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ABSTRACT
Existing studies extensively utilized taxicab trips and indi-
viduals’ movements captured by mobile phone usages (re-
ferred as “mobile phone movements” hereafter) to under-
stand human mobility patterns in an area. However, all
these studies analyze taxicab trips and mobile phone move-
ments separately.

In this paper, we: (1) integrate mobile phone and taxicab
usages together to explore human movements in Singapore
and reveal that mobile phone movements as a general proxy
to all kinds of human mobility has substantially different
characteristics compared to taxicab trips, which are one of
the frequently used means of transportation; (2) investigate
the ratio of taxicab trips and mobile phone movements be-
tween two arbitrary locations, which not only characterizes
taxicab demands between these locations but also sheds light
on underlying land use patterns.

In details, we quantify the distinct characteristics of mo-
bile phone movements and taxicab trips, and particularly
confirm that the number of taxicab trips decays with dis-
tance more slowly compared to mobile phone movements.
From a spatial network perspective, taxicab trips largely re-
flect interactions between further-separating locations than
mobile phone movements, resulting in emergence of larger
spatial communities (delineated based on people mobility)
in Singapore.

The contribution of this research is two-fold: (1) we clari-
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fied the divergences between observed human mobility pat-
terns based on taxicab and mobile phone data; (2) we imple-
mented an integrated approach of taxicab and mobile phone
usages for gaining more informative insights in population
dynamics, transportation and urban configuration.

General Terms
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1. INTRODUCTION
Understanding human mobility patterns has gain extraor-

dinary attentions due to the rapid development of location
acquisition technologies, complex network sciences and hu-
man dynamics. The hidden patterns of human movements
in space and time are of great importance for traffic fore-
casting [9], tourism management [1], disease spread [22] and
evolution of social relationships [4]. Ongoing studies are
also trying to unify a framework for smart city [17], ur-
ban computing [28], personalized recommendation [26] and
transportation intelligence [12][10][6] by tracking individu-
als’ spatiotemporal activities.

Revisiting the early age of human mobility studies, which
is well known as Hägerstrand’s (1970) time geography [8],
researchers extensively utilized travel diaries to analyze in-
dividuals’ travel activities in space and time due to limited
data collection ability. Fortunately, to date Information and
Communication Technology (ICT) almost enables ubiqui-
tous sensing of individuals’ spatiotemporal movements in
real-time. Diverse tracking techniques have been adopted,
including circulation of bank notes [2], handheld GPS de-
vices [27], Call Detailed Records (CDRs) [7], smart cards
[13] and check-ins [3].

On the other hand, these distinct techniques capture sub-
stantially different mobility patterns, raising the challenge of
activity interpretation and modeling. For instance, by track-
ing the geographic circulation of bank notes in the United



States, [2] inferred that human movements in space in gen-
eral follows the Lévy flight. However, those bank notes were
carried by different people during the study period, mak-
ing the inherent mechanism of human movements still un-
clear. In 2008, [7] adopted the mobile phone data for mobil-
ity analysis, and concluded that the (truncated) power-law
of collective human mobility emerged from a convolution of
population heterogeneity and individual Lévy trajectories.
Meanwhile, mobility patterns derived from taxicab trips are
better fitted by the exponential law than the Lévy flight
model [11].

Different techniques also bring ambiguity of the definition
of human movements due to their inconsistent spatiotempo-
ral data qualities. There exist at least three distinct strands:
trip-, shape- and sampling-based methods to define a single
displacement. Taxicab trajectory is a typical illustration of
the trip-based method in that the origin and destination
(OD) of individual movement is given explicitly. In hand-
held GPS trajectory, OD is unknown and thus applicable for
the shape-based method. In this case, three different pre-
processing methods, namely rectangular-, angle- and pause-
based models, have been widely applied to extract trips [19].
Mobile phone positioning captures individual’s discrete loca-
tions randomly in time as well as with low spatial resolution.
It thus follows the sampling-based framework.

