
Customized Reviews for Small User-Databases using
Iterative SVD and Content Based Filtering

Jon Gregg
School of Computational Science and

Engineering
Georgia Tech

Atlanta, Georgia 30332
jgregg6@gatech.edu

Nitin Jain
School of Computational Science and

Engineering
Georgia Tech

Atlanta, Georgia 30332
njain63@gatech.edu

ABSTRACT
Recommender systems have proven to be a valuable tool for
web companies like Amazon and Netflix for attracting and
maintaining a large user base. However, in situations when
user data is more scarce (e.g., for mid-sized companies, or
an online retailer testing a new ratings system) algorithms
tailored to smaller datasets can be used to further increase
accuracy. This paper explores the potential of combining
collaborative and content-based (using user comments) fil-
tering algorithms using Yelp.com1 data from a single city.
We present the method to combine two approaches, and
find that the MSE for predicting a user’s new rating can be
reduced from a baseline MSE of 1.744 to 0.934 given just
2500 rated items in our real-world dataset.

Categories and Subject Descriptors
I.2.6 [Artificial Intelligence]: Learning; H.2.8 [Database
Applications]: Data mining

General Terms
Algorithms, Experimentation, Theory

Keywords
Machine Learning, Recommender System, Dimensionality
Reduction, Content-Based Filtering

1. INTRODUCTION
Recommender systems provide users with customized rec-

ommendations based on what the user has previously pur-
chased/liked. Pandora Radio, for example, has used its Mu-
sic Genome Project[17] recommender system to build a 50+
million user base. Larger websites like Amazon, YouTube,
and Netflix use custom recommendations to increase sales

1http://www.yelp.com/

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
SNAKDD 2013 Chicago, Illinois USA
Copyright 2013 ACM 978-1-4503-2330-7 ...$15.00.

and/or the time users spend on their websites. Netflix fa-
mously held an open competition called the Netflix Prize[4]
in which it awarded one million dollars to the team that
improved Netflix’s prediction algorithm by over 10%. Most
large-scale systems use a hybrid approach combining collab-
orative and content-based filtering.

These websites have implemented ensemble algorithms built
for big data, but there still exists a need for novel and in-
tuitive customized recommender systems tailored to more
commonly-sized customer ratings datasets. This paper bor-
rows the popular methods from big data recommendation
and modifies them to increase accuracy and allow for a se-
mantic analysis component.

The most common method of obtaining customized rec-
ommendations is through compression. Various modifica-
tions of Singular Value Decomposition or Principal Compo-
nents were used by the top Netflix finishers. Each method
takes the full ratings dataset and compresses it to a much
smaller rank, which is vaguely similar to the idea of taking
points in R2 and ‘compressing’ them onto a least squares re-
gression line, except these versions achieve compression over
multiple dimensions.

This paper also incorporates comment data that were not
available in the Netflix prize but are often available on rat-
ings or retail websites. In the case of a restaurant rec-
ommendations website, semantic meanings within the us-
er comments reveal factors that affect how a person values
a restaurant. The term Opinion Mining is generally used
to describe this method, and its importance has increased
in recent years as more retailers have developed an online
presence that allows users to post reviews or comments.

The recommendation system in this paper is a hybrid sys-
tem that uses both of these methods. The collaborative fil-
tering algorithm is based on iterative SVD, and the content-
based filtering algorithm uses opinion mining to extract in-
formation from user comments.

Section 2 explains the data used in this paper and relat-
ed work in the field. In Section 3, the Iterative SVD and
content-based filtering approaches are explained. Section 4
describes the experimental results, with references following.

2. DATA AND RELATED WORK
Yelp - the internet’s largest business directory service that

is most famous for its users’ restaurant reviews - does not
offer customized recommendations. Regardless of a user’s
preferences (that might be gathered from a user’s previous
ratings, comments, or clicks), each user sees only the aggre-

gated user rating for each restaurant. Yelp ratings and user
comments for every restaurant in Atlanta were obtained for
use in this project.

