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ABSTRACT

In this work we explore the use of incidentally generated
social network data for the folksonomic characterization of
cities by the types of amenities located within them. Using
data collected about venue categories in various cities, we
examine the effect of different granularities of spatial aggre-
gation and data normalization when representing a city as a
collection of its venues. We introduce three vector-based rep-
resentations of a city, where aggregations of the venue cate-
gories are done within a grid structure, within the city’s mu-
nicipal neighborhoods, and across the city as a whole. We ap-
ply our methods to a novel dataset consisting of Foursquare
venue data from 17 cities across the United States, totaling
over 1 million venues. Our preliminary investigation demon-
strates that different assumptions in the urban perception
could lead to qualitative, yet distinctive, variations in the
induced city description and categorization.
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[Information systems]: [Information systems applications,
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1. INTRODUCTION

Imagine two hypothetical cities, Concentralia and Disper-
sia, that are exactly the same in nearly every way, having
exactly the same venues—the same universities, restaurants
and parks. Suppose further that they only differ in the spa-
tial arrangement of these venues, so that the venues in Dis-
persia are distributed uniformly throughout the city, and
the venues in Concentralia are positioned more naturally—
organically shaped alongside Concentralia’s economic, po-
litical, and cultural evolution. One might ask, in what ways
are these two cities similar or different? On the one hand,
they are completely equivalent in terms of the amenities they
offer—anything you can get in Concentralia you can also get
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in Dispersia. Yet, if you dropped a denizen of the Concen-
tralia into the streets of Dispersia, would they perceive any
resemblance to their home? In this work, we introduce some
preliminary concepts for representing and comparing cities
that get at the heart of the similarities and distinctions be-
tween Concentralia an Dispersia.

With the growth of smart-phones, and location-based so-
cial networks, data is being generated about human activity
in urban areas at a level of detail not seen before. Numer-
ous previous works have used machine learning methods on
this social and sensor data to discover patterns within a city
[1, 10]. While computational methods for understanding the
landscape within a city are undoubtedly useful, the question
of exploring relationships between cities using such data is
relatively under-explored. There are nevertheless many prac-
tical questions in urban computing that require the compari-
son across cities. For example, a job seeker with transferable
skills may wish to focus her search on a single city with jobs
that best match her qualifications, rather than dispersing her
search efforts across multiple cities. Likewise, a large corpo-
ration looking to expand its locations might perhaps select
cities it wishes to expand into before considering particular
sites or neighborhoods. Additionally, many within-city com-
putations might be aided by modelling a city’s relationship
to other cities. For example, a person buying or renting a
home in a new city might want to be able to compare the
neighborhoods of the city to other neighborhoods in different
cities.

One issue in comparing spatial regions such as cities is the
normalization of absolute data, since often raw data from
two different contexts are incomparable. Another challenge
is the question of how to account for spatial effects. In our
hypothetical comparison, the only difference between Con-
centralia and Dispersia was in the spatial distribution of
their venues. In practice, often spatial effects can be ac-
counted for by partitioning the data into discrete spatial
units of aggregation, e.g. grids or neighborhoods, and then
ignoring any spatial dependencies in the data within these
discrete units [2, 6]. Determining the proper granularity of
discretization, however remains a difficult problem.

In this preliminary investigation, we explore different of units
of spatial aggregation, namely grids, neighborhoods, and the
city as a whole, in the representation of cities as vectors over
venue types. In highlighting the differences between these
approaches, we hope to encourage future researchers to re-



alize that the level of spatial aggregation is an important
factor when featurizing a city in terms of its venues.

2. RELATED WORK

In recent years the influx of location-aware social and sen-
sor data has inspired a score of new studies. In Eisenstein
et al. [3] and Wing and Baldridge [8], the authors use so-
cial media to examine lexical diversity across cities in the
United States, applying their algorithms to automatically
predict the location of microblog messages. Zheng et al. ex-
plored how sensor equipped taxi-cabs could be used to iden-
tify traffic engineering flaws that could potentially lead to
high congestion [10]. Cranshaw et al. use Foursquare check-
ins to redefine the notion of a neighborhood by clustering
city venues into contiguous areas reflecting the check-in pat-
terns of like-minded people [1]. A number of works have also
looked into using social data to model semantic qualities of
a place. In Cranshaw and Yano [2] and Noulas et al. [6],
the authors partition cities into grids, and then cluster the
resulting grids according the types of venues found there, re-
vealing patterns in land usage across cities. Yuan et al. use
properties of visitation patterns a region and other spatially
embedded meta-data to try to discern the region’s functional
category [9]. Hong et al. [4] attempted to induce the set of
geographically biased topics, with application to the topic
popularity detection. Preotiuc-Pietro and Cohn [7] use the
semantic information of venues to group users based on their
behaviour and predict their future movements.