In general, divergences of existing observations of human
mobility patterns are attributed to four reasons: different
transport modes (walking, bus, train, flight and etc.), dif-
ferent population groups (age, racial, occupation and etc.),
different geographical environments (road network, region,
geology and etc.), and different spatial scales (intra-urban,
inter-urban and etc.). As known, transport tools play sub-
stantially distinct roles in transportation systems and in-
dividuals’ travel behaviors. Data associated with different
transport modes generally depict human movements with
different purposes and at different spatial scales. People with
different social-economic backgrounds always utilize public
transport modes and urban spaces distinctly. Geograph-
ical environments such as land uses and accessibility also
have remarkable influences upon human mobility patterns.
Understanding constraints of aforementioned factors upon
observed human mobility patterns is meaningful for human
mobility modeling.

In this article, we focus on exploring human movements
in Singapore using both mobile phone and taxicab data, and
target to clarify the distinct patterns derived as well as the
underlying mechanism. Intuitively, mobile phone movement
is a general proxy to all kinds of human mobility while taxi-
cab trip is one of the frequently used means of transporta-
tion. Taxicab trip captures only a segment of individual’s
movements. Mobile phone trajectory, though deviating from
real human trajectory, can capture individual’s continuous
and longitudinal movements. Thus, a comparative analysis
of taxicab trip and mobile phone movements can

1. Deepen our understanding of peoples’ taxicab usages
and general activity patterns, which is informative for
land use classification;

2. Uncover similarities and differences between human
mobility patterns derived from taxicab and mobile phone
data, respectively;

3. Unveil the relationship between dynamic population

distribution (based on mobile phone usages) and taxi-
cab usage in an area.

The contribution of this research is two-fold: (1) we clari-
fied the divergences between observed human mobility pat-
terns based on taxicab and mobile phone data; (2) we pro-
posed an integrated approach of taxicab and mobile phone
usages for gaining more informative insights in population
dynamics, transportation and urban configuration.

The remainder of this article is organized as follows. Sec-
tion 2 describes the data preprocessing procedure for dis-
cretizing the study area and trip extraction. In Section 3,
we present the differences between taxicab trips and mobile
phone movements in terms of spatial pattern, distance de-
cay, and community structure. Section 4 provides a brief
discussion about potential directions of this research. In fi-
nal, Section 5 summarizes the contribution of this paper and
concludes the divergences between the mobility patterns de-
rived from taxicab and mobile phone usages.

2. DATA PREPROCESSING

2.1 Data Description
In this research, we extracted GPS logs of 15, 000+ taxi-

cabs (D1) from February 27th, 2011 to March 5th, 2011 and
CDRs of 2, 000, 000+ mobile subscribers (D2) from March
27th, 2011 to April 2th, 2011 in Singapore over a whole
week, respectively.

In D1, taking February 28th, 2011 as an example, the
total number of GPS points for all taxicabs is 17,653,329.
Each point is associated with longitude, latitude, time, ve-
locity, and status (occupied/ unoccupied) of the given taxi-
cab. The time intervals between consecutive GPS points
vary along with different taxicabs as well as time of the day,
while 1 second, 3 seconds and 5 seconds are the most com-
mon values.

In D2, the number of mobile subscribers accounts for ap-
proximate 40% of the total population in Singapore. For
each subscriber, the CDRs contain voice, SMS and data logs.
The antennas routing the mobile phone usages roughly con-
struct the spatiotemporal trajectory of each subscriber. In
total, there are 9,979 antennas across entire Singapore (Fig-
ure 1). In the downtown area (the south part of Singapore),
the distance between two neighboring antennas is about 50
meters on average, which is capable to positioning mobile
subscribers in very fine spatial resolution. In the surround-
ing area (excluding the open spaces in central and western
Singapore), the corresponding value is about 200-500 me-
ters.

