—
radiation model to use for prediction. Then Algorithm 3 is
used to calculate probabilities for all candidate venues and
the venue with the biggest probability is returned as the
predicted result.

Algorithm 2: CentralVenue: algorithm for finding a
central venue
Data:
venues: list of all venues
n: capacities of all venues from venues
m: current value of m
Result: central venue
// GetVenuesInsideCircle (centre, venue, venues):

calculates an area bounded by a circle whose radius is
the distance between centre and venue and returns all
elements from venues that are inside this circle. The
set does not include centre and venue venues

// Set (venues): removes duplicates from venues
1 venues← Set(venues);
2 foreach venue in venues do
3 foreach j in venues do
4 venues nearby ← GetVenuesInsideCircle(venue, j);
5 if |venues nearby| > 0 then
6 S(venue)←

∑
i∈venues nearby

n(i);

7 else
8 if j = venue then
9 S(venue)← 0;

10 else
11 continue;

12 pj =
m·n(j)

(m+n(j))(m+n(j)+S(j))
;

13 likelihood← 0;
14 foreach i in venues do

15 likelihood← likelihood+ log
m·n(i)

(m+S(i))·(m+S(i)+n(i))

16 likelihoods(venue)← likelihood;

17 return arg maxvenue∈venues likelihoods(venue)

3.4 Social component
Our social component makes use of check-ins by socially

connected users, performed only at the same venue, not at
all venues as in PSMM. Let V be the set of venues where
a user has checked in at least once. In order to get the
social probability P [x(t) = x|z(t) = S] of the user checking
in at venue x ∈ V at time t, we conducted the following

Algorithm 3: PRadiation: algorithm for the calculation
of the probability of check-in at venue using the radiation
model
Data:
venue: target venue
central venue: central venue
venues: list of all venues
n: capacities of all venues from venues
m: current value of m
Result: probability of check-in at the target venue venue
// GetVenuesInsideCircle (centre, venue, venues):

calculates an area bounded by a circle whose radius is
the distance between centre and venue and returns all
elements from venues that are inside this circle. The
set does not include centre and venue venues

1 nearby ←
GetVenuesInsideCircle(central venue, venue, venues);

2 if |nearby| > 0 then
3 S ←

∑
i∈nearby

n(i);

4 else
5 S ← 0;

6 return
m·n(venue)

(m+S)(m+S+n(venue))
;

procedure:

1. For each venue v ∈ V the number of social check-ins
Nv was calculated. Social check-ins were check-ins (i)
which were made by people who have a social connec-
tion with the user and (ii) which took place plus/minus
two hours from time t.

2. Each Nv was divided by max
v∈V

Nv, after which Nv ∈
[0; 1], v ∈ V .

3. Nx was the social probability.

3.5 Experimental setup
The experiment was conducted separately for each of the

90 users in our dataset, using check-ins made from Mon-
days through Thursdays in order to focus on the check-in
behaviour exhibited on a typical weekday. For each user,
seven models corresponding to the seven approaches given
in Table 1 were trained. Each approach represents a differ-
ent combination of spatio-temporal and social components,
using Equation 2 to calculate probabilities. If a spatio-
temporal or social component was absent, the corresponding
probability was zero.

Prediction accuracy was used as a performance measure.
It represents the proportion of cases where the model was
able to correctly predict a check-in venue given a time of
day. Five-fold cross validation was used in our experiments.

As all models contain a random component (i.e. the ini-
tial assignment of check-ins to Home and Work clusters), we
trained 10 instances of each model for each user and used the
model with the highest likelihood for prediction. In order
to take different distributions of check-ins into folds into ac-
count, we conducted all experiments 10 times, and reported
average accuracies.

