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ABSTRACT

With the advent of location-based social media and location-
acquisition technologies, trajectory data are becoming more
and more ubiquitous in the real world. Trajectory pat-
tern mining has received a lot of attention in recent years.
Frequent sub-trajectories, in particular, might contain very
usable knowledge. In this paper, we define a new trajec-
tory pattern called frequent sub-trajectories with time con-
straints (FSTTC) that requires not only the same continu-
ous location sequence but also the similar staying time in
each location. We present a two-phase approach to find
FSTTCs based on suffix tree. Firstly, we select the spatial
information from the trajectories and generate location se-
quences. Then the suffix tree is adopted to mine out the
frequent location sequences. Secondly, we cluster all sub-
trajectories with the same frequent location sequence with
respect to the staying time using modified DBSCAN algo-
rithm to find the densest clusters. Accordingly, the frequent
sub-trajectories with time constraints, represented by the
clusters, are identified. Experimental results show that our
approach is efficient and can find useful and interesting in-
formation from the spatio-temporal trajectories.

Categories and Subject Descriptors

H.4 [Information Systems Applications]: GIS; D.2.8
[Database Management]: Spatio-temporal Database—
Data Mining, Trajectory

General Terms
Algorithms
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With the advent of location-based social media and location-
acquisition technologies, large amount of trajectory data sets
have been collected. Trajectories represent the sequences of
spatio-temporal records of moving objects. Varieties of tra-
jectory data are collected from mobile sensors like GPS on
the taxis, LBS APPs etc. Accordingly, effective analysis of
trajectory data has been a crucial topic aiming at finding
useful knowledge from the big data sets. A trajectory is a
sequence of spatio-temporal records of a moving object [14].
Frequent sub-trajectories (FST), namely the frequent sub-
sequences of spatio-temporal records of moving objects, are
the sub-trajectories contained by many different trajecto-
ries. In this paper, we address the frequent sub-trajectories
as the spatio-temporal sequences which could be employed
in finding or predicting the behaviors of moving objects.

The location information of each record in a trajectory
could be represented as the numerical values or symbols.
For example, the location information of hurricane trajec-
tories and taxi trajectories is represented as longitude and
latitude [12]. While the location information of trajectories
collected from social media might be the city name or re-
gion’s name',or preprocessed towards that format [25]. If
the location information are the numerical values, we could
use geometric shape matching techniques such as Fréchet
distance to find FST [2]. However, the computation cost is
very expensive in this way. If the location information are
symbols, one trajectory can be treated as an alphabetical
sequence (or a string). On the one hand, this kind of rep-
resentation makes it easy to apply efficient string-matching
algorithms instead of expensive shape-matching algorithms
and previous work proved the effectiveness of these algo-
rithms in the data mining community [4] [5]. On the other
hand, the extendability to other data sets could be guaran-
teed since previous work showed that numerical represen-
tation could be transformed into string representation effi-
ciently [24]. In terms of FST, we can use suffix tree to find
it in linear time. In this paper, the location information is
the city name which can be represented by a symbol.

There is also temporal information attached to each record.
The temporal information could be the time stamp or the
time interval for staying at each location. In this paper, we
use the staying time for each city which is defined as the
time interval from the first microblog appeared in this city
to the first microblog appeard in the next city. If we con-
sider temporal information in finding FST, the results could
be more interesting. For example, we have two trajectories
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with staying time information:

15hours 3.5hours

Beijing ——— Shanghai ——— Jiazing (a)

Nanjing 28hours, Huangshan 2hours, Hangzhou (b)

Here, sequence (a) shows the staying time at Shanghai is
only 3.5 hours and it may be interpreted as a typical be-
havior of businessman taking a business trip from Beijing
to Jiaxing by interchanging at Shanghai. Sequence (b), in-
stead, may highlight the behavior of tourists travelling at the
major scenic spots around the Yangtze River Delta. There-
fore, we need to find FST not only with the same location
sequence but also with the similar staying time in each loca-
tion. We call those kind of F'ST as frequent sub-trajectories
with time constraints (FSTTC). It seems that we can map
the staying time to symbol so that we can use suffix tree
to find FSTTC. For example, we can map staying time 1-2
hours to letter “A” and 2-3 hours to letter “B”. However,
in this way, the staying time 1.9 hours and 2.1 hours are
different. But in reality, we know they are very close and
should be treated as one cluster. Hence in this paper we
propose a two-phase approach to find FSTTC. Firstly, we
project the trajectories to location sequences and exploit
suffix tree algorithm to find the FST. Secondly, we load all
sub-trajectories which belong to one FST with the staying
time information as the candidate sub-trajectories. Then we
cluster all the candidate sub-trajectories to find the densest
clusters with respect to the staying time. The final FSTTCs
are those on the center points of the dense clusters.