2.2 Discretizing The Study Area
Technically, the precision of GPS log is usually higher

than meters, while the precision of mobile positioning is
much lower. To make taxicab and mobile phone trajectories
comparable, we transform these two types of trips into an
identical resolution. Though the Theissen partitioning is a
most intuitive way to discretize the study area, it has several
drawbacks, particularly in the case study of area with dense
antennas like Singapore. First, the size of resulting Voronoi
polygons varies with the density of antennas. In area with
sparse antennas, the Voronoi polygon might largely exceed
the service area of the antenna, making the estimation of
trip origin and destination biased. Second, the service ar-



Figure 1: The 500 m by 500 m grids (blue-rectangle) and
the antennas (red-dot) covering entire Singapore. The total
number of grids is 2,640 and the antennas 9,979.

eas of antennas might overlap with each other in area with
dense antennas due to the service capability of a single an-
tenna. Thus, a subscriber might not be within the Voronoi
polygon of the antenna routing the mobile phone activity.
Considering that the average distance between two neigh-
boring antennas is less than 500 meters across entire Singa-
pore, we thus discretize the studies area into 500 m by 500 m
grids (Figure 1). This uniform partitioning makes the origin
and destination of each trip at the same scale and largely
eliminates the biases discussed above.

2.3 Trip Extraction
In D1, statuses of individual taxicab, such as FREE, Pas-

senger on Board (POB), and PAYMENT at an instant time
are explicitly recorded. More specifically, when the status is
FREE, the taxicab is available for taking a passenger. When
the taxicab is occupied, its status turns from FREE to POB
at the pick-up location. When the taxicab drops off the pas-
senger at the destination, its status firstly turns from POB
to PAYMENT, and then to FREE again to search passen-
gers. The trajectory between the first POB status appearing
at the pick-up point and the successive PAYMENT status
at the drop-off point captures a taxicab trip in space and
time. Table 1 lists the number of taxicab trips in differ-
ent days over a whole week. On average, the total number
of daily taxicab trips is about 400,000 in Singapore, while
in weekends the number is slightly smaller than weekdays.
Additionally, the number of trips increases day by day over
weekdays, implying the raising demands of taxicabs when
approaching the weekends. In this paper, we reassign the
pick-up and drop-off points of taxicab trips into the 500 m
by 500 m grids within which they fall. Thereafter, all taxicab
trips are simplified as the displacements from the originating
grid to the terminating grid.

In D2, two distinct approaches are widely applied to ex-
tract individual’s movements as well as OD information.
The first one is simply taking the change of locations be-
tween two consecutive mobile phone activities as a trip,
while the second one requires an additional procedure of
identifying the anchor points of people’s call activities, and
then defines movements between different anchor points as
trips. Though the former method covers majority of individ-
uals’ movements, it is highly dependent on where, when and

the frequency subscribers use their mobile phones. More-
over, the major drawback is that numerous short trips will
be detected due to localization errors and users making con-
secutive network connections in the same area. In this paper,
we reassign position of each mobile phone usage into the grid
within which the antenna locates following the framework
presented in Section 2.2. Then, if the user moves between
two different grids when making two consecutive network
connections, we define this movement as a trip. Note that
in this paper we refer them as trips in parallel with taxicab
trips for convenience. In general, this approach follows the
latter method as discussed above. Considering that the min-
imum distance between two grids is 500 m, the approach: (1)
considerably reduces short-distance trips within an identical
grid as well as localization errors; (2) largely captures all
kinds of individuals’ movements. However, it is also note-
worthy that these obtained trips can be still biased in that
their ODs might deviate from individuals’ real movements.
The number of mobile phone movements also generally in-
creases from Monday to Friday (Table 1).