When reviewing a restaurant, each user supplies a rating
from 1-5 stars in 1-star increments, along with a comment.
For the purposes of testing the recommender system, only
users with 9+ recommendations were retained for prediction
(allowing for user ratings to be split into a train/test set),
resulting in a dataset of 1538 restaurants, 2386 users, and
78,136 comments. This allowed for the creation of a ‘ratings
matrix’ of size 1538 restaurants x 2386 users that contained
the user’s rating for that restaurant if it exists, or a 0 if the
user had not yet rated the restaurant. Futher, a ‘restaurant-
comments matrix’ of size 1538 x 78136 and a ‘user-comments
matrix’ of size 2386 x 78136 were used in the content-based
filtering.

These datasets are of reasonable size for a business that
has generated a user base and is experimenting with the
benefits of customized recommendations. These businesses
could be in either of the following situations:

• a startup web company that is using customized rec-
ommendations to differentiate itself from its competi-
tors

• an online retailer with a ratings system in place, and
would like to test customized recommendations in a
certain region before rolling the system out globally.

There are two ‘state of the art’ groups of restaurant rec-
ommendation services. The first group consists of the large
websites - Yelp, Urbanspoon, Zagat - that have hundreds of
ratings for popular restaurants, and show a user the aggre-
gated rating (often the rounded mean) of each restaurant.
The drawback with these services is that, when a user re-
quests a list of restaurants in the nearby area, the returned
list will not factor in that user’s tastes, and as a result the
user will have to look harder (or elsewhere) to find the less-
popular restaurants that fit his/her tastes. For example, if
a user loves vegetarian food, she will have to search for that
term herself instead of getting those recommendations au-
tomatically. More importantly, because there are relatively
few popular vegetarian restaurants in any city, she will like-
ly be shown a list of less-popular restaurants, and fewer re-
views means higher variance / harder to trust. Note that, a
customized recommender that has knowledge of which users
gave a certain review to a less-popular restaurant (and if
some of those users have tastes that match this particular
user) this variance can be reduced.

The second group is led by Ness, the current standard in
smartphone apps, which uses machine learning to lower the
error rate of user recommendations. The drawback of Ness
is that its goal is to reduce the error rate, and in a city like
Atlanta where only a couple dozen restaurants have elite rat-
ings (with a high number of ratings), a lower error rate can
often be achieved by recommending those top restaurants
regardless of user taste. As a result, unless a user supplies
Ness’s recommender with a large number of ratings, Ness’s
results are similar to Yelp’s.

2.1 Methodology
The algorithms chosen for this paper have their roots in

previous research, but have been modified for use in smaller
datasets. For example, Simon Funk’s iterative SVD algo-
rithm[6] was used by the winning Netflix Prize team (along

with Funk himself, who placed top-10 at the Progress Prize
stage), but is tailored to big data in that features are trained
one at a time, resulting in better scalability but lower ac-
curacy. This paper’s recommender system incorporates the
computational efficiency benefits of the iterative algorithm,
but trains the features together for even quicker runtime
speeds and greater accuracy. Also, while opinion mining is
a common task in the field of semantics, this system uses an
intuitive approach that generates a surprisingly strong pre-
diction accuracy while also serving as a proof of concept for
more complex, non-intuitive models that stress pure predic-
tion. We combine user-comment opinion mining and vari-
able reduction techniques to estimate a user’s preferences on
a variety of restaurant characteristics.

2.2 Iterative SVD
Simon Funk’s iterative singular value decomposition algo-

rithm created the foundation for this paper’s collaborative
filtering algorithm. On his blog, Funk explained the pur-
pose of using an SVD[7] in prediction by saying: ”If mean-
ingful generalities can help you represent your data with
fewer numbers, finding a way to represent your data in few-
er numbers can often help you find meaningful generalities.
Compression is akin to understanding.” The theory behind
Singular Value Decomposition is not covered in this paper
(see Sarwar (2000)[14] for early research into the benefits of
using SVD over standard collaborative filtering in a recom-
mendation engine, which can include faster performance),
but below is some basic intuition behind Funk’s algorithm.