3. CITIES AS COLLECTIONS OF VENUES

We hypothesize that one natural way to characterize a city is
by the ensemble of amenities it offers. For example by tally-
ing the amount of parks, bars, or universities it has relative
to all other types of venues, one can get a sense for what
a city is like. Although collecting such detailed data about
the places in a city was in the past challenging, location-
based social systems such as Foursquare often prompt their
users to tag the locations they check-in to with descriptive
categorical labels. Exploiting such incidental, geo-identified
semantic information from social media users could be one
promising approach to urban folksonomy.

In this preliminary investigation, we explore three different
vector representations of a city as normalized counts of the
venue categories seen there. Each representation scheme uses
the same raw data, the counts of venue category tags. They
differ only in how these counts are aggregated and normal-
ized. They all share the same basic idea of cities as ensembles
of amenities, but each reflect slightly different ideas about
the unit of special aggregation in urban perception.

First we define the bag of venues representation of a spa-
tial region r. Suppose there are n venues located within
r, and each is chosen from a global set of m venue cate-
gories, then we define the m-dimensional bag of venues vec-
tor ¢(r) = %(01, C2,...,Cm), where ¢; is the number of venues
of category i within r, and n is the total number of all the
venues (n =Y 1" ¢i).

City-centric representation: In this representation we do
no spatial aggregation within the city. Viewing its venues as
spatially exchangeable, we representing a city x as its bag of

City Abbreveations

Atl - Atlanta Aus - Austin Bal - Baltimore
Bos - Boston Chi - Chicago Col - Columbus
Hou - Houston LA - Los Angeles NY - New York
Phi - Philadelphia  Phx - Phoenix Pit - Pittsburgh

SA - San Antonio SD - San Diego Sea - Seattle
SF - San Francisco Was - Washington, D.C.

Table 1: City abbreviations used in the article.

venues vector, ¢(x). Under this representation, Concentralia
and Dispersia are indistinguishable.

Grid-centric representation: In this representation, we
first divide the area of city = into a set of k of equally sized
grid regions r1, 72, . .., 7 (in our experiments we use grids of
0.01 units latitude by 0.01 units of longitude), and we aggre-
gate across these grids. First computing y = S5, ¢(ry), we
then normalize the result, to represent the city x as y/|y|i.
Note that because each ¢(r;) is itself a normalized vector of
counts, each region contributes equally to the final vector.
This representation is thus better at measuring how certain
categories concentrate within the regions r;.

Neighborhood-centric representation: This represen-
tation is equivalent to the grid-centric approach, but here,
rather than aggregating over arbitrarily chosen grids, we ag-
gregate over municipal neighborhood boundaries, hypothe-
sizing that neighborhoods most effectively communicate the
city’s character.

4. DATA

Exploring these ideas empirically using real world data re-
quires that we gather both the description, or the categoriza-
tions, of the venues in a city, as well as information about the
city’s municiple neighborhood boundaries. For the venues,
we collected data from the widely used location-based Social
Network (LBSN) Foursquare. Users of Foursquare “check-in”
to their current location on their mobile device by select-
ing it from a list of nearby named venues. Their check-in is
then broadcast to their social connections. Foursquare users
can also specify a hierarchical categorical description to a
venue, such as “Restaurant” and “Mexican Restaurant”. We
call higher-level (more general) categories the primary cat-
egory, and we call lower level (more specific) categories the
secondary category. An interesting side-benefit of such col-
laborative tagging is that as the system’s user base increases,
an accurate and up-to-date crowd-sourced representation of
the venues types within a city is naturally accumulated.
In this work we exploit this natural data for our empirical
study. The venue information is easily accessible through a
public API, and all venues are annotated with categories
of different granularities which represent a natural semantic
grouping for venues.

We collected Foursquare venues from 17 cities across the
United States, selecting the largest ten cities by municipal
population, and seven additional major cities from diverse
geographic areas of the country. For each of these cities,
we collected boundary files from the online real estate com-
pany Zillow! that detail the city’s municipal neighborhood
borders. Given these boundaries, we determined in which
neighborhood each Foursquare venue is located.

"http://www.zillow.com/howto/api/
neighborhood-boundaries.htm



City C-s and N-s C-s and G-s N-s and G-s

Phx 0.55 0.50 0.79
Chi 0.38 0.36 0.69
LA 0.58 0.51 0.75
Bal 0.60 0.54 0.82
Atl 0.50 0.58 0.58
Aus 0.60 0.64 0.69
Was 0.48 0.50 0.63
Col 0.58 0.60 0.80
SA 0.66 0.66 0.79
Pit 0.72 0.67 0.86
Phi 0.57 0.58 0.69
Hou 0.64 0.54 0.72
Sea 0.55 0.47 0.55
SD 0.72 0.64 0.89
SF 0.45 0.45 0.67
Bos 0.47 0.50 0.47
NY 0.27 0.26 0.63

Table 2: Kendall Tau correlations (—1 < 7 < 1) be-
tween representation similarity rankings for each
city. All correlations except those in bold are signf-
icant at p=0.05.