3. DIVERGENCES BETWEEN TAXICAB TRIPS
AND MOBILE PHONE MOVEMENTS

3.1 Spatial Distributions
Taxicab is a typical transport mode relying upon under-

lying urban configuration. On the one hand, at city scale
taxicabs are almost crowded in urban areas, particularly the
commercial districts. On the other hand, taxicabs are the
dominantly used transport mode between certain specific
places, such as airport and downtown, workplaces and resi-
dential sections. Figure 2a demonstrates the probability dis-
tribution of the number of taxicab trips between paired lo-
cations in Singapore per day over a whole week. For the ma-
jority of location pairs, the number of taxicab trips between
them is less than 5 in each day. However, between certain lo-
cations the number of taxicab trips is 10 or 100 times higher
(see the tail in Figure 2a). Under closer scrutiny, we find
that the probability distribution well follows a power-law
with an exponent close to 3.0, which reveals a highly spatial
heterogeneity of taxicab trips distributed in the city. The
number of mobile phone movements between two locations is
generally much higher than the number of taxicab trips. As
mentioned before, this is because taxicab trips capture only
a very small part of people’s daily movements in Singapore.
The distribution of mobile phone movements between dif-
ferent locations also well follows the power-law (Figure 2b).
However, the exponent of mobile phone movements, which
is about 2.0, is smaller than the exponent of taxicab trips. It
tells that mobile phone movements are distributed in space
more evenly than taxicab trips. The low correlation between
taxicab trips and mobile phone movements between paired
locations, with a Pearson’s Correlation Coefficient (PCC)
about 0.13, further confirms the differences between taxicab
trips and mobile phone movements. Figure 2 also implies
that the collective human daily movements are very regu-
lar in different days over the whole week in terms of both
taxicab trips and mobile phone movements.

To further explore the spatial distribution of taxicab trips
and mobile phone movements, we aggregate the outgoing
and the incoming trips for each location. Figure 3 shows the
case for Sunday only considering that the daily patterns of



Table 1: Number of taxicab trips (D1) and mobile phone movements (D2) per day over a whole week

SUN MON TUE WED THU FRI SAT
D1 382,720 407,405 411,874 414,755 420,948 439,937 432,125
D2 16,234,488 19,891,333 19,753,961 20,608,775 20,673,944 22,223,400 18,767,840
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Figure 2: Number of taxicab trips (a) and mobile phone
movements (b) between two locations per day over a whole
week. Both the distributions of taxicab trips and mobile
phone movements overlap with each other and generally fol-
low a power-law function with the scaling exponent 3.0 and
2.0, suggesting the high heterogeneity and regularity of col-
lective human daily movements.

taxicab and mobile phone trips are highly homogenous over
the whole week as discussed above. Obviously, the num-
bers of outgoing and incoming trips at different locations
are quite different in the city. Both outgoing and incoming
taxicab trips are highly clustered at the downtown Singapore
and the airport (Figure 3a and 3b). It reveals that taxicabs
are extensively taken transport tools serving the airport and
the downtown area. In more details, the pick-up and drop-off
points of taxicab trips decrease from the urban center/sub-
center (Downtown Core, Jurong West, Yishun, Ang Mo Kio,
Geylang and Tampines) to the surrounding areas, implying
the high correlation between taxicab usages and underly-
ing urban configuration. For mobile phone movements, the
outgoing and incoming flows are more evenly spatially dis-
tributed in Singapore (Figure 3c and 3d).

Another interesting finding is the symmetric properties
of taxicab trips and mobile phone movements in Singapore.
Figure 4 illustrates the correlation between the outgoing and
the incoming trips at each location. Generally, the outgoing
and the incoming trips are highly symmetric. The PCC of
the outgoing and the incoming taxicab trips is 0.95 and the
value of mobile phone movements 0.99. On the one hand,
this observation tells that taxicab trips and mobile phone
movements are highly regular and repeatable in space. On
the other hand, it demonstrates that taxicab trips are more
stochastic than mobile phone movements. As shown in Fig-
ure 4a, at most locations the total number of taxicab trips
is less than 100, and the number of incoming taxicab trips is
larger than the number of outgoing taxicab trips. However,
at places with large number of outgoing/incoming taxicab
trips, the situation is reversed: the number of incoming taxi-
cab trips is generally smaller than the number of outgoing
taxicab trips. In other words, the drop-off points of taxi-
cab trips distribute more uniformly in space compared to
the pick-up points. We interpret that the pick-up locations
of taxicab trips are largely concentrated in the downtown
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Figure 3: Distribution of the outgoing/incoming trips (top:
taxicab; bottom: mobile phone) at each location per day
over a whole week. In details, the pick-up locations of
taxicab trips are concentrated in space (left), whereas the
drop-off locations distribute more uniformly across Singa-
pore (right). The mobile phone movements are normalized
to the same scale as the taxicab trips.

area, whereas the drop-off locations distribute more ran-
domly in space. Meanwhile, the high symmetry of mobile
phone movements reflects constraints of individuals’ daily
routines such as commutes between home and workplace.

