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ABSTRACT

Traffic jam is a common contemporary society issue in ur-
ban areas. City-wide traffic modeling, visualization, analy-
sis, and prediction are still challenges in this context. Based
on Bing Maps information, this work aims to acquire, ag-
gregate, analyze, visualize, and predict traffic jam. Chicago
area was evaluated as case study. The flow intensity (free or
congested) was analyzed to allow the identification of phase
transitions (shocks in the system). Also, a prediction model
was developed based on logistic regression to correct discov-
ery future flow intensities for a target street.
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1. INTRODUCTION

Distincts companies have proposed technological improve-
ments in vehicles concerning the experience of driver and
passengers [1]. However, traffic jam continues to reflect a
significant impact in the economy, productivity, and envi-
ronment in urban areas [3]. In 2011, Chicago has shot up to
number one in road congestion, according to the Urban Mo-
bility Report, issued by the Texas Transportation Institute
[13]. Beyond the time it normally takes to travel without
delays, the national average for traffic delays was 34 hours
while commuters in the Chicago area spent an additional 70
hours behind the wheel in 2009, which is just increasing (55
hours of wasted time in 1999, and 18 hours in 1982).

So as to deal with traffic jam, the Intelligent Transporta-
tion System (ITS) uses infrastructure sensors to monitor
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traffic conditions in a vehicle environment. The following
are possible I'TS services: (i) cooperative monitoring traffic,
(ii) assistance to the unmarked crossroads, and (iii) colli-
sion prevention. In ITS, cooperative communication sys-
tems have the potential to improve traffic safety and effi-
ciency through continuous exchange of information [3]. The
cooperative communication between vehicles, which is well
known as Vehicular Ad hoc Network (VANET), provides
them with alternative routes for vehicles.

In this context, distincts Geographic Information System
(GIS) have been designed to capture, store, manipulate, an-
alyze, manage, and present all types of geographical data.
Bing Maps® and Google Maps? are mapping applications on
the web that give the public access to huge amounts of ge-
ographic data. They have an Application Programming In-
terface (API) enabling users to create GIS applications. Web
mapping offers street map, aerial/satellite imagery, geocod-
ing, searches, routing functionality, and traffic jam.

Furthermore, there are crowdsourcing geodata in projects
such as OpenStreetMap?, which is a collaborative project to
create a free editable world map. Although without traffic
jam information as well as Bing and Google Maps, there are
several ways to download the data from OpenStreetMap to
a file for simulators of Urban Mobility such as SUMO (Sim-
ulation of Urban MObility)*. Thus, junctions, traffic lights,
and road network can be a VANET scenario, allowing a more
realistic evaluation of VANET protocols. The only missing
information is traffic jam, which is available at Bing Maps.
As Horvitz and Mitchell said in [5], methods for learning au-
tomated driving competencies from data will be crucial in
the development of autonomous vehicles that drive without
human intervention. First, how to acquire and predict the
traffic flow are the matters to build safer cars that employ
collision warning and avoidance systems.

This paper aims to acquire, aggregate, analyze, visualize,
and predict traffic jam based on Bing Maps information. A
methodology has been developed in order to establish a city-

! Available at www.bing.com/maps.

2 Available at www.google.com/maps.

3 Available at www.openstreetmap.org.
4Available at sumo.sourceforge.net.



wide traffic jam modeling, which allows its analysis, visual-
ization, and prediction. After acquiring Bing Maps traffic
jam information, map’s images were processed so as to es-
tablish a Chicago traffic jam database. Chicago has been
chosen as a case study. Phase transitions (shocks in the
system) were identified, and the probability of traffic jam
intensity withal. Then, to correct discovery future flow in-
tensities for a target street, a prediction model has been
developed.

This work is organized as follows. Section 2 summarizes
the topic of vehicular network and related works. Section 3
explains the Bing Maps web crawler, the image-processing
algorithm used to extract its information, and afterwards
the collected database. Section 4 presents the analysis and
visualization of the data, with the phase transitions. Sec-
tion 5 describe and analyzes the prediction model and the
inference results. Finally, section 7 concludes this paper,
pointing finally remarks.