Given an original matrix of size (a x b) and a given rank
k of the compressed matrix, Funk’s algorithm generates one
matrix of size (a x k) and another of size (k x b) that, when
multiplied, results in the lowest-MSE estimate of the original
matrix. That is, the two matrices that result from Funk’s
algorithm represent modificiations of the U and V matrices
of an SVD that have information from the square S matrix
built in. In the Yelp dataset, with input ratings matrix of
size 1538 restaurants x 2386 users, Funk’s algorithm with k
= 20 will result in one matrix of size 1538 x 20, and another
of size 20 x 2386. This method provides several benefits for
creating customized recommendations:

• The modified U matrix of restaurants x 20 features
allows for the calculation of a similarity rating between
restaurants, as the matrix values can be thought of as
representing how a restaurant is rated by a certain
‘dimension’ of the user base.

Typically, a Cosine similarity is used in an SVD be-
cause each successive feature accounts for a smaller
amount of variance in the model. As a result, in a 2-
feature example, two restaurants with a similar ratio
of the first feature to the second are likely more simi-
lar than two restaurants that have a closer Euclidean
distance (which can result from having similar coeffi-
cients for the second, less-important feature that is in-
correctly given equal importance in a typical distance
calculation). These similarity ratings can be used for
clustering purposes, and one potential benefit of this
similarity index is described in the data visualization
of the Results section.

• Similarly, the modified V matrix of users x 20 features
allows us to calculate a similarity rating between users.

• Given a user’s feature values for the 20 features (trained
from previously-made comments), predicting how us-
er i will like any restaurant j in the dataset simply
requires multiplying UiV

′
j

An iterative method like Funk’s must be used in place
of an actual SVD (which could be run on a dataset of this
size, albeit at a higher runtime) for two reasons. First, the
‘0’ entries in the ratings matrix correspond to an unknown
rating, and not a rating of 0. As a result, an SVD would
take two users’ 0 ratings for the same restaurant as evidence
of a similarity, when in reality two 0 ratings tells us nothing
about their similarity. Second, the factored matrices of an
SVD, when multiplied, represent the k-rank matrix with the
smallest possible mean squared error when compared to the
original matrix. But in this example, the ‘0’ values should
be ignored from the MSE minimization problem. This can
be done easily with a iterative SVD that ignores ‘0’ in its
cost and gradient functions.

The theory behind the iterative SVD follows. Given i
restaurants and j users, the resulting ratings matrix is de-
noted by R ∈ Rixj , the restaurant-feature matrix is F (r) ∈
Rixk, and the user-feature matrix F (u) ∈ Rkxj , where k is
the rank of the feature matrices produced by the iterative
SVD. The first feature vector in both feature matrices begin
with default values of random numbers between 0 and 1.

The product F (r)F (u) ∈ Rixj is the set of ‘prediction-
s’ for the ratings matrix. At first, these are just random
predictions, but with each iteration the MSE of (actual rat-
ings minus predicted ratings) decreases until a minimum is
reached. The overall cost of these predicted values is

C =
∑
i

∑
j

(Ri,j − F (r)F (u))2.

Therefore, for each rating (i, j), the change in the cost with
respect to one feature value f ≤ k for one user is the partial
derivative

∂C

∂F
(u)
f,i

= −(2C)F
(r)
j,f

Similarly, the change in the cost with respect to one fea-
ture value f < k for one restaurant is the partial derivative:

∂C

∂F
(r)
j,f

= −(2C)F
(u)
f,i

An optimum can then be found through gradient descent
with the update equations shown below (with α denoting
the learning rate).

F
(u)
f,i ← F

(u)
f,i + α ∗ (2C)F

(r)
j,f

F
(r)
j,f ← F

(r)
j,f + α ∗ (2C)F

(u)
f,i

Note that these updates should be made simultaneously
for each non-zero rating in the ratings matrix. Therefore, it

is important when coding the algorithm to save F
(u)
f,i into a

temporary variable before making the first update, and then

using that temporary value in the F
(r)
j,f update equation.

Once every non-zero rating is iterated through, the entire
iteration process is repeated in a while loop until the change
in cost is less than some pre-specified threshold. Once a
minimum is reached, the feature values are saved. From

there, another feature of random values is then added, and
the entire iterative process is repeated until that feature is
trained. This process continues until all k features have been
trained.