3.2 Displacements
The distance decay effect of individual human movements

is a fundamental and meaningful phenomenon in geography
that gains interests of researchers in various fields. The dis-
tance decay of human travels relies on both geographical
environment and transport modes. In the context of this
study, we have two distinct types of trips, enabling us to
decouple the impact of transport modes upon human move-
ments in the same area.

Figure 5 demonstrates the distance distributions of taxi-
cab trips and mobile phone movements in Singapore. As
expected, the proportion of taxicab trips within 1,000 me-
ters is much lower than its counterpart of mobile phone
movements. However, due to the particular role of taxicabs
in public transportation systems, the proportion of taxi-
cab trips larger than 3,000 meters is much higher than its
counterpart of mobile phone movements. Besides, consider-
ing that mobile phone movements are mixtures of various
transport modes including walking, bus, subway as well as
taxicab, its distance decay effect is inherently stronger than
that of taxicab trips. Therefore, the distribution of displace-
ments of taxicabs is more flat than the distribution of dis-
placements of mobile phone movements. This observation
explicitly confirms that taxicab trips, which are constraint
by travel distance and time, decay more slowly than mobile
phone movements. Quantitatively, the distribution of dis-
placements of mobile phone movements within 10 km well
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Figure 4: Symmetric properties of the outgoing/incoming
taxicab trips (a) and mobile phone movements (b) at each
location. The pie-line represents the average of each scatter.
At most places, the total number of taxicab trips is less than
100 and the number of incoming taxicab trips is generally
larger than the number of outgoing taxicab trips. However,
at those places with large number of outgoing/incoming
taxicab trips, the situation is reversed. In contrary, mo-
bile phone movements are highly symmetric across the study
area.
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Figure 5: The distance decays of taxicab trips (a) and mobile
phone movements (b). In general, mobile phone movements
follow the power-law distribution with an exponent about
2.5, while taxicab trips follow the exponential distribution
with an exponent about 2.9 (when normalizing distance by
its mean and standard deviation).

follows the power-law with an exponent about 2.5, while in
the tail the exponent is much larger due to constraint of
the boundary of Singapore (Figure 5b). The distribution
of displacements of taxicab trips, however, well follows the
exponential law with an exponent about 2.9 (Figure 5a).

The difference between the distributions of displacements
of taxicab trips and mobile phone movements might be at-
tributed to two factors. First and foremost, taxicab is a
kind of transport tool mainly used in specific circumstances
by people. It captures only a small part of individuals’ daily
movements, particularly the medium and long distance trav-
els as well as those movements originating/terminating at
specific areas. Besides, taxicab trips highly relies the under-
lying road network, making it less flexible and accessible in
certain areas. Another potential reason is that mobile phone
movements depict inherent biases regarding individual hu-
man movements. The temporal-sparse and spatial-coarse
nature of mobile phone data as well as individuals’ habits of
mobile phone usages make it hard to derive human move-
ments accurately.

3.3 Regionalization

(a) (b)

Figure 6: The communities derived from taxicab trips (a)
and mobile phone movements (b) in Singapore. The 5 com-
munities in the network of taxicab trips well match the 5
administrative regions in Singapore. Particularly, the air-
port is clustered together with the downtown (green). The
network of mobile phone movements is partitioned into 16
small communities, which are generally sub-divisions of the
5 regions in Singapore.

From the network-based perceptive, human movements
reflect spatial interactions between different locations and
the volume of human movements represents the strength of
their interaction. As discussed above, taxicab trips largely
reflect interactions between further-separating locations than
mobile phone movements. Following this framework, we un-
cover how taxicab trips and mobile phone movements can
be applied to identifying different regions in Singapore.