Venue data was collected in September 2011 using the Venues
API? of Foursquare. First venues were crawled within a 40
mile radius of the city’s center. We discarded any venues
that either fell outside of the city boundary, or that could
not be mapped to a neighborhood of the city (even if it they
fell inside the city). This ensured that each representation
method is applied to the same set of data points. Discretiza-
tion of venues into categories is performed naturally by us-
ing either the principal or secondary categories of the venues
depending on which analysis we perform. There are 9 prin-
cipal venue categories and 259 secondary venue categories.
In total, once this processes was complete, our final data set
consisted of 1,130,621 venues across the 17 cities, with the
best represented city, New York, having 210,335 venues and
the least represented city, Pittsburgh, having 19,830 venues.

5. COMPARING CITIES

In this section we explore the effects of the different rep-
resentation methods. Using the data described above, we
created the vector representations of each of the 17 cities
using the three methodologies discussed in Section 3, for
both primary and secondary venue category tags, resulting
in a total of 6 different representation. In our results we de-
note them by C-p, C-s, N-p, N-s, G-p, G-s, where we C,
N, and G denote the city, neighborhood, and grid-centric
representations respectively, and p and s denote the use of
primary and secondary categories for features. Our hypothe-
sis is that, depending on how we aggregate and normalize the
venue description vector, we will end up with much different
representations of the cities, which will lead to differing re-
sults when applied to various analytic tasks. In the next few
sections we show these representations results in discernibly
different outcomes.

5.1 City similarities
One straightforward way to see the effects of the different
vector representation is to conduct similarity analysis. Rep-

’https://developer.foursquare.com/overview/venues

New York Chicago Pittsburgh

C-s N-s G-s C-s N-s G-s C-s N-s G-s

Sea Sea Sea LA Phi Phi Bal Phi Bal
SF SF Phi Phx Bal Bal Phi Bal Phi
Bos Was Was Phi LA LA Col SD Col
LA Bal SF SO Atl SF SD Col SD
Chi Col Pit Bos Pit Bos Aus Atl LA

Table 3: Top 5 most similar cities for New York,
Chicago, and Pittsburgh under the three represen-
tations.
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Figure 1: Complete linkage heirarchical clustering
using C-s (top) and N-s (bottom).

resenting each city as a point in a vector space, we can com-
pute the pairwise similarities between the cities using the
standard cosine similairty[5]3. Then for each city, we ranked
all other cities by their similarity to the said city. We re-
peated this ranking for all vector representations. We then
quantify the difference among the computed rankings for
each city using the Kendall Tau rank correlation coefficient.
Results are presented in Table 2. Although most represen-
tation rankings are significantly correlated, results show a
wide range in the coefficients across the cities, indicating
the importance of the representation. In general, the largest
differences in representation were seen between the city cen-
tric representation and the other two. Similar results were
seen when primary category counts were used as features.

Given these similarities between cities, one query a person
may like to make is what cities are most similar. We present
for a few selected cities the top most similar cities as ob-
tained by the three methods using the secondary categories.
The results, presented in Table 3, indicate that the chosen
representation can have significant impacts on such queries.

5.2 Clustering Cities

To visualize how the cities relate to one another under each
representation, we using agglomerative hierarchical cluster-
ing with complete linkage to cluster cities into groups [5]. Al-

3Cosine similarity of course is not the only applicable simi-
larity measurement, though it is a natural choice when com-
paring counts.



Venue category N-p/C-p G-p/C-p G-p/N-p

Arts -0.17 -0.23 -0.06
Transport -0.09 -0.10 -0.00
Shops -0.03 -0.04 -0.00
Food -0.13 -0.19 -0.05
Parks 0.24 0.27 0.02
Nightlife -0.17 -0.24 -0.07
Residence 0.20 0.28 0.06
College -0.10 -0.11 -0.01
Professional -0.01 -0.01 0.00

Table 4: Relative change between values of different
representations

though other options exist, we prefer hierarchical clustering
for its ease in interpretation of the results as a dendrogram,
and since its not intuitive to select the number of clusters
a priori. Figure 1 shows the the dendrogram structures for
C-s and N-s. Results indicate that, although there are some
similarities observed in the two groupings (e.g. Sea-SF, Bal-
Pit-Phi), they are qualitatively distinct. One intuitive pre-
sumption would be that geographic distance between cities
would play a large role in the clustering. Although we did ob-
serve some natural geographic clusters in the dendrograms
(e.g. LA and SD; Phi, Pit and Bal), when examining the
Kendall Tau rank correlation coefficient between our venue
based similarity rankings and the rankings formed with great
circle distances between the city centers, we found no signif-
icant correlation at a level of p = 0.05.