To sum up, the contributions presented in this paper are:

1. The definition of a new trajectory pattern, a.k.a. FSTTC.

2. We exploit suffix tree to find FST.

3. We proposed a two-phase approach to find FSTTC.
Since clustering (the second phase) is relatively more
expensive, we prune all sub-trajectories of which the
location sequences are not frequent after the first phase.

4. When calculating the distance between different tra-
jectories in the second phase, we regard the locations
as the coordinate axes and the stay time as the values
of each axis, and then use the Euclidean distance to
measure the distance.

The rest of the paper is organized as follows. In the next
section we review the related works. In Section 3 we give
some preliminary definitions. The two phases of our algo-
rithm will be introduced in Section 4 and Section 5, respec-
tively. In Section 6 we report the data set and the experi-
ment results and in Section 7 we conclude our work.

2. RELATED WORK

In this section we summarize some relevant work within
the context of trajectories analysis and string matching al-
gorithms.

2.1 Trajectories Analysis

Trajectory Clustering Clustering is a substantial re-
search topic in the data mining community. Influential clus-
tering algorithms include DBSCAN [6], OPTICS [1], k-means
[15] etc. Specifically to trajectory clustering, recently there
has been considerable research in the area of analyzing and

modeling spatio-temporal data. Gaffney et al. proposed a
model-based algorithm clustering trajectories 7] [8]. They
adopted a regression mixture model to represent the trajec-
tories and conducted unsupervised learning using the max-
imum likelihood principle. Their work showed how EM al-
gorithms could be adopted in trajectory clustering. The
application of their framework in climate trajectories indi-
cate that their approach outweigh traditional vector-based
approaches. Their work was one of the earliest attempt in
trajectory clustering. However they clustered the whole tra-
jectories instead of sub-trajectories.

Lee et al. observed clustering the whole trajectory might
miss some similar portions of the trajectories [12] . There-
fore, the common sub-trajectories play a substantial role
in many real world applications. Based on this observation
they proposed the partition-and-group framework and devel-
oped a density-based line-segment clustering algorithm TR-
ACLUS [12] .In TRACLUS, a trajectory is partitioned into a
set of line segments at characteristic points, and then, simi-
lar line segments in a dense region are grouped into a cluster.
The main advantage of TRACLUS is the discovery of com-
mon sub-trajectories from a trajectory database. Van Krev-
eld and Luo [20] considered the problem of sub-trajectory
similarity measurement with time shift. The work in [3] im-
proved the similarity measurement from the perspective of
runtime. Buchin et al. addressed the problem of detecting
commuting patterns with a sub-trajectory clustering based
approach [2]. They proposed a Fréchet distance based al-
gorithm to measure the distance between sub-trajectories.
Their experimental results show that the problem of finding
the longest sub-trajectory cluster is as hard as MaxClique
problem to compute and approximate.

Trajectory Pattern Mining Vautier et al. [21] pro-
posed a method to extract temporal information in the form
of patterns named chronicles which contain numerical tem-
poral constraints on events. The work in [11] extended con-
ventional sequential pattern mining considering not only the
orders of events indicated by the time stamps but also the
time intervals. They defined projection levels and extended
sequences with the time intervals as prefixes and postfixes
to handle the temporal information. Giannotti et al. intro-
duced trajectory patterns as concise descriptions of frequent
behaviors, in terms of both space and time [9]. They used
the neighborhood functions to model the Regions-of-Interest
and proposed algorithms based on this and proposed various
algorithms to mine out the patterns. One major feature of
these works is that they considered the problem of trajec-
tory pattern mining as an extension of traditional sequential
pattern mining and association rule mining. Though very
similar, we still need to emphasize that FSTTC is differ-
ent from these patterns since FSTTC requires the locations
sequences to be continuous in corresponding original trajec-
tories while other patterns do not have this requirement.

