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ABSTRACT

The vast amount of available spatio-temporal data of human activ-
ities and mobility has given raise to the rapidly emerging field of
urban computing/informatics. Central to the latter is understanding
the dynamics of the activities that take place in an urban area (e.g.,
a city). This can significantly enhance functionalities such as re-
source and service allocation within a city. Existing literature has
paid a lot of attention on spatial dynamics, with the temporal ones
often being neglected and left out. However, this can lead to non-
negligible implications. For instance, while two areas can appear
to exhibit similar activity when the latter is aggregated in time, they
can be significantly different when introducing the temporal dimen-
sion. Furthermore, even when considering a specific area X alone,
the transitions of the activity that takes place within X are impor-
tant themselves. Using data from the most prevalent location-based
social network (LBSN for short), Foursquare, we analyze the tem-
poral dynamics of activities in New York City and San Francisco.
Our results clearly show that considering the temporal dimension
provides us with a different and more detailed description of ur-
ban dynamics. We envision this study to lead to more careful and
detailed consideration of the temporal dynamics when analyzing
urban activities.

Categories and Subject Descriptors

H.2.8 [Database Applications]: Spatial databases and GIS; H.2.8
[Database Applications]: Data mining; H.4 [Information Sys-
tems Applications]: Miscellaneous

General Terms
Urban Data Analytics, Urban Computing

Keywords

Urban Activity, Temporal Dynamics, Location-based Social Net-
works
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1. INTRODUCTION

The proliferation of location-based services has provided us with
an abundant source of data that can serve studies in a number of
different disciplines. Typically the information encoded from these
systems includes (i) social connections among the users, as well
as, (ii) spatial trails of the users. The latter is a timestamped list
of locations that the user has visited. Often a LBSN does not con-
tinually track locations but relies on users to voluntarily share their
whereabouts through check-ins. Locations can be either a tuple of
latitude-longitude or the actual venue that was visited (or both).
Knowledge of the actual place that users have checked-in provides
additional semantic information that is crucial in understanding the
nature and dynamics of the activity that takes place in a geograph-
ically constrainted area. Based on the fype of check-ins within
an area, that is the type of places people visit, we can obtain the
area’s activity profile. In this paper, we will utilize a dataset from
Foursquare, the major LBSN to date, in order to understand (a) the
temporal transitions of activity profiles for a given area, as well as,
(b) the temporal dynamics of clusters of geographic areas based on
their activity profiles.

Having a model that captures the spatio-temporal dynamics of
the activity that takes place in an area is of extreme importance
for the city management. While there has been a large volume of
studies on the statistical properties of urban mobility (e.g., prob-
ability of displacement etc.) utilizing cell phone data - e.g., [14,
17, 5, 2, 3, 8, 10] to name only a few - these models, while ac-
curate at describing the actual patterns, cannot capture the reasons
for why these patterns emerge in the first place. Knowledge of the
latter can facilitate urban planners into understanding how people
act and interact in the city. For instance, putting unexpected road
congestion instances into the context of urban activities can pro-
vide intuition on their causes and possible solutions (e.g., advices
on how to change the city layout and the contextual structure of
neighborhoods). Hence, it is crucial to place human mobility into
the context of activities that people engage in a city and develop
models for the spatio-temporal dynamics of urban activity. To reit-
erate, in this work we seek to emphasize on the importance of the
temporal dimension for modeling urban activity.