2. VEHICULAR NETWORK AND
RELATED WORKS

Vehicular networks (VANETS) are different from Mobile
Ad hoc Networks (MANET) in some aspects. VANETSs do
not have the problem of energy consumption and processing
power of MANETSs. But the vehicular topology is highly
dynamic, which raise some challenges. The main character-
istics are the high mobility of nodes, intermittent links and
stringent latency requirements. We can define the organiza-
tion and communication between nodes by three models, as
illustrates figure 1: (i) pure ad hoc, (ii) infrastructure and
(iii) hybrid network. Model (i) is a V2V (Vehicle-to-Vehicle)
or VANET (Vehicle Ad Hoc Network) and it consists in
the communication between vehicles. Model (ii) is the V2I
(Vehicle-to-Infrastructure) that deals with the communica-
tion between vehicles and nearby fixed equipment among the
road. This model can increase the network connectivity if it
has a suitable amount of static nodes, although the network
cost can be increased. Model (iii) combines both models (i)
and (ii) [4]. It is clear that vehicular networks have several
challenges to its widespread adoption, including: (1) connec-
tivity loss for data transmission and (2) the reduced time for
the communication between vehicles. Dealing with feature
(2) is a challenge owing to the high mobility of vehicles, the
dynamism of the network topology and the scalability.

Vehicle to vehicle communication (V2V).

Vehicle-to-infrastructure communication (V2I).

W Infrastructure-to-infrastructure communication (121).

Figure 1: The architecture of vehicular networks.

Distincts routing protocols have been proposed and eval-
uated for VANETS [8] concerning whether its performance
can satisfy the throughput and the delay requirements of
safety and emergency applications. Traditional routing pro-
tocols, such as the protocols ad hoc on-demand distance
vector (AODV) and the dynamic source routing (DSR) [9],
can not be used due the route instability that causes packet
loss and high overhead. Notwithstanding, geographical rout-
ing protocols, e.g. the greedy perimeter stateless routing
(GPSR) protocol, have better path stability, but the mat-
ter is how to forward the packet through the next hop. To
solve this, the main routing protocols use road information
to choose the crossroad to forward the packet, but they do
not use information of crossroads behavior or traffic flow
inference. In this context, we believe that the traffic flow
inference can be used to improve its performance.

From Microsoft Research to Bing Maps, refence [6] de-
scribe the JamBayes project, started in 2002, which provides
estimates of flows inferences about current and future traf-
fic flows. The challenge was to predict the future of traffic
flow in Seattle area. When does the highway system would
become clogged? The authors developed a probabilistic traf-
fic forecasting system based on Bayes Theory, and predict
future surprises about traffic congestion and flow.

Afterwards, following on JamBayes effort, the Microsoft
Research project Clearflow focused on applying machine learn-
ing to learn how to predict the flows on all street segments
of a greater city area [10]. It was based on GPS data col-
lected from volunteers, buses, and vehicles for over five years.
Clearflow considers all flows on all roads via predictive mod-
els in addition to real-time sensing while directions are pro-
vided based on best guesses about flows over all roads. Its
main contribution is high coverage of traffic flow for 72 ma-
jor cities in North America, inferring on over 60 million road
segments in North America [10].

Bing Maps is a web mapping platform that can provide
business intelligence and data visualization solutions [11].
Bing Maps services can be used to accurately pinpoint lo-
cations from geo-coding address (latitude and longitude),
base maps and imagery, overlay customer locations, and
data analysis. It is similar to GIS systems but without its
complexity. This is done using Bing Maps APIs®, including
JavaScript/AJAX or Silverlight Controls. Data from SQL
Server or other BI data sources can be easily visualized with-
out the complexity of traditional GIS systems. Also, base
maps and imagery can be manipulated. Bing map cloud
platform infrastructure is divided in consumer offering and
AJAX, Silverlight Control and web services APIs [11].

Urban computing deals with a massive amount of data,
gathered by ubiquitous mobile sensors from personal GPS
devices to mobile phone. In [12], the authors measure spa-
tiotemporal changes in the population, identifying clusters
of locations with similar zoned uses and mobile phone ac-
tivity patterns. Beyond characterizing human mobility pat-
terns and measuring traffic congestion, reference [2] shows
how mobile sensing can reveal details such as intersection
performance statistics. None of them use Bing maps infor-
mation, which is the difference for this study. We have used
AJAX/JavaScript APIs so as to visualize traffic layer over
Chicago’s map. Next section explains our methodology of
traffic flow acquisition.

SA full overview of Bing Maps API can be found at www.
bingmapsportal.com.