6. QUALITATIVE ANALYSIS

To understand our results further, we examine which cat-
egories get over or under represented in each aggregation
scheme. To see this, for each (principal) category, we com-
pute the difference of the values of two representations of the
same city divided by the value of the first representation to
measure relative change. In Table 4 we show the average of
this value across all the cities. If this value is negative, then
the This shows that some venue categories, such as "Parks’ or
’Residence’ are under represented by C-p, while others such
as ‘Nightlife’, ‘Arts’ and ‘Transport’ are over represented.
We suppose that this happens because the venues in the
former category tend to cluster, forming distinctive spatial
units within the cities. The venues from the later category
are either over represented in the data or they are ’spread’
in all the neighborhoods or grids, with no significant spatial
unit having predominantly this type of venues. This can be
the case with ‘Nightlife’ spots, which, although usually are
spatially close, they are not the predominant category, usu-
ally being joined by Shops or food outlets. We also notice
that the grid representation is more ‘aggressive’, producing
larger relative differences. This is somewhat intuitive; For
example, in the ‘Residence’ case we can expect that pre-
dominantly residential suburbs that belong to one neighbor-
hood probably span multiple grids, while grids that include
‘Arts’ and ‘Nightlife’ venues are probably downtown, where
spatial distances are smaller, resulting in more densely pop-
ulated grids. Moreover, the neighborhoods are expected to
mimic the underlying ’significance’ of groups of venues in a
city.

As examples, we look at the highest relative differences in

the Neighborhood and City representations. New York has
a large absolute value of the ratio for ‘Parks; (0.61 increase)
and for ‘Arts’ (-0.26 decrease) meaning that while parks are
concentrated in their own neighborhoods (e.g. Central Park
consisting mostly of park related venues) and arts spots are
dispersed across the city. San Francisco also stands out for
having the largest (0.79) increase in ‘Parks,” very high in-
crease in the ‘Residence’ category (0.31) and the highest
decrease in ‘Professional’ venues (-0.19), closely followed by
New York and Washington. This show that these last 3 cities
have professional buildings and offices spread around the en-
tire city more than the others.

7. CONCLUSION

In this preliminary investigation we have presented different
methods for comparing cities as vectors of venue categories.
We have identified and emphasized the choice of aggregation
level and shown that it can have significant quantitative and
qualitative effects for city-to-city comparisons. We have pre-
sented the results of city similarities as well as an analysis
on the frequencies of different venue categories and how each
representation may affect them. In future work, we want to
carry on a similar analysis between neighborhoods of cities,
in order to identify similar neighborhoods across cities and
to get a better understanding of cities as collections of indi-
vidual neighborhoods. Finally, we hope that our work will
motivate future studies into how to best characterize a city
in terms of its venues.

8. REFERENCES

[1] J. Cranshaw, R. Schwartz, J. Hong, and N. Sadeh. The
livehoods project: Utilizing social media to understand
the dynamics of a city. ICWSM 2012, 2012.

[2] J. Cranshaw and T. Yano. Seeing a home away from
the home: Distilling proto-neighborhoods from
incidental data with latent topic modeling. In NIPS,
Workshop of Computational Social Science and the
Wisdom of the Crowds, 2010.

[3] J. Eisenstein, B. O’Connor, N. A. Smith, and E. P.
Xing. A latent variable model for geographic lexical
variation. In EMNLP, pages 1277-1287, 2010.

[4] L. Hong, A. Ahmed, S. Gurumurthy, A. J. Smola, and
K. Tsioutsiouliklis. Discovering geographical topics in
the twitter stream. In WWW, pages 769-778, 2012.

[5] C. D. Manning, P. Raghavan, and H. Schiitze.
Introduction to information retrieval. Cambridge
University Press, 2008.

[6] A. Noulas, S. Scellato, C. Mascolo, and M. Pontil.
Exploiting semantic annotations for clustering
geographic areas and users in location-based social
networks. In ICWSM 2011, 2011.

[7] D. Preotiuc-Pietro and T. Cohn. Mining User
Behaviours: A Study of Check-in Patterns in Location
Based Social Networks. In Web Science, 2013.

[8] B. P. Wing and J. Baldridge. Simple supervised
document geolocation with geodesic grids. In ACL
HLT, volume 1, pages 955-964, 2011.

[9] J. Yuan, Y. Zheng, and X. Xie. Discovering regions of
different functions in a city using human mobility and
pois. In ACM SIGKDD, pages 186-194, 2012.

[10] Y. Zheng, Y. Liu, J. Yuan, and X. Xie. Urban
computing with taxicabs. In UbiComp, 2011.