Recent studies have analyzed similar data sources to identify dy-
namics of both users and areas activity. For instance, users’ check-
in properties and mobility patterns have been studied in [4, 13, 14,
17, 5]. More recent research, such as [16, 7, 12, 18, 1], combines
different sources of data (e.g., GPS data, cell-phone data, check-in
data etc.) in order to study urban dynamics. More closely related
to our preliminary study, Noulas et al. [15] have examined geo-
graphical clustering based on the aggregated activities in an area,
while Cranshaw et al. [6] redefine the notion of a neighborhood
by considering the dynamics of the activities that take place in a



city. However, the temporal dynamics are absent. In other words,
the activity that takes place within a geographic area is considered
in aggregate, with no temporal distinction. While this simplifies
the data processing, it essentially assumes that the cumulative ac-
tivity profile of an area is constant during the course of a day or
even across days. This leads to an aggregate/average only view of
the spatial dynamics and as we demonstrate in this paper a more
detailed and realistic view of urban dynamics can be obtained by
incorporating the time dimension. To the best of our knowledge,
Yuan er al. [18] are the only ones to have implicitly incorporate
the time dimension in their analysis of functional regions of a city'.
In particular, they consider in their model the arrival and departure
times of people to/from an area.

The rest of the paper is organized as follows. Section 2 describes
our urban activity model. Section 3 presents our temporal analysis
results, while Section 4 concludes our work and discusses future
directions.

2. DATASET AND ANALYSIS SETUP

Dataset: To perform our study we utilize a dataset collected by
Cheng et al. [4] that includes geo-tagged user generated content
from a variety of social media. More specifically, this dataset in-
cludes location information that was pushed from a variety of ap-
plication to Twitter’s public feed between September 2010 and Jan-
uary 2011. Each tweet includes location information in the follow-

ing format: <userID, tweetID, text, location, time,

venue ID>. There are 22,506,721 tweets in total. From those we
initially filter out tweets that have not originated from Foursquare
and this provides us with a dataset of 11,726,632 Foursquare check-
ins pushed to Twitter.

Foursquare associates with each venue v a category c(v) (e.g.,
restaurant, school etc.). This classification is hierarchical, in the
sense that an Italian restaurant belongs to the category “Italian restau-
rant”, which can belong to the higher level category “Restaurants”,
which can itself belong to the category “Food” and so on. At the
top level of the hierarchy there are 9 categories, namely, Arts & En-
tertainment, College & University, Food, Nightlife Spots, Outdoors
& Recreation, Professional & Other Places, Residences, Shops &
Services and Travel & Transport. Our original dataset did not in-
clude the category information for the venues, so we have crawled
Foursquare.com and obtained the required mapping.

Analysis setup: In our analysis we focus on two cities, New
York City (NYC) and San Francisco (SF)?. In particular, we con-
sider all the check-ins in our dataset that took place in a rectangle
area of 10 miles?, centered at the city centers. This corresponds
to 277,503 and 82,435 check-ins respectively. We further divide
these city-wide areas in a grid of 400, equally-sized, neighborhood
areas (rectangles of 0.5 miles? each). The numbering of the areas
begins at the bottom left grid point, i.e., area 1, and exactly above
this point is area 21. The last area 400 is at the top right grid point.

Similar to [15], each one of these neighborhood areas n, can be
associated with an activity profile vector @, based on the type of
check-ins that take place within the “neighborhood”. Since there
are 9 (top level) categories in Foursquare, a, € R and its it"
element is:

'Of course there exist other studies that have included temporal dy-
namics in various granularities (e.g., [17] [5]), but not in the context
we are examining, that is, urban activity modeling.

%For illustrative purposes we will also visualize some of the results,
mainly for NYC due to space limitations, on a map.
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Simply put, each element ¢ of the activity profile vector of an area
n is essentially the fraction of all the check-ins in n that belong to
category <. Note here that, &, discards information related with
the actual volume of activity within the area. However, it captures
the behavior of the area with regards to the type of check-ins that
take place within it. Furthermore, the above activity vector does
not include any timing information and considers all the check-
ins in aggregate. Hence, by grouping the check-ins based on the
time period they took place we can have a time-dependant activity
profile vector a_,l)(t). In our study we consider three coarse-grain
time periods, that is morning (4am-12pm; ¢,,), afternoon (12pm-
8pm; t,), evening (rest; t.), and hence each area n is associated
with three temporal vectors, o (tm), o (ta), o (te). While we
acknowledge that a different time division would probably provide
different absolute results, we would like to emphasize on the fact
that our goal is to demonstrate the importance of temporal dynam-
ics>. In this sense, we pick the above time division, since it rep-
resents a fair division in equal time periods, with noon separating
morning and afternoon.