3. TRAFFIC FLOW ACQUISITION
METHODOLOGY

Aiming a city-wide traffic flow information to establish
inferences and big data analysis for patterns discovery, a
methodology for acquiring traffic flow data from distincts
sources was developed. Any GIS map service can be input
of this methodology. Figure 2 presents the process of traffic
flow acquisition. Through the map service API, a city flow
web crawler have been developed. Then, a bash script was
designed in order to collect the traffic flow image from the
selected city. We used virtualization to print the screen and
save it into the database. A image processing software was
developed for extracting each road traffic intensity, saving
the percentage of green pixels, yellow pixels, and red pixels,
which correspond to the flow intensity (green is free while
red is congested). Each image from the image database was
processed and its flow intensity was saved to a specific date
and time into the Traffic Flow Acquisition.

GIS Map API Clty Flow

€IS Web Crawler

- % Street Binary
database Masks

Image
Processing

Traffic Flow
Acquisition

Figure 2: Traffic flow acquisition methodology through a
GIS map web crawler.

In this work, Bing Map has been used as input. Algorithm
1 presents the procedure for loading Bing Map in a webpage,
with the traffic layer on, and without the illustrations over
the map. First the map is set to the specific city center
location (geo-code of Chicago is 41.866768, -88.067741), with
the specific zoom level (10). Then, the traffic layer is enabled
and its opacity is turned off (1). To get a clear traffic image,
some HTML tags were removed through Document Object
Model (DOM) after 5 seconds so as to ensure the map is
loaded with the traffic layer.

Algorithm 1: Bing Map Traffic Module Load

setMapView();

showTrafficLayer();

opacity TrafficLayer();

setTimeout(function() {domManager();}, 5);

Algorithm 2: Traffic Flow Web Crawler

The web crawler algorithm is presented by Algorithm 2.
For each HTML scenario established as Algorithm 1, we get
current hour, open the web browser with the created HTML
file, print the screen, saving as the image name the current
hour. This process is repeated every delay seconds.

After collecting image data, the next step is the process-
ing. As input, the algorithm needs the image data and the
masks for each road. The mask is a binary image with
white background and black street line. Figure 3 illustrates
a street mask for one street segment and a translucent image

DELAY = 10 seconds foreach Scenario s do
get current hour;
open web browser with the code from Algorithm 1;
print the screen;
kill web browser;
sleep DELAY;
end

of Chicago map overlapped, which were used in this work.
For such scenario, 100 street masks were manually drawn.

e Chirago

Figure 3: Street mask example and a Translucent Chicago
map overlapped.

Algorithm 3: Traffic Flow Image Processing

Input: Image file i, Set of Road Masks k,
GreenPixels = 0;
YellowPixels = 0;
RedPixels = 0;
NoCategoryPixels = 0;
foreach Road Mask k, do
foreach Pizel p in the k, image do
if p is black then
// Increase the counter of its respective color
if hue(p) < 80 or hue(p) > 330 then
‘ RedPixels++;
end
else if hue(p) < 70 then
‘ YellowPixels++;
end
else if hue(p) < 150 then
‘ GreenPixels++;
end
else
‘ NoCategoryPixels++;
end
end
end

end

Algorithm 3 presents the steps followed to process one
map image. For each black pixel in the street mask, the
counter for each flow category (green, yellow, red, or no cat-
egory — error) was increased according to its color. To estab-



lish a band for each flow intensity, HSL (Hue, Saturation,
Lightness) was used. As HSV (Hue, Saturation, Value), HSL
is one of the most common cylindrical-coordinate represen-
tations of points in an RGB color model. The variation of
the hue corresponds to the values 0-360, in which 0 is a red
band, followed by a yellow band, and other band colors, and
finally a red band again. So it is possible to identify color
bands to Bing’s traffic flow intensity.

4. CHICAGO’S TRAFFIC FLOW ANALYSIS
AND VISUALIZATION

Chicago area was defined as a study case. The method-
ology of Flow Acquisition was applied. We collected data
from April 10th 2013 to April 24th 2013. Bing map acquisi-
tion occurred every 7 minutes. Next, the database has the
following information: (i) date; (ii) hour; (iii) street num-
ber; (iv) number of green pixels; (v) number of yellow pixels;
(vi) number of red pixels; and (vii) number of no category
pixels. Its map was divided into geo-code sectors, as Figure
4 illustrates. Each street has its influence area, considering
the direction of the street. It is important to notice each
street number.

Figure 4: Street sectors over the Bing map of Chicago area.