The work in [24] considered the problem of trajectory pat-
tern mining from the perspective of users. They proposed
a two-phase framework called LP-Mine. In the modeling
phase, they preprocess the trajectories to spatio-temporal
sequences and in the mining phase they applied some tradi-
tional association rule mining algorithms to find the patterns
corresponding to users behaviors and habits. Mamoulis et al.
considered the problem of mining periodic patterns patterns
in spatio-temporal data sets [16]. They argued that these
patterns could facilitate data management significantly.



Mining Location History Multiple users’ location his-
tory data sets convey a lot of knowledge. Using GPS tra-
jectories generated by multiple users, Zheng et al. proposed
a HITS-based inference model to mine the interesting loca-
tions and travel sequences. They constructed a graph to
connect individuals and locations with weighted links [27].
In [26], the concept of LBSN (Location-Based Social Net-
work) was defined. LBSN bridges the gap between physical
network and the internet of things. Location-based social
media plays a substantial role in people’s daily life and the
trajectory data sets behind it convey a lot of knowledge. [26]
also argued the importance of modeling the locations histo-
ries effectively. For instance, the work of [23] [13] conducted
user similarity analysis based on location history.

2.2 String-Matching Algorithms

Suffix tree is a popular string algorithm, widely used in
finding common substrings, repeated substrings, substring
matching etc. It was originally proposed in [22]. Ukkonen
proposed an online algorithm which constructs a suffix tree
in linear time [19]. When comparing with KMP (Knuth-
Morris-Pratt Algorithm), another widely-used string algo-
rithm, suffix tree outweighs KMP [18, 17] when we need
to utilize the tree to find substrings for more than one time.
Within the context of trajectory mining, string-matching al-
gorithms provide an efficient solution since it can speed up
the computation significantly compared to shape-matching
algorithms and traditional clustering algorithms (ie. DB-
SCAN [6]). The work in [4] argued the effectiveness of string-
matching algorithms utilized in trajectory mining. However,
suffix tree is always adopted in exact matching. When it
comes to the numerical values like the staying time at each
place, exact matching can hardly be exploited.

Note that we need to handle multiple strings in this pa-
per instead of just one string. In this case we can build a
generalized suffix tree (GST) which is a suffix tree for a set
of strings [10]. Given a set of strings D = {S1,S2,...,Sa}
of total length n, a GST can be built in O(n) time adopting
Ukkonen’s approach while the naive approach for construct-
ing a suffix tree needs O(n®) time. Ukkonen’s algorithm is
an online algorithm and it speeds up the construction to
O(n) by introducing two indices and suffix link [19]. The
number of nodes in a suffix tree is O(n). Once a suffix tree
is successfully constructed, finding the specific pattern only
needs O(p) where p is the length of the pattern which is
usually much smaller than n.

3. PRELIMINARY DEFINITIONS

A trajectory is a spatio-temporal sequence of records for
moving objects [14]. In this paper, we define a trajectory as
follows:

DEFINITION 1. Trajectory 7 = {(s1,t1), (s2,t2), (s3,t3),
vy (Sn—1,tn—1), (sn)}, where t; > 0. Here s; represents a
location and t; represents the staying time at location s;.

A location sequence (LS) is a sequence of locations with-
out time information.

DEFINITION 2. Location Sequence LS = {s1, s2, s3, ...,
sn,1,5n}. LS(7) is the location sequences contained in tra-
jectory T.

4. COMPUTING LOCATION SEQUENCES

In our two-phase approach, we should firstly compute
the location sequences to generate frequent sub-LSs so that
candidate sub-trajectories for the second phase could be
identified. A major advantage of this phase is to reduce
the clustering workload in the second phase by pruning the
non-competitive sub-trajectories using solutions in the first
phase.

4.1 Location Sequences(LS) Generation

If we cluster the trajectories directly (using DBSCAN as
an example), the time complexity is at least O(k*) where
k is the number of trajectories. When it comes to sub-
trajectory clustering, since the number of sub-trajectories
could be O(n?) where n is the total length of all trajecto-
ries, the time complexity could be O(n*), which is definitely
too expensive. Fortunately, a sub-trajectory which does not
belong to FST can not be the candidate of FSTTC. There-
fore we can compute FST using suffix tree and then prune
the rest.