3. TEMPORAL ANALYSIS OF AREA AC-
TIVITY

In this section we will examine various aspects of the temporal
dynamics in urban activity, considering both each neighborhood
area in isolation, as well as in conjunction with the other parts of
the city. In particular, we begin by examining how the volume and
the type of activity within an area change across the three coarse-
grain time periods we consider. Then using &, as the feature vector
of every area we identify clusters of neighborhoods with similar
activity and we study the way that the clusters change over time.

Temporal changes in activity volume: For each one of the
neighborhood areas on the grid in our analysis, we first calculate
the total number of check-ins in this area. Figure 1 depicts the geo-
graphical distribution of the aggregate check-ins in NYC, where the
white squares correspond to areas with less than 30 check-ins. The
darker the area, the more check-ins have been generated there. As
we can see most of the check-ins are in Manhattan, and especially
midtown (the area around Time Square has the maximum number
of check-ins, 13,927) and downtown areas.

We further examine the variation of the activity volume within
areas and across time as captured through the number of check-
ins. In particular, we follow exactly the same process as above,
but now instead of considering all the check-ins in aggregate, we
only consider check-ins that took place in each of the three defined
time-periods. As we will see, even this simple aggregate statistic,
varies significantly across time, supporting the importance of time
in characterizing the urban pulse. Figure 2 presents a heatmap for
the distribution of the check-in volume in NYC during the three
time periods in our setting. As we can see, there are some differ-
ences on which areas concentrate the majority of the activity over
the three different time-periods. In other words, different parts of
the city appear to be more popular over different times. Further-
more, the absolute values of the number of check-ins show that

3We further recognize that weekends and weekdays should also be
treated separately, since the activity dynamics are expected to be
different.
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Figure 1: A heatmap of the distribution of the aggregate volume of check-ins in different neighborhood areas of New York City.

people are more actively check-ing during the afternoon.

For each one of the neighborhood areas on the grid, we have also
computed the fraction of the check-ins that took place within this
area for each one of the time periods we consider. Figure 3 presents
our results for both cities (the stacked bar for areas that have less
than 30 check-ins is left blank). As we can notice, the volume of the
activity is not uniformly distributed across time. Furthermore, this
distribution differs across neighborhood areas too. In other words,
there exist areas for which the mass of the activity takes place in
the morning (e.g., areas 88, 140, 174, 203, 219 in NYC and 17 in
SF), in the afternoon (e.g., 24, 36, 59, 76, 87, 162, 191, 211, 224
and 227 in NYC and 3, 4, 10, 28, 43, 55, 66, 79, 91, 111 and 120
in SF) or in the night (e.g., areas 8 and 220 in NYC). We have fur-
ther overlaid the above information for NYC on a map (Figure 4).
These maps are different from the previous heatmaps. Here, the
gray scale of each grid point, corresponds to the fraction of check-
ins in this grid that took place during the corresponding time (to
reiterate, it is simply an overlay of the stacked bars of Figure 3 on
a map for better visualization). For instance, let us consider the
area in the red ellipse. This area is near the Statue of Liberty and
as we can see it attracts more check-ins/visitors during the daytime
(morning and afternoon) as compared to night time. Furthermore,
areas in the red rectangle are more active during the night, since
these are areas that includes mainly bars. While this might have
been expected, it strongly reinforces the claim that time is impor-
tant for characterizing the activity that takes place in a geographical
area.

To further delve into the details of the temporal variations in ac-
tivity volume within an area, we have clustered the grid neighbor-

hoods* with regards to the 3-dimensional vectors of their temporal
activity volume distribution. We use spectral clustering [11], with
the 10-nearest neighbor similarity graph where we use the cosine
similarity as the similarity metric. Given two vectors w7 e R,
the latter is defined as:

COS = ﬁ7
) = T @

We further apply the eigengap heuristic to decide on the number
of clusters. Spectral clustering identified 7 clusters in NYC and 9
in SE. The centroids of each cluster are presented in Table 1. In
parenthesis we also provide the number of areas that fall in the
corresponding clusters.