In this analysis, each grid is abstracted as a node, vi
(i = 1, 2, . . . , 2640), and the number of trips from node i
to node j as weight of the link Eij between them. Based
on taxicab trips and mobile phone movements, we thus ob-
tain two direct spatial networks S1 and S2 consisting of the
N = 2, 640 grids in Singapore. Note that E1

ij for S1 and E2
ij

for S2 are the number of taxicab trips and the number of
mobile phone movements from vi to vj respectively. But, for
simplicity, hereafter we use Eij to denote the weight from
vi to vj as the general form. By applying the community
detection algorithm to both S1 and S2, results as shown in
Figure 6 confirm that both taxicab trips and mobile phone
movements are capable for uncovering spatial cohesive com-
munities inside the city. In S1, we find 5 large communities
in Singapore as Central Region (green), East Region (red),
North Region (purple), North-East Region (blue) and West
Region (orange) (see Figure 6a). In S2, we find 16 more
fine-grained spatial cohesive communities (Figure 6b) that
are generally sub-regions of the 5 regions derived from taxi-
cab trips.

Interestingly, the 5 regions derived from taxicab trips well
match the 5 urban planning subdivisions demarcated by the
Urban Redevelopment Authority of Singapore. Particularly,
the airport at the east of Singapore is clustered together with
the Central Region, revealing the heavy taxicab traffic be-
tween the downtown area and the airport in Singapore. Fur-
thermore, we adopt the clustering comparison approach to
quantify the similarity between the resulting spatial commu-
nities and the administrative divisions in Singapore [16][5].
The upper-triangular and the lower-triangular of Table 2
tabulate the Rand (RI) and the Fowkles-Mallows (FM) sim-
ilarity indices between the regions defined by taxicab trips,
mobile phone movements and administrative divisions. The



Table 2: The similarity between derived communities
and administrative regions in Singapore (upper-triangular:
Rand Index; lower-triangular: Fowkles-Mallows Index)

Taxicab Mobile 5 Regions
Taxicab 1 0.8309 0.8326
Mobile 0.4633 1 0.8300

5 Regions 0.6222 0.5129 1

RI and FM both confirm the high coincidence between the 5
taxicab-based regions, the 16 mobile-based districts and the
5 administrative regions in Singapore. Note that RI only
takes into account the matching part of two partitions, while
FM relies on both the matching part and the mismatching
part of two partitions.

The implication of this finding is two-fold: (1) human
movements are significantly constraint by the underlying ur-
ban structure. In this research, trips within a given admin-
istrative region are much more than trips across different
administrative regions in Singapore; (2) different types of
trips can be applied to detect regions at different scales,
implying that the constraint of urban structure is differ-
ent for different transport modes. As discussed in Section
3.2, the distance decay of taxicab trips is slower than mo-
bile phone movements. Taxicab trips mainly capture the
travel-activities between further-separating locations than
mobile phone movements. In Singapore, the analysis de-
picts that taxicab trips highlight the connections between
districts within the identical higher-level region, resulting in
the combination of certain districts into a large community
in space. More generally, the emergence of communities
in spatial-embedded networks depends on the strength of
distance decay effect of the underlying spatial interaction
systems.

4. AN INTEGRATED APPROACH
In a city, the ratio of taxicab trips and overall human

movements between two given locations is of great impor-
tance for taxicab demand estimation and dispatch. We thus
calculate the ratios of taxicab trips and mobile phone move-
ments between two arbitrary locations in Singapore. For
most paired places, the proportion of taxicab traffic is about
10%, demonstrating the important role that taxicabs play in
the transportation system. The result also reveals that the
proportion of taxicab trips is highly heterogeneous for dif-
ferent paired places. At certain places, the ratio is very low
(0.1% - 1%), implying that taxicab is a rarely used transport
mode in these areas. One possible reason is that other public
transport modes such as subway and buses largely substitute
the role of taxicabs at these places. Also, the average ratio
of taxicab trips and mobile phone movements longer than
5,000 m is highly stable between 30% and 40%. It further
confirms that taxicab plays a very dominant role in medium
and long distance travels in Singapore. Besides, between
some paired places the ratios of taxicab trips and mobile
phone movements exceed 1.0, suggesting that mobile phone
data have definitely exclude a part of people movements that
are captured by the taxicab trips. This also provides strong
evidence that mobile phone dataset has limits for inferring
general people movements patterns.