Since in this phase, we only need the location sequence,
we project the original trajectories into a location sequence.
In the projection, we get a replication of the original trajec-
tory which does not contain the temporal information. For
instance, the projection of trajectory (a) in the introduction
is :

(Beijing L5hours, Shanghai 3.Shours, Jiazing)

P'rojectionl

(Beijing, Shanghai, Jiazing)
Namely,

7= ((s1,t1), (82,t2), .., (8n)) = LS(7) = (51, 2, ..., Sn)

4.2 Mining Frequent Sub-L Ss

First of all, we consider the location sequences as strings,
put them to the GST one by one, and construct a GST using
the Ukkonen’s algorithm. We also maintain a counter for
each node which represents the frequency of the substring
from the root to this node.

DEFINITION 3. Count = Y./_ |[INDEX (i)| where
INDEX (i) is the index contained in an offspring leave of a
particular node, and f is the number of offspring leaves of
this node.

Fig. 1illustrates the generalized suffix tree for a set of strings
{‘banana’, ‘ana’} with the Count values.

DEFINITION 4. Lengthmin: the minimal length of sub-
LSs. We assume a sequence which is too short (i.e., length =
1) is not useful in our work. This parameter is an empirical
value and is specified manually in implementation.

DEFINITION 5. LSminsupport: the minimal number of fre-
quency of a sub-LS. This parameter is also an empirical
value and is specified manually in implementation.

After successfully constructed the GST . We traverse the
nodes in the GST with the length to the root greater than
or equal to Lengthmin. For each node, if the Count value is
greater or equals to LSminsupport, the sub-LS represented



C : Count property

NA
C=2 C=1
[(0.4),(1.1)] [(0,2)]

[(0,3),(1,0)] 1(0,1)]

Figure 1: Example of a generalized suffix tree for a set of
strings {‘banana’, ‘ana’}, where the numbers in nodes are
the Count values.

by this node is useful. Hence we load the original sub-
trajectories corresponding to this sub-LS. The sets of trajec-
tories are the expected results of the first phase. A typical
example of the candidate set for the second phase is:
[(Beijing, 25.0 hours),(Shanghai, 27.0 hours), (Suzhou)],
[(Beijing, 15.0 hours),(Shanghai, 87.0 hours), (Suzhou)
[(Beijing, 85.0 hours),(Shanghai, 27.0 hours), (Suzhou)],
[(Beijing, 26.0 hours),(Shanghai, 27.2 hours), (Suzhou)],
[(Beijing, 25.1 hours),(Shanghai, 27.1 hours), (Suzhou)].

]
B
]
]

Algorithm 1 summarizes the overall algorithm in this phase.

More specifically, in line 3 we project the trajectories to lo-
cation sequences by keeping a replication with temporal in-
formation removed. In line 5, the online linear algorithm
constructing a suffix tree proposed by Ukkonen, namely the
Ukkonen algorithm is adopted. There are at most 2n nodes
in Ukkonen’s approach representing a suffix tree where n is
the total length of all strings involved. Then we traverse
the constructed generalized suffix tree. Note in lines 9~11,
we prune the whole sub-tree of which the Count value of
the nodes does not meet the required frequency. For all the
nodes that meet the requirements on length and frequency,
we get a set storing the two-dimension indices in its off-
spring leaves (see the numbers under the squares in Figure
1). The 2-dimension index (stringIndex, locationIndex) con-
vey these facts : 1. stringlndex is the index indicating which
trajectory to load the sub-trajectory information. II. loca-
tionIndex is the index indicating where the sub-trajectory
begins in the trajectory. Note that we should convert this
index to 2locationIndex — 1 when loading the data.

To sum up, in this section we generated a set of candi-
date sub-trajectories sets. Both the tree construction and
traverse could be carried out with O(n) complexity in both
space and time by adopting Ukkonen’s algorithm. Addition-
ally, with the help of the index set we maintained, we can
visit the required sub-trajectories in the original trajecto-
ries directly instead of long time searching. The number of
candidate sub-trajectories generated in this step is generally
much smaller than the number of existing sub-trajectories.
In the next phase, we are going to cluster all the candidate
sub-trajectories aiming at clustering sub-trajectories with

Algorithm 1 Algorithm Generating Candidate Sub-
Trajectories.