[ Cluster ID || Centroids NYC Centroids SF
0 (0.21,0.54,0.25) (42) | (0.13,0.41,0.46) (14)
1 (0.28,0.37,0.35) (38) | (0.30,0.61,0.09) (15)
2 (0.65,0.27,0.07) (18) | (0.08,0.56,0.36) (17)
3 (0.12,0.50,0.37) (33) | (0.19,0.51,0.30) (14)
4 (0.32,0.53,0.15) (44) | (0.51,0.40,0.08) (12)
5 (0.10,0.34,0.56) (30) | (0.31,0.44,0.25) (13)
6 (0.12,0.73,0.15) (24) | (0.14,0.78,0.07) (18)
7 - (0.23,0.57,0.20) (11)
8 - (0.11,0.67,0.22) (10)

Table 1: Centroids of the different clusters of areas with re-

gards to the temporal activity volume distribution.

“We focus on the areas with more 30 check-ins in total.
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Figure 3: The activity volume of an area is not uniformly distributed across time and different areas have different activity volume

temporal distributions.

As we can see NYC exhibits seven basic types of areas with re-
gards to the time when activity takes place. For instance, among
others, there are areas that are active only during morning and af-
ternoon hours (cluster 2) and areas that are active mainly during
the afternoon (cluster 6). On the contrary, there is a little larger
variety of neighborhoods in SF. For instance, areas that belong to
cluster 2 are primarily areas that are active during the afternoon
and evening, while areas that belong to cluster 5 have their activ-
ity more uniformly distributed across the day. As another example,
neighborhoods of cluster 6 exhibit most of their activity during the
afternoon hours. Figure 5 visualizes the distribution of clustered
areas. As we see, cluster C4 in NYC contains areas that have their
activities mainly in the morning and afternoon, which is consistent
with the areas in the red ellipse in Figure 4(a) and 4(b). Also, ar-
eas in the red rectangle in Figure 4(c) belongs to the same cluster
CS (full of nightlife spots), which exhibits most of their check-ins
during the evening. Note here that while we have used a common
color-code for the clusters at NYC and SF, the details of the clusters
in the two cities are different (see Table 1).

However, note here that this is only one view of the temporal
dynamics related with the activity volume. For instance, areas in
NYC cluster 2 (C2 for short) are mainly active during the morning,
but this does not mean that they all exhibit the same type of activity.
Area x € C2 can be dominated by office buildings, while y € C2
might be dominated from residence buildings and/or malls. In the
following, we will examine the temporal dynamics of the type of
activity that takes place in these urban areas.

Temporal dynamics of activity profile within an area: As
aforementioned, a grid neighborhood n is associated with an activ-
ity profile vector @,,. The actual temporal dynamics of the activity
that takes place within an area, can be captured through the changes
in the activity vectors with time. A traditional metric that is used for
quantifying the similarity between two vectors is the cosine similar-
ity as introduced above in Equation 2. Hence, we can examine the
similarity between the aggregate (@), morning ((Jz_,,z(t,,n)), after-
noon (OTn> (to)) and evening (OTn> (te)) vectors of area n. Given that
the elements of the activity profiles as defined are non-negatives,
their cosine similarity will be taking values in the interval [0,1].

Figure 6 depicts our results for both cities. In particular, for every
area with more than 30 check-ins in total, we compute the cosine
similarity among all possible pairs of its above four activity profile
vectors (six pairs in total). As we can see, while there exist sta-
ble areas, that is, large cosine similarity among the activity vectors,
there is a significant fraction of areas whose pairwise activity vec-
tor similarities exhibit small values. This means that the activity
profiles of these neighborhoods change over time and hence, one
aggregate vector cannot capture the underlying temporal dynam-
ics.