To analyze the street performance, we mapped as a graph
in which a road is a vertex and the edges are the direction
that can be taken by a vehicle in that street. Thus, a di-
rected graph is established. In order to present the most
important streets, the betweenness centrality has been cal-
culated. It indicates the number of shortest paths from all
vertices to all others that pass through that vertex. Fig-
ure 5 summarizes the most important roads, which are the
downtown streets (red squares in the heat map). The top is
street 79 (759), followed by street 28 (731), street 78 (719),
street 31 (713) and street 26 (702).

Another graph metric that has been evaluated was the
edge betweenness, i.e. the number of shortest paths between
pairs of nodes that run along the edge. Such metric corre-
sponds to the importance of the road convergence. Table 1
presents the top-10 roads importance and the convergence
importance (edge betweenness). One can notice that the 5
most important roads involve the top-5 vertex betweenness
that is vertices 79, 28, 78, 31, and 26. A traffic jam in such
roads has more impact on the network availability.

Next analysis will be presented according to the period of
the day (dawn, morning, lunch, afternoon, and night), which
is indicated by Table 2 with their corresponding times.

Importance of Chicago Streets
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Figure 5: Street importance according to the vertex be-
tweenness.

Table 1: The most important roads and convergences ac-
cording to the city infrastructure.

Road | Importance Edge Convergence Importance
79 759 31 =79 | 775 100.00%
28 731 78 — 28 | 754 97.29%
78 719 80 — 78 | 633 81.68%
31 713 79 — 82 | 628 81.03%
26 702 82 — 80 | 615 79.35%
82 611 26 — 42 | 520.5 67.16%
80 597 50 = 9 427 55.10%
42 582 25 — 26 | 383 49.42%
25 531 76 — 31 | 380 49.03%
50 454 28 — 26 | 372 48.00%

Table 2: Parameters of the period of the day.

Description Time
Dawn 0:00am—5:00am
Morning 5:00am—-10:00am
Lunch 10:00am—15:00am

15:00am—20:00am
20:00am—0:00am

Afternoon
Night

CUk W N =

Figure 6 presents the average road flow intensity (met-
ric 1) of working days in the left graphic while the two last
graphics illustrate the multiplication of the average road flow
intensity and the edge betweenness (metric 2) in dawn and
afternoon. One can notice that metric 1 did not character-
ize the most important roads with a higher value, which is
the advantage of metric 2. Therewithal, distincts behavior
patterns stand out depending on the period of the day. The
weekend graphics varies as well as the work days’.

Besides, phase transitions are difficult identify in a day-
time analysis, but not in each period of the day. Figure 7
presents the flow intensity in April 19th 2013 in the morning



Bing Average in Dawn
more

15 20 25 30

Bing Category
Metric Categp

1.0

1 13 26 39 52 65 78 91 1

Street

o]

o 0ok JosYa . LR
T 0 & W oo o

Bing times Betweeness in Dawn

C

Bing times Betweeness in Afternoon

increased metric

1500

) |

o |

|

5 5 |

S |

. - o |

less impgrtant 5 g o 9 ) |
o o8 o To ©° 4 |
3 00 ~ Map . G0 W, |

s =2 0| @f® O € @@mdtib G&ud

1 13 26 39 52 65 78 91

Street

Street

Figure 6: Boxplot of the average road flow intensity and such value updated by the edge betweenness.
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Figure 7: Flow intensity analysis for street 28.

and during lunch. One can notice that are several hours of
the day that if we leave 7 minutes earlier, it will make a
difference.

Figure 8 presents the flow intensity for streets 31 and 79,
which is the most important road. About street 31, we can
identify 852 minutes (14:12 hours) as a phase transition due
the street flow intensity remains highly congested (level 3).

Through daytime analysis, we can discovery flow patterns
during hours of the day, as well as phase transitions. Figure
9 presents the flow intensity result for the top-4 important
streets in April 19th, 2013. One can notice that the street
79 has more traffic jam at night, as well as the street 28.
Notwithstanding, the street 28 has more flow fluctuation
during lunch, and in the afternoon and in the night it is
highly congested for hours.

Finally, the average probability a street be free (green),
medium (yellow), or congested (red) is determined by the
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Figure 8: Flow intensity analysis for streets 31 and 79.

frequency in the acquired Chicago area database. As the
probability of each road is not equally likely, grouping the
data is required. Thus, four clusters have been made, ac-
cording to the average flow intensity so as to preserve the
street main characteristics: (i) streets with values between
1 and 1.5; (ii) streets with values between 1.5 and 2; (iii)
streets with values between 2 and 2.5; and (iv) streets with
values higher than 2.5. Such division has been made with
data of working days and of weekends, creating two distincts
clustering of behavior.