Require:
A data set of trajectories which are time annotated, Tr;
The minimal length of a useful sequence, Lengthmin;
The minimal support of frequent sub-LSs, LSminsupport;
Ensure:
A set of sets of candidate sub-trajectories, candidate sub-
trajectories in one particular subset correspond to the same
sub-LS, C;
1: C =0, GST = 0 ,stringIndex = 0, locationIndex = 0, Index

2: for each 7 in Tr do

3:  sequence = T.project(); //project the trajectory to location
sequence according to (1)

4 convert sequence to a string; //each unique char represents
a location name

5 put sequencelnStringFormat to GST;

6: end for

7: node = GST.root

8: for each node in GST do

9 if node.Count < LSminsupport then

10: Prune the subtree rooted by this node;

11: Continue;

12:  end if

13 length = node.getsubString().length;

14 if length < lengthm:n then

15 Continue;// each node represents a substring

16 end if

17 Index = node.getindices();// return all indices in the off-
spring leaves nodes

18:  current = 0;//current is the set of sub-trajectories having
this sub-LS in projection

19:  for each (stringIndex, locationIndex) in Index do

20: locationIndex = 2locationIndexr — 1;

21: length = 2length — 1;

22: subtrajectory=loadData(stringIndex,locationIndex,

length);//load data from Tr

23: current = currentU subtrajectory;

24:  end for

25:  C = current U C;

26: end for

27: return C;

similar staying time.

5. CLUSTERING CANDIDATE
SUB-TRAJECTORIES

5.1 Preiminaries

Unlike locations, the staying time between different loca-
tions can hardly be matched exactly. The consequence is
that we can not calculate the frequency of a sub-trajectory
by counting the occurrences directly even we generalize the
staying time into symbol as we showed in introduction. There-
fore, in this phase, we still use the traditional clustering idea
to find FSTTC. We define the distance between two trajec-
tories Ta, b as follows.

DEFINITION 6. Distance(ta,Tb) =

LS(ta) = LS(7b)

\/Z;:ll (tai.t — 7b;.t)?
0o LS(ra)! = LS(7b)

Where LS(7a) and LS(7b) are the location sequences con-
tained in the two trajectories as defined in definition 2. Ta;.t



Point A

Point B

Figure 2: A typical cluster by DBSCAN.

and 7b;.t are the staying time contained in ith location of
Ta and 7b. Note that we consider the distance between two
trajectories with different location sequences as infinity since
in our work the locations are represented as symbols instead
of numeric values.

5.2 Revised DBSCAN Clustering Algorithm

DBSCAN [6] is a density-based clustering algorithm. One
vital advantage of DBSCAN is it can handle noise effec-
tively. The high-level process of DBSCAN goes like this:
if there are enough points in a point’s eps-neighborhood,
these points form a cluster, and if a neighborhood point has
enough points in its eps-neighborhood, merge these points
with the cluster, carry out the process recursively. One prop-
erty of DBSCAN is that if a point is density-connected to
any point of the cluster, it is part of the cluster as well.
DBSCAN can find arbitrarily shaped clusters. Hence the
distance of two boundary points could be very large. As is
illustrated in Fig. 2, the distance between point A and B
is very large. In our scenario, we need to find FSTTC such
that the staying time should also be very similar between
two points. Therefore, we need to modify DBSCAN to find
FSTTC.

With respect to our application scenario where each loca-
tion is represented as an axis and the staying time is treated
as value of corresponding location, one parameter MaxDis
is applied to original DBSCAN algorithm. More specifically
speaking, when expanding a cluster if the distance between
this point and the central point P is greater than MaxDis,
we stop adding points around this point even though more
density-connected points might be found around P. Hence
in our approach a cluster like Fig. 2 will be divided into
several clusters. Besides we also define the minimal size of
a result cluster. Algorithm 2 illustrates our detailed mod-
ification on DBSCAN. More specifically, the modification
is on the expandingCluster method of original DBSCAN.
Namely we added one constraint on the distance between
current point and the center point. As for the rest part
of RevisedDBSCAN, we reused the corresponding parts of
original DBSCAN.