It is also meaningful to testify whether the ratio of taxi-
cab trips and mobile phone movements can reveal underly-

(a) (b)

Figure 7: Distribution of the ratios of taxicab trips and mo-
bile phone movements at each location across Singapore (a:
outgoing, b: incoming). A hotspot emerges at the south-
western corner of Singapore, which cannot be identified by
taxicab trips or mobile phone movements solely.
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Figure 8: The relationship between ratio of taxicab usage
and underlying population.

ing urban environment at each location. As shown in Fig-
ure 7, the ratios at different locations in Singapore show
distinctly different spatial patterns compared to the spatial
distributions of taxicab trips and mobile phone movements
(refer to Figure 3). Almost all the locations with a high
ratio of taxicab trips are within the downtown core. Figure
8 demonstrates the strong positive correlation between the
ratio of taxicab usage and underlying population (derived
from aggregate mobile phone traffic) at each location in Sin-
gapore. In this sense, at macro scale the spatial distribution
of ratios well follows the general urban structure (“core - ur-
ban - suburban”). Moreover, a preliminary and meaningful
finding in this integrated analysis is that the ratio of taxi-
cab and mobile phone trips is a good additional indicator
for land use inference based on mobile phone and taxicab
usages. We find that a hotspot emerges at the southwest-
ern part of Singapore, which cannot be identified by taxicab
trips or mobile phone movements separately. By checking
with the official land use map, we confirm that this region
(the Pioneer district in Singapore) is the largest develop-
ing area in Singapore, which depicts quite different activity
patterns with other locations associating with small taxicab
trips and mobile phone movements. The implication is that
an integrated framework of multi-sourced mobility datasets
is promising for better land use inference and deeper under-
standing of urban configuration.

5. DISCUSSIONS
This article has uncovered substantial differences between

taxicab trips and mobile phone movements in terms of spa-
tial distribution, distance decay and community structure.
However, all the analyses are based on the trip patterns ag-
gregated over a whole day. Considering that the temporal
pattern of trips in a day is more informative than the aggre-



gated daily pattern, we will focus on the temporal variations
of trips at each location as well as between two arbitrary
locations in Singapore in future works. For instance, the
temporal pattern of differences between the incoming and
outgoing taxicab trips at a given location permits us to in-
fer the underlying land use with very high accuracy [14].
Together with the POIs, these trips are applicable for dif-
ferentiating functional regions in a city [23]. Similarly, the
signatures of mobile phone usages along time also allow land
use inference in a city [18]. In the context of this research,
we can adopt this geographical classification framework and
further leverage the incoming and outgoing trips from taxi-
cab and mobile phone usages to infer the land uses in Singa-
pore, respectively. Additionally, we will also verify whether
the temporal pattern of ratios of taxicab trips and mobile
phone movements can be applied for better land use infer-
ence.

In a second strand, it will be interesting to discuss how
distance decay effect determines the formation of communi-
ties in spatial-embedded networks. As shown in Figure 6,
networks of taxicab trips and mobile phone movements have
substantial different community structures. The size of com-
munities in a network with low distance decay is larger than
the size of communities in a network with fast distance de-
cay. All the communities are highly cohesive in space, while
there is not any external spatial constraint in the commu-
nity detection algorithm. This phenomenon is an explicit
illumination of Tobler’s first law of geography (TFL) that
“Everything is related to everything else, but near things
are more related than distant things” [21]. Tracing back
to 2003, the TFL forum in 2003 AAG annual meeting has
already treated the network sciences as an empirical valida-
tion of TFL, and implicitly tried to unify a framework of
(spatial) network sciences and geography [20]. Particularly,
the emergence of cohesive communities explicitly illustrates
how TFL works in spatial-embedded networks. More im-
portantly, in this paper we have not only revealed the cor-
relation between distance decay and community structure,
but also, at least partially, clarified the mechanism how dis-
tance decay determines the community structure of spatial-
embedded networks. Considering that different travel activ-
ities such as flight travel, taxicab usage and walking depict
different extents of distance decay, a comparative analysis
of the distance decay effects of different transport modes as
well as the resulting community-structures will be of great
interest in the future. From a network-based perspective,
it will provide an intuitive way to uncover the hierarchical
structure of a city across various scales.