So as to define the street categories, Figure 10 presents
the probabilities of flow intensity for each. One can notice
that category 1 has a higher probability of being green dur-
ing almost all the day, except at dawn that presents a higher
probability of being yellow. The same happens for category
two, highlighting the red higher probability at 8pm. Streets
of category 3 presents a variation of green and red probabili-
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Figure 10: Probabilities of flow intensity per street category.

ties, being more susceptible of being red at 11am and 20pm.
Finally, category 4 presents a red probability during most
of the day, except for 9am that has a higher probability of
being green.

Table 3 shows the classification of streets 79, 78, 28, and
31. One can notice that almost every period of the day the
street category is 1, being sometimes 2. Categories 3 and
4 are rarer, standing out street 28 that change its category
during the periods of the day. Even in the weekend, one can
notice that street 28 has a distinct behavior in comparison
with streets 79, 78, and 31.

Although analyzing such probabilities, shall the probabil-
ities be valid for the next few weeks? Next section discusses
the topic of whether this behavior is maintained during the
days and if a prediction model can be developed.

Table 3: Classification of streets in periods of the day.

Working Days Weekends
Streets 79 28 | 78 |31 |79 (28| 78|31
Dawn 1 1 1 1 1 1 1 1
Morning 11211 1 1 1 1 1
Lunch 113 112 11 2 1 1
Afternoon | 2 4 2 2 1 4 1 1
Night 11 2 1 1 11211 1

S. TRAFFIC FLOW PREDICTION MODEL

5.1 Overview

In statistics, logistic regression is a type of regression anal-
ysis used for predicting the outcome of a categorical depen-
dent variable based on one or more predictor variables. Its
main characteristic is that the probabilities describing the
possible outcomes of a single trial are modeled, as a function
of the predictor variables, using a logistic function. Logis-
tic regression measures the relationship between a categor-
ical dependent variable and one or more independent vari-
ables. The probability function follows a logistic function,
presented by equation 1.

1
= — 1
1+e? (1)

In this work, the categorical dependent variable is the
flow intensity, being: (i) green; (ii) yellow; or (iii) red. The
independent variables are the day, the hour of the day, the
street number, and the number of pixels green, yellow, and
red in the week.

Algorithm 4 synthesizes the prediction model algorithm,
which is composed by two logistic regressions. The logistic
regressions were made with only the first week work days.
After gathering data, we considered each independent vari-
able as categorical or numeric. The green flow intensity was
considered as class 0, while class 1 was yellow and red inten-
sities. The logistic regression 1 classified the flow intensity
as green (class 0) or not (class 1 — yellow or red). Remov-
ing the green data, the logistic regression 2 classified the
flow intensity as yellow (class 0) and as red (class 1). The
regressors was made through the glm library in R-Project®.

P(t)

5.2 Results and Analysis

5See more information about R-Project in www.r-project.
org.




Algorithm 4: Prediction Algorithm

Input: Database data

datal <- previous weeks data;

// The categorical dependent variable

y <- vector of bing flow intensity (1, 2 or 3) of datal;
x <- matrix of the six independent variables of datal;
// Consider bing = 1 as class 0 and others as class 1
y =vy-L

yly==2] = L;

class0 <- y == 0;

classl <- IclassO;

// Run the logistic regression 1

firm1 <- glm(y (factor(x[,1]) + factor(x[,2]) +
as.numeric(x[,3]) +

as.numeric(x[,4]) + as.numeric(x[,5]) +
as.numeric(x/[,6])

), family=binomial("logit”));

// Prepare data for regressor 2;

y <- vector of bing flow intensity (only 2 or 3) ;

x <- matrix of the six independent variables data;

// Consider bing = 2 as class 0 and bing = 3 as class 1
Yy =y-2

classO <- y == 0;

classl <- !lclassO;

// Run the logistic regression 2

flrm2 <- glm(y (factor(x[,1]) + factor(x[,2]) +
as.numeric(x[,3]) +

as.numeric(x[,4]) 4+ as.numeric(x[,5]) +
as.numeric(x[,6])

), family=binomial("logit”));

Table 4 and 5 present the confusion matrix for each logistic
regression (more details about Machine Learning concepts
in [7]). As one can notice, the 109 of all data were false
positive and 100 were false negative. In this context, falsely
predicting an event (green considered as yellow) is better
then missing an incoming event (yellow considered as green).
Also, the percentage of False Positive (FP) is higher than the
percentage of false negative in both regressors.