5.3 Mining frequent sub-trajectories

Previously we generated candidate sub-trajectories. The
candidate sub-trajectories are represented as sets of candi-
date sub-trajectories. Each inner set contains the candi-
dates corresponding to one location sequence. We already

Algorithm 2 expandingCluster method in RevisedDB-
SCAN.

Require:
A data set D of points, the radius of a points neighborhood,
eps; The minimum number of points required to form a clus-
ter, MinPts; The maximum distance from the central point,
MaxDis; The point currently evaluating in the expanding
procedure, Point; //as to the rest input parameters check the
original DBSCAN [6] ;

Ensure:
A set of points denoting a cluster, Cl;

1: add Point to cluster CI ;

2: for each P in NeighborPts do

3:  if P not visited then

4 mark P as visited;

5 PNeighborPts = return all points within P‘s eps-
neighborhood;

6: if sizeof(PNeighborPts) >= MinPts and distance(P,
Point) < MaxDis then

7 NeighborPts = NeighborPts joined with

PNeighborPts;

8: end if

9:  endif

10:  if P is not yet member of any cluster then

11: add P to cluster Cl;

12: end if

13: end for

14: return CI;

defined that points with different location sequences have
an extremely long distance. Hence we conduct clustering on
every individual set instead of all candidates using Revised-
DBSCAN. Algorithm 3 illustrates the implementation. In
line 3, we adopt RevisedDBSCAN to find clusters in each
inner set and in line 4-7 clusters the size of which are not
big enough will be removed. Finally in line 9, we represent
each cluster using the average value of all points in it.

6. EXPERIMENTS

In this paper we adopted Tencent Microblog? data sets
collected from 2010.10 to 2011.5 for the experiments. It
contains 2606 users, 1007882 tweets and 337 locations. And
for all experiments, parameters including minimal cluster
size, maximum trajectory distance and the eps are constant.
Since the data set contains information like location, time
etc, we generate one trajectory for each user in the prepro-
cessing procedure. More specifically, we remove the subse-
quent part of the continuous microblogs from one same user
at the same location since this static part contains no move-
ments. Hence after preprocessing 67280 microblogs were
actually used in the experiments and the average length of
the location sequences is 25.8.

Fig. 3 is the illustration of top 9 locations which ap-
peared most frequently in the trajectories as well as the top
3 location sequences without considering staying time. The
second frequent location sequence contains a location Qing-
dao which does not show up in the top 9 frequent locations.
On the other hand, the most frequent location Beijing does
not appear in any of the top 3 location sequences. Hence,
though frequent locations are more likely to be part of fre-
quent locations sequences, no necessary condition could be
asserted.

When the temporal information is introduced, more in-

2t.qq.com



(a) Top 9 frequent cities in the trajectories.

A

((( ~ E’el]lﬂg

(b) Top 3 location sequences

Figure 3: Most popular cities and location sequences. The number after the city name is the frequency of the city.

teresting facts could be identified. In the experiments, the
value we assigned to lengthmin is 33, namely locations se-
quences which appear less than 33 times are excluded in
the candidates generation procedure. We also assumed the
minimum length of a useful sub-trajectory is 5, namely the
minimum length of the location sequence is 3. The top 5
frequent sub-trajectories are listed in Table 1. The two pa-
rameters eps and MaxDis in revised DBSCAN algorithm are
set as 66666(ms) and 101288(ms), respectively. The compar-
ison between Fig. 3 and Table 1 successfully demonstrates
that by considering the temporal information the frequent
sequences are different.

From the top 3 frequent sub-trajectories, we can infer
many people are on business trips between Shenzhen and
Guangzhou and these business trips always take less than 3
days. Nanjing and Xi’an are 2 cities with a relatively long
distance. Hence it is surprising to find that people from Nan-
jing travel to Xi’an so often. Another interesting fact is that
many sub-trajectories in Table 1 contain repeating locations,
namely users travel from Location A to Location B and
come back to Location A. However sometimes we want sub-
trajectories with distinct locations and these sub-trajectories
might contain other kinds of interesting knowledge. Table 2
shows the frequent top 5 sub-trajectories consisting of dis-
tinct locations. From the first sub-trajectory, we can in-
fer that a lot of people travel from Shenzhen to Chongqing
by interchanging at Guangzhou. Other sub-trajectories also
contain meaningful information.