Finally, mobile phone activity as a proxy of underlying
population dynamics has largely stimulated urban analysis
in real-time. It provides a much-preferred tool than tradi-
tional methods based on static population distribution and
land use maps. Taking transportation analysis as an ex-
ample, mobile phone usages can be applied for estimating
road traffic volume, transport demands and OD matrices. In
past, cabdrivers almost adopt their passenger finding strat-
egy according to personal experience (and knowledge) or
recommenders based on, for instance, “hot” parking places
[25] and ad-hoc route finding algorithm [24]. Passenger rec-
ommenders and carpool services [15] usually take taxicab
or customer distribution into account exclusively. In the
context of this paper, we further propose to testify the rela-
tionship between mobile phone activity and taxicab traffic.

That is, if at a given place the mobile phone activities are
highly correlated to the number of taxicab trips, we can use
mobile phone data to predict the volume of potential taxicab
passengers in real time. It will greatly benefit cabdriver’s in-
telligence and real-time transportation system management.

6. CONCLUSION
In this article, we conduct a comparative analysis of hu-

man mobility patterns in Singapore based on two distinct
datasets: the mobile phone usages and the taxicab trajecto-
ries. Firstly, this analysis provides an explicit clarification to
the divergences in observed human mobility patterns based
on taxicab and mobile phone data. Secondly, it also pro-
poses an integrated approach of taxicab and mobile phone
usages for gaining more informative insights in population
dynamics, transportation and urban configuration.

Overall, mobile phone movements as a general proxy to
all kinds of human mobility has substantial different charac-
teristics to taxicab trip, which is just one of the frequently
used means of transportation. Spatially, the distribution of
ODs of taxicab trips and mobile phone movements are quite
different. Taxicab trips are more concentrated (in the down-
town area) and asymmetric than mobile phone movements.
In terms of distance decay, taxicab trips are constraint by
travel distance and time, and thus decay more slowly than
mobile phone movements. In terms of community structure,
taxicab trips largely reflect interactions between further-
separating locations compared to mobile phone movements,
resulting in emergence of larger spatially cohesive commu-
nities in Singapore. As a proposed integrated approach, the
ratio of taxicab trips and mobile phone movements between
two arbitrary locations in the city can shed light on underly-
ing land uses and help to predict taxicab demands between
the two locations.

Besides, in this paper we also present a brief discussion
about the potential works based on taxicab and mobile phone
usages. It can broaden our understanding of land use in-
ference and transportation analysis using taxicab and mo-
bile phone data. Among, a promising direction is to utilize
datasets with regard to human movements associating with
various transport modes to uncover the hierarchical commu-
nity structure of the city across various scales.
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[1] R. Ahas, A. Aasa, Ülar Mark, T. Pae, and A. Kull.

Seasonal tourism spaces in estonia: Case study with
mobile positioning data. Tourism Management,
28(3):898–910, 2007.

[2] D. Brockmann, L. Hufnagel, and T. Geisel. The
scaling laws of human travel. Nature,
439(7075):462–465, 2006.

[3] Z. Cheng, J. Caverlee, K. Lee, and D. Z. Sui.
Exploring millions of footprints in location sharing
services. In Proceedings of the 5th International AAAI



Conference on Weblogs and Social Media (ICWSM),
pages 81–88, 2011.

[4] E. Cho, S. A. Myers, and J. Leskovec. Friendship and
mobility: user movement in location-based social
networks. In Proceedings of the 17th ACM SIGKDD
international conference on Knowledge discovery and
data mining, KDD ’11, pages 1082–1090, New York,
NY, USA, 2011. ACM.

[5] E. B. Fowlkes and C. L. Mallows. A method for
comparing two hierarchical clusterings. Journal of the
American Statistical Association, 78(383):553–569,
1983.

[6] Y. Gao, P. Xu, L. Lu, H. Liu, S. Liu, and H. Qu.
Visualization of taxi drivers’ income and mobility
intelligence. In Advances in Visual Computing, pages
275–284. Springer, 2012.
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