Funk’s method of ‘greedily’ training one vector at a time
was devised for use on a dataset of 8 billion entries, and
allowed for the entire recommender system to run in around
two hours. However, in the same way that greedy training of
a decision tree results in a ‘good’ but often non-optimal set
of splits, greedy training will often achieve a lower prediction
accuracy than training all the features at once - a process
that can easily complete on a dataset of this project’s size.

As a result, this paper proposes starting the training pro-
cess by filling all values of F (r) and F (u) with random num-
bers, then updating all features at each MSE-lowering step.
This has led to an average reduction in prediction MSE of
around 3% when compared to the greedy algorithm in tests
on this dataset.

Further, the improved feature value estimates allow for the
creation of a more accurate and intuitive similarity index for
each user. When the greedy algorithm is used, each feature
will be more important than any feature that follows it, and
it is often difficult to determine how much more important.
The result is that Cosine Similarity, which merely compares
ratios of feature values, is typically used to compare features,
meaning some of the distance information is ignored. But
when every feature is trained simultaneously the resulting
features are of equal importance, and therefore a simple L2
norm of the U matrix can be used to find similarity in a
more intuitive (and often more accurate) way.

2.3 Content-based Filtering
Recommenders that use content-based filtering examine

how a user has previously rated items with similar content.
For example, if a user has shown a preference for action
movies starring a certain actor, then a good recommenda-
tion system should show the user all other actions movies
starring that actor, along with similar movies in that genre.
More formally, while a collaborative filtering system exam-
ines the correlation between two users with similar prefer-
ences, a content-based system will examine the correlation
between an item’s content and a user’s rating on items with
similar content. [16]

It should be noted that“content”can come in many forms.
In the Yelp dataset and many others, content can be found in
a business’s characteristics and in user comments, and that
information can be linked with a user’s rating. The mu-
sic streaming service Pandora simply uses ‘like’ and ‘dislike’
buttons to gather information from users and finds common
characteristics between liked and disliked songs. Two early
works that combined a collaborative filtering element with
content based filtering include Fab (Balabanovic, et al.)[2],
a web recommendation engine from the 1990s that generat-
ed recommendations using content from each page (as part
of a hybrid system) and trained the algorithm further by
asking users to rate each recommendations; and a reading
recommender by Woodruff et al. (2000) [18] that combined
text and bibliography information with documents a user
has already chosen to read to recommend other documents
to the user.

2.3.1 Sentiment Analysis
For this problem, the greatest source of information about

the content of restaurants on Yelp is the user reviews section.
Sentiment analysis has been explored [11] primarily with re-
spect to text classification and categorization for documents
like news articles Argamon-Engelson et al.[1] or movie re-
views Pang et al. [12]. Most of the research is focused
towards a binary classification of textual information with
respect to people’s opinion (positive or negative), which sug-
gests the use of Naive-Bayes classifier and Latent Semantic
Analysis approaches. [13, 9, 8]

2.3.2 Problem Definition
The problem of rating restaurants is an ordinal regres-

sion problem where ratings are predicted for restaurants on
a scale of 1-5. A similar problem for movie reviews was
explored by Basilico and Hofmann[3], where a joint percep-
tron ranking model was used based on the PRank algorithm
by Crammer and Singer[5]. An implementation by Snyder
and Barzilay[15] to predict restaurant recommendations ex-
tended this joint ranking model by attempting to capture
contrastive differences among a single user comment and
introduced an agreement model in addition to the JRank
model.

In the context of this problem, unigrams were extracted
from user comments on the Yelp website and employed as
features for a gradient descent algorithm. (As observed in
the study by Basilico and Hofmann [3], incorporating bi-
grams in the model does not seem to make a considerable
difference in the results.) The features were selected based
on a combination of the word’s popularity, the authors’ in-
tuition for their importance in defining not only the char-
acteristics of a restaurant, and a user’s preferences for what
she values in a restaurant. Secondary interpretations of a
word’s meaning based on context in a single user commen-
t were not accounted for, although the number of possible
occurrences were minimized by the words chosen. Further,
the features that are selected seldom appear together in a
single comment.