The time complexity of phase 1 is O(n) where n is the
total length of all trajectories, including the cost of building

Table 2: Top 5 Frequent Sub-trajectories with Time Cons-
triants and Distinct Locations

Sub-trajectory

Shenzhen 21.00hours Guangzhou 21.00hours Chongqing 28

Xi’an 16.30hours Changzhou 23.67hours Nantong 27

Chongqing ldays9.15hours Guangzhou 2days13.90hours | 26
—_— —_—
Shenzhen

Shenzhen 3days0.55hours Chongqing 3days20.71hours | 23
—_— —_—

Guangzhou

Changzhou 3days20.71hours Zhenjiang ldays5.19hours | 21
—_— —_—

Xi’an

the suffix tree and traversing the suffix tree. Whereas the
time complexity of phase 2 is O(3_(m?)) where m; is the size
of a particular set containing all candidate sub-trajectories
consisting of a particular location sequence. However, in
real world applications, the total number of candidate sub-
trajectories generated in phase 1 is much smaller than that
of original trajectories. Hence the overall time complexity is
still linear. Fig. 4 illustrates the overall runtime as well as
the runtime of phase 1 in our approach are all linear.

Fig. 5 is a comparison about time cost of phase 1 between
our algorithm with suffix tree (the black line) and the naive
string-matching without suffix tree (the blue dashed line).
This figure proved that suffix tree speeded up frequent sub-
trajectory mining significantly.

7. CONCLUSIONS

Frequenc




Table 1: Top 5 Frequent Sub-trajectories with Time Constriants

Sub-trajectory

Frequency]

Shenzhen

Shenzhen 1days23.02hours Guangzhou 2days8.21hours | 416
Shenzhen 2days8.21hours Guangzhou 2daysl12.98hours

Guangzhou

Guangzhou 2days17.43hours Shenzhen 3daysl15.09hours | 230
[ RS

Shenzhen

Shenzhen 2daysl17.29hours Guangzhou ldays22.95hours | 225

2days8.23hours Qingdao

Jinan 1days20.72hours Qingdao daysl6.31hours Jinan | 200

Nanjing 2days12.05hours Xi’an 2days12.13hours Nanjing | 193

x 10"

Blue dashed * : Phase one runtime %
Black line : Overall runtime
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Figure 4: Overall runtime versus the total length of all tra-
jectories.
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Figure 5: Runtime of phase 1 with(out) suffix tree versus
the total length of all trajectories.

Algorithm 3 Mining frequent sub-trajectories.

Require:
A set of sets of candidate sub-trajectories, candidate sub-
trajectories in the same subset correspond to the same sub-
LS, C;
The radius of a point’s neighborhood, eps;
The minimum number of points required to form a cluster,
MinPts;
The maximum distance from the central point, MaxDis;
The minimal size of a valid cluster representing a frequent
sub-trajectory, MinSize;
Ensure:
A set of all frequent sub-trajectories, STr;
STr = (), Sets = 0 ;
for each Cd in C do
Sets = Revised DBSCAN(Cd, eps, MinPts, MaxDis);
for each set temp in Sets do
if sizeof(temp) < MinSize then
Remove temp;
end if
end for
Represents each subset of Sets using the average values of
the points in this subset;
STr = STr U Sets;
11: end for
12: return STr;

—_
=

In this paper, we define a new trajectory pattern called fre-
quent sub-trajectories with time constraints (FSTTC) that
requires not only the same location sequence but also the
similar staying time in each location. We present a two-
phase approach to find FSTTCs based on suffix trees. Ex-
periments with the Tencent Microblog data set successfully
demonstrate that our approach could discover frequent sub-
trajectories with time constraints which contain interesting
knowledge. The overall computing time is linear since the
running time for the first phase is the dominating step. In
the future, we would like to apply our algorithm to various
data sets with longer repeat patterns to see whether our al-
gorithms can achieve the same performance. Moreover, can
we handle temporal information directly with suffix tree so
that we do not need the second phase of clustering?
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