Spatio-temporal, activity-based clustering of urban areas: In
what was presented above, we examined the temporal dynamics of
each neighborhood in isolation. However, many applications re-
quire to identify areas that exhibit similar activity. This knowledge
can facilitate services such as better municipal resource allocation
and urban development. It can also enable commercial applications
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Figure 5: Visualization of the clusters in Table 1. Areas with less than 30 check-ins are not labeled.

such as spatial recommendations. Given that the activity of an area
is not stable over time, clusters of similar neighborhoods can also
change.

Hence, we study how clustering of areas based on their activity
vectors change over time. In particular, using again spectral clus-
tering with the same set up as above, we cluster areas in NYC and
San Francisco using as feature vectors their activity profiles. We
identify clusters using the aggregate activity vectors and then com-
pare the memberships in the clusters identified, with those that are
derived when considering the three temporal activity vectors. Table
2 presents the number of clusters that were identified in every case.
‘We further provide information for these clusters in the Appendix.

As we can see, even simply the number of groups of similar ac-
tivity areas that are identified changes depending on the time of the
day we are examining. We specifically want to examine pairs of
areas that (do not) belong to the same cluster when considering the
aggregate activity profiles. In particular, given that two areas x and
y, belong to the same “aggregate” cluster C;', we want to calculate
how many times they fall into the same temporal clusters (morn-

an | an(tm) | anfta) | anifte)
NYC || 8 9 13
SF [10] 5 4 10

Table 2: Number of clusters identified for different times of the
day.

ing, afternoon, evening). If Z is the variable representing the above
number then Z € {0, 1,2, 3}. The higher the value of Z, the better
the aggregate activity profile vector describes the two areas. Using
our datasets we calculate the empirical probability mass function
of Z, thatis, Pr{Z = z}.

Similarly, we consider pairs of areas that do not belong to the
same “aggregate” clusters, and we examine how many times they
fall in the same temporal clusters. Denoting this variable with W,
we see that again W € {0,1,2,3}, and we further compute the
empirical probability mass function for W as well (Pr{W = w}).

Figure 7 presents our results. As we can see, there is a signifi-
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Figure 7: There is a large number of areas similar on aggre-
gate but completely different in smaller time scales (Z small).
On the contrary, there is a significantly smaller fraction of ar-
eas that are not similar on aggregate, but exhibit similarity in
smaller time scales (11 large).

cant portion of area-pairs, that exhibit Z=0 and Z=1 - especially for
NYC. This means, that these areas, while they appear to be similar
on aggregate, they rarely - if at all - obtain the same cluster la-
bel during the morning, afternoon or evening hours. Furthermore,
while the majority of the pairs of areas that do not belong to the
same “aggregate” cluster, they also never lay in the same temporal
cluster (i.e., W = 0 has the more than 60% of the probability mass
for variable W), there is a small fraction of pairs that appear similar
in smaller time scales.

While we acknowledge that part of these results might have been
affected from the clustering operations (e.g., the accuracy of the
eigengap heuristic etc.), they clearly indicate that one should defi-
nitely consider the temporal dimension when examining urban ac-
tivity.

4. DISCUSSION AND FUTURE DIRECTIONS

In this paper, we examine the temporal dynamics of urban ac-
tivity. In particular, our main finding indicates that when studying
urban dynamics we need to consider both space and time dimen-
sions. While this might sound obvious, it has been largely ignored
in existing literature and we further support it through a number of
different results obtained from a rich Foursquare dataset.

We would like to emphasize here on the fact that similar studies,
which utilize check-in information (or in general any other type
of social media data) for studying urban dynamics are possible to
suffer from a variety of biases. For instance, there can be demo-
graphic biases, since similar datasets capture mainly the behavior
of a specific population (e.g., “tech savvy” people, who are usually
the younger people). Furthermore, the quality of the datasets de-
pends on many other factors. Virtual and real-world rewards can
lead to people generate fake check-ins [9, 19], while the voluntary
nature of check-ins can provide us with an “under-sampled” dataset
of the urban activities.