To measure the significance of any performance differences
between approaches, we used Bergmann-Hommel’s proce-
dure [7]. This procedure divides all approaches into a few
ranked groups. If two approaches are in the same group,
there is no statistically significant difference between their
performance. In contrast, if two approaches belong to differ-
ent groups, the difference between them is significant. When



Table 1: Description of approaches used to predict user location
Approach spatio-temporal model Social model
Stanford+None Periodic Mobility Model [4] None
Stanford+Stanford Periodic Mobility Model [4] Periodic & Social Mobility Model [4]
Stanford+Matching Periodic Mobility Model [4] Matching check-ins of user’s friends (Section 3.4)
Radiation+None Radiation model (Section 3.3) None
Radiation+Stanford Radiation model (Section 3.3) Periodic & Social Mobility Model [4]
Radiation+Matching Radiation model (Section 3.3) Matching check-ins of user’s friends (Section 3.4)
None+Matching None Matching check-ins of user’s friends (Section 3.4)

there was a need to compare the performance of two ap-
proaches, we used the Wilcoxon test.

Figure 2: Comparison of accuracies of different
approaches to predicting user location. Rectan-
gles denote groups detected by Bergmann-Hommel’s
procedure (the difference in accuracy between ap-
proaches in the same group is statistically insignifi-
cant).

4. RESULTS AND DISCUSSION
Approaches which used Gaussian mixtures as a spatio-

temporal component (Stanford+None, Stanford+Stanford and
Stanford+Matching) were unable to converge on 29 out of
90 users (32% of the total user count). One possible ex-
planation is that at some iteration of the EM algorithm all
check-ins for either Home or Work cluster were very close to
each other, or even were made to the same venue. It resulted
in numerical difficulties while calculating the covariation ma-
trix of check-in latitudes and longitudes. When this arose,
we assumed that the accuracy of the corresponding model
was zero. The average accuracies of all seven approaches
we used are depicted in Figure 2, where rectangles denote
groups detected by Bergmann-Hommel’s procedure.

Here are the results for each research question from Sec-
tion 3:

1. What is the best combination of spatio-temporal
and social components? None+Matching, the ap-
proach which operates solely on social connection in-
formation, proved to be the most accurate. It suggests
that social connections alone carry a lot of information
about user location, even when the prediction model
is very simple. In our experiments we often encoun-
tered a situation where, for a particular user at a cer-
tain time, two or more venues had the same number of
check-ins made by friends. This means that the social
probabilities of checking in at such venues for that user
at that time were equal. A spatio-temporal compo-
nent helped to resolve these ties. When the radiation
model was used as a spatio-temporal component (Ra-
diation+Matching), no statistically significant benefit
was discovered. The use of Gaussian mixtures (Stan-
ford+Matching) disimproved prediction accuracy.

2. What is the best social component? As illus-
trated in Figure 2, Radiation+Stanford and Radia-
tion+None were in the same group. Stanford+Stanford
and Stanford+None were also grouped together. This
indicates no statistically significant increase in accu-
racy when the PSMM social component was used, com-
pared to using just a spatio-temporal component. This
conclusion is supported by the original paper [4] which
identified only a small difference, although no statisti-
cal testing was carried out.

3. What is the best spatio-temporal component?
If no social information is available, only two meth-
ods can work: Stanford+None and Radiation+None.
Radiation+None was able to correctly predict a venue
in 15.46% of cases, while Stanford+None was approx-
imately one third as accurate (5.88%). The Radia-
tion+None approach proved to be significantly better
(Wilcoxon test p-value = 2.49 · 10−10). This suggests
that the radiation model is indeed capable of predict-
ing user locations and is more suited to this task than
the Gaussian mixture model used in the PSMM spatio-
temporal component.

5. CONCLUSIONS AND FUTURE WORK
The results of our experiment strongly suggest that both

the spatio-temporal and social components proposed in this
paper perform better than the state-of-the-art baseline. The
radiation model proved to be better than PMM, the base-
line approach using Gaussian mixture models. The radiation
model was not susceptible to the numerical difficulties which



prevented the training of the PMM in 32% of cases. Also, a
very simple social component based on counting a number
of check-ins by friends showed higher accuracy than a much
more sophisticated PSMM baseline. This simple social com-
ponent was also the most accurate, even by itself, without
using any spatio-temporal information.

One possible direction for future work is to reproduce our
results using more datasets. Also, conducting experiments
involving more baseline methods might be worthwhile. For
instance, it could be very promising to incorporate infor-
mation about the venue type, similar to the approach by
[11], in our model. In addition, it might be interesting to
look into ways in which both the spatio-temporal and social
components proposed in this paper can be further improved.
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