Table 4: Confusion matrix for each logistic regression using
the week data.

Logistic Regression 1A Logistic Regression 2A
Green | FALSE | TRUE Red FALSE | TRUE
FALSE | 11267 109 FALSE 7105 0
TRUE 100 70093 | TRUE 0 4271

Table 5: Confusion matrix for each logistic regression using
the previous week data.

Logistic Regression 1B Logistic Regression 2B
Green | FALSE | TRUE Red FALSE | TRUE
FALSE 1486 12272 | FALSE | 4737 1796
TRUE 728 79615 | TRUE 2244 2599

After generating the confusion matrix, table 6 summarizes
both regressors results. The accuracy was high (approx-
imately 99%) indicating the proportion of correct predic-

tions. The precision was also 99% indicating the probability
of the predicted positive cases that were correct. For the
second group of regressors, using the previous week data,
the precision of free (green category) is 87% while the pre-
cision of the congested (yellow or red) is 60%, which can be
explained by the less amount of yellow/red data in compar-
ison with the green label.

Table 6: Other analysis of the regressors.

# | Accuracy | Recall | FP Rate | Specificity | Precision
1A | 99.74% | 99.85% 0.01% 99.04% 99.84%
2A 100% 100% 0% 100% 100%
# | Accuracy | Recall | FP Rate | Specificity | Precision
1B 86% 99% 90% 10% 87%
2B 65% 54% 27% 72% 60%

The recall and the specificity were also high, which show
that one can have a high confidence in the model concerning
correct predictions of positive and negative classes, respec-
tively. The FP rate demonstrates that the flow intensity was
predicted as congested while in fact it was free. Thus, the
obtained value was very low due the proportion of negatives
cases that were incorrectly classified as positive, as it was ex-
pected. Also, the Chi-squared test was made and the prob-
ability value (p-value) (i.e., the area under the chi-square
distribution from the chi-square value to positive infinity),
given the chi-square value and the degrees of freedom, was
zero. The p—value shows that the observed result was highly
unlikely under a null hypothesis.

Logistic Regression Prediction for Dawm
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Figure 11: Heat map of prediction model results at dawn.

For a better visualization of the prediction model, the sec-
ond week data was used as validation. Figures 11, 12, and
13 presents the prediction model and errors, in relation to
the real flow intensity data, over Chicago area map for the
following period of the day: dawn, morning, and lunch. Pre-
diction model errors are presented with gray color. One can
notice that at dawn we have a higher mobility in all area, and
the prediction model not missed much. The maximum error
was obtained for the lunch period. This visualization great
advantage is the perception of movement in the morning to
downtown, and from downtown at lunchtime. In general,
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Figure 12: Heat map of prediction model results in the morn-
ing.

Logistic Regression Prediction for Lunch
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Figure 13: Heat map of prediction model results at lunch.

the obtained error of flow intensity was 10.98% for green,
3.36% for yellow, and 8.79% for red.

6. CONCLUSIONS

This work presented a methodology to acquire flow in-
tensities from map services such as Bing maps and Google
maps. Chicago area was evaluated as study case. A metric
was applied to analyze the flow intensity according to impor-
tance of the streets (betweenness), in which a top-5 streets
importance was established. Then, streets were aggregated
in four categories in which phase transitions (shocks in the
system) were identified. The main contribution was the pro-
posal of a traffic flow acquisition metodology based on Ge-
ographical Information System (GIS), such as Bing Maps,
which can be used for developing realistic mobility models
for VANETS for a better evaluation of protocols.

Finally, a prediction model was designed to discovery fu-
ture flow intensities for a target street. Based on logistic
regression, the prediction model obtained an accuracy of
98%, a recall of 98%, a FP rate of 4%, a specificity of 96%,
and a precision of 98%, in average for both regressors. In

the prediction model validation, we presented visualization
through a heat map over Chicago area. The obtained errors
were 10.98% for green intensity, 3.36% for yellow intensity,
and 8.79% for red intensity.

Future works include analyzing other cities, improving the
prediction model using other information such as social net-
works. Also, a comparison between distincts map services
will be developed.
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