Despite the above potential biases, check-in data are still a valu-
able source of information, especially as location-based services
are becoming more prevalent. In the future, we plan to investi-
gate and model fine-grain temporal urban activity dynamics in a
greater detail. In particular, we seek to provide a generic analyti-
cal framework based on time-series clustering and network analysis
that could be tuned and applied in a variety of settings/applications.
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APPENDIX

Tables 3-6 show the centroids of the clusters identified both in the
aggregate setting as well as in the three defined time-periods, while
Figure 8 further visualizes the clusters for NYC - again we have
used a common color-code even though for example the details of
cluster CO in the aggregate setting are different compared to CO for
the afternoon. Going back to the two areas, laying in the red el-
lipse in Figure 4(a) and 4(b), we see that they are classified into the
aggregate cluster C5 which is dominated by 66.0% Outdoors activ-
ity. They also belong to C8 (64.0% Outdoors) in the morning, and
C3 (67.1% Outdoors) in the afternoon. However, in the evening,
they are separated into C5 and C7; the latter exhibits totally differ-
ent activities with Art venues being dominant (64.4%). As another
more interesting example, the six areas in the red rectangle of Fig-
ure 4(c) are classified into clusters C2 and C6 when considering
aggregate activities. From Table 3, we can see C2 is dominated
by 38.3% Food and 14.7% Nightlife, while C6 is 14.5% Food and
50.0% Nightlife. The interesting thing is that these areas shift the
main activity from Food to Nightlife from daytime to nighttime. In
the morning, four of these six areas belong to cluster C3 (68.5%
Food, 4.8% Nightlife), one in C4 (12.9% Food, 64.9% Nightlife)5
and one in C6 (6.3% Food, 1.8% Nightlife). In the afternoon, three
of them belong to clusters C4 (44.1% Food, 21.9% Nightlife), two
in C5 (76.2% Food, 4.3% Nightlife) and one in C7 (14.3% Food,
65.2% Nightlife). Finally, in the evening, three of them belong to
CO0 (17.0% Food, 49.6% Nightlife), two in C4 (33.7% Food, 32.0%
Nightlife) and one in C6 (2.0% Food, 63.1% Nightlife). It should
be clear that considering the temporal dimension can give a much
more detailed view of the urban activity dynamics.

5This cluster includes a large percentage of nightlife venues, but
many of the venues that are classified as such are “cafe/bars” that
are also possibly open during the morning serving coffee and break-
fast.



[ Cluster ID ]| Arts | College | Food [ Nightlife | Outdoors | Professional | Residence | Shops | Travel |

0 1.6% 0.5% 19.3% 4.1% 3.3% 4.1% 3.2% 56.5% | 7.3%
1 2.6% 0.3% 7.8% 3.5% 0.9% 60.1% 6.7% 74% | 10.6%
2 5.7% 7.5% 38.3% 14.7% 5.3% 8.3% 4.3% 11.0% | 5.0%
3 60.0% 1.3% 8.7% 4.0% 6.0% 10.2% 1.7% 4.3% 4.1%
4 1.2% 0.5% 7.8% 1.5% 5.8% 3.9% 5.2% 6.1% | 68.0%
5 6.8% 0.1% 9.3% 3.1% 66.0% 5.6% 3.2% 2.1% 3.9%
6 9.4% 0.2% 14.5% 50.0% 5.8% 3.1% 3.7% 4.0% 9.2%
7 3.7% 0.0% 8.0% 6.4% 2.3% 8.4% 67.3% 5.4% 1.8%

Table 3: Centroids of the different activity clusters with regards to the aggregate activity vectors.

[ Cluster ID ]| Arts | College | Food [ Nightlife | Outdoors | Professional | Residence | Shops | Travel

0 0.3% 0.7% 14.1% 0.2% 1.8% 4.0% 4.5% 68.4% | 6.0%
1 66.5% 0.1% 3.8% 3.2% 16.3% 4.4% 0.9% 2.7% 2.1%
2 2.5% 3.1% 4.3% 0.5% 2.6% 66.4% 3.4% 6.3% | 10.9%
3 3.4% 1.3% 68.5% 4.8% 4.5% 2.1% 1.5% 7.8% 6.3%
4 4.1% 0.0% 12.9% 64.9% 2.6% 7.8% 4.4% 1.0% 2.3%
5 0.2% 1.4% 11.8% 1.4% 12.3% 7.4% 53.9% 9.5% 2.0%
6 1.9% 5.6% 6.3% 1.8% 4.7% 2.0% 3.0% 8.4% | 71.4%
7 6.9% 11.7% | 24.9% 2.9% 6.2% 24.9% 1.7% 15.8% | 5.0%
8 2.0% 0.1% 6.3% 1.4% 64.0% 6.2% 3.4% 5.0% 4.0%

Table 4: Centroids of the different activity clusters with regards to the morning activity vectors.

[ Cluster ID ]| Arts | College | Food [ Nightlife | Outdoors | Professional | Residence | Shops | Travel

0 3.1% 549% | 18.6% 3.7% 2.5% 4.5% 3.1% 5.2% 4.4%
1 1.6% 0.5% 20.1% 7.5% 2.8% 8.6% 3.1% 12.4% | 43.5%
2 61.8% 0.3% 4.7% 10.5% 11.1% 6.7% 1.2% 1.5% 2.0%
3 7.1% 0.4% 7.6% 3.4% 67.1% 5.1% 2.0% 1.7% 5.8%
4 3.2% 1.0% 44.1% 21.9% 5.2% 5.1% 3.7% 12.0% | 3.8%
5 0.6% 0.1% 76.2% 4.3% 2.7% 3.4% 5.8% 2.8% 4.0%
6 0.8% 1.1% 5.7% 1.2% 4.6% 4.7% 2.2% 75.5% | 42%
7 7.0% 0.0% 14.3% 65.2% 1.6% 3.9% 3.8% 2.6% 1.6%
8 2.2% 0.8% 1.4% 1.3% 6.1% 2.1% 3.2% 2.9% | 80.1%
9 3.5% 0.5% 18.3% 1.3% 2.1% 50.5% 6.2% 122% | 5.5%
10 5.5% 1.4% 33.7% 6.2% 7.7% 4.9% 3.5% 32.5% | 4.6%
11 31.7% 2.7% 31.1% 7.1% 3.4% 5.4% 2.5% 132% | 3.0%
12 0.2% 0.0% 8.2% 4.3% 4.7% 5.0% 65.9% 5.2% 6.4%

Table 5: Centroids of the different activity clusters with regards to the afternoon activity vectors.

Cluster ID Arts College | Food | Nightlife | Outdoors | Professional | Residence | Shops | Travel
0 1.2% 0.3% 17.0% 49.6% 3.0% 1.7% 11.8% 4.1% | 10.7%
1 2.0% 0.0% 6.1% 1.2% 5.3% 2.0% 2.8% 4.6% | 75.8%
2 1.2% 0.0% 13.3% 2.5% 1.7% 18.9% 5.1% 54.5% | 3.1%
3 0.3% 1.2% 6.7% 4.1% 2.6% 3.5% 73.5% 1.8% 6.3%
4 8.6% 4.1% 33.7% 32.0% 3.4% 3.0% 5.0% 6.3% 4.4%
5 3.1% 1.3% 8.3% 3.8% 65.2% 3.6% 3.7% 6.2% 6.1%
6 9.3% 0.7% 2.0% 63.1% 2.0% 0.7% 1.7% 2.9% 2.4%
7 64.6% 0.2% 8.8% 7.1% 6.1% 5.1% 1.6% 3.0% 3.4%
8 2.7% 0.1% 63.8% 2.0% 3.8% 3.3% 10.0% 7.3% 7.1%

Table 6: Centroids of the different activity clusters with regards to the evening activity vectors.