Table 1 shows the top 15 words that were extracted from
the user reviews and chosen as features to train the predic-
tion function in the gradient descent algorithm, along with
their frequency of occurence in all of the comments. The
intuition behind including the word ‘burger’ for example, is
that a restaurant might not be known as a burger restau-
rant, but if the average rating for comments including the
word ‘burger’ was noticeably high, then users who enjoyed
burger restaurants should know about it (and apart from
obtaining a dataset of each restaurant’s menus, the authors
know of no other way to get this information outside of us-
er comments). Similarly, a restaurant that rates highly in
‘atmosphere’ should be recommended to users who place a
high value on a restaurant’s atmosphere.

2.3.3 Gradient Descent
Least-squares gradient descent [10] was used to generate

a prediction function. The cost function is below.

1

2

∑
z:r=1

((Θ(j))Tx(i)−y(i,j))2 +
λ

2

n∑
k=1

(

nm∑
i=1

(x
(i)
k)2 +

nu∑
i=1

(Θ
(j)
k)2)

where Θ is updated according to the following equation:

Θ
(j)
k = Θ

(j)
k − α

∑
i:r=1

(((Θ(j))Tx(i) − y(i,j))x(i)k + λΘ
(j)
k)

Here, z is an entry (i, j) and r is a vector such that r(i, j) = 1

Table 1: Frequency of top 15 selected features

service 22362 atmosphere 8580 price 3344
chicken 13373 friends 7936 spicy 2494
night 11295 parking 7644 quality 1873
burger 10386 sushi 5446 dessert 1865
fresh 9840 wine 5098 patio 1513

when a user has rated a restaurant, and 0 otherwise. For
this problem, the x restaurant-ratings matrix is of dimension
(numRestaurants x numFeatures) and the Θ user-ratings
matrix is of dimension (numUsers x numFeatures).

Bayesian averages were used to fill each element of the x
and Θ matrices to reduce the effect of a small but extreme
number of votes for one particular feature. For example, if a
user has mentioned ‘sushi’ three times and gave a 5-star rat-
ing each time, that certainly does not mean the user likes all
restaurants that offer sushi. Instead, this system interprets
Yelp ratings to be m a sample from the population of a us-
er’s possible ratings for all restaurants, and so the Bayesian
average shows merely that a user prefers sushi restaurants
instead of assuming that user will give a perfect 5-star rating
for anything sushi-related.

Singular value decomposition was used to compress the
number of features, as many of the feature words are intu-
itively similar (‘ambiance’ and ‘atmosphere’, for example).
The resulting compressed feature matrix therefore describes
a restaurant (or user’s preferences for the Θ matrix) on sev-
eral different categories instead of single words.

3. RESULTS AND CONCLUSIONS
Each of Yelp’s restaurant pages displays an average rating

for all user ratings for that restaurant. While this is hardly
a prediction of a future rating, it can serve as a lower bound
baseline MSE for comparison purposes. Using these average
ratings, the ‘prediction MSE’ on a test dataset was 1.744
stars2. In comparison, the test MSE for the iterative SVD
was 0.993 stars2 (learning rate α = .0001, k = 20 features),
and the test MSE for the content-based filtering was a sim-
ilar 0.998 stars2 (learning rate α = 0.0001, regularization
term λ = 90). When combined using a coefficient for each
of the two prediction matrices and trained via a simple grid
search algorithm, the test MSE reduced to 0.934 stars2, a
significant improvement over either method and especially
over the lower bound baseline despite having only 2386 users
in the model, with ratings scattered over 1538 restaurants.

For an additional proof of concept, a recommendation vi-
sualization comparing recommended restaurants and similar
user’s ratings for those restaurants was extracted from the
output of this recommender system, and is shown in Figure
1 on the following page. A dataset with a larger ratio of
users to restaurants would allow for a more telling visual for
all recommendations, but for this problem, a heatmap visu-
alization still provided strong results for the most popular
restaurants. Even with scarce data, this can provide insight
into what’s possible beyond just a simple recommendation.

Adding a visualization like this to a website or an app,
and linking the similar users’ ratings directly to that user’s
comments, allows for customers to interact with the recom-
mender system, as opposed to just viewing a suggestion.

Figure 1: (Referenced in the results and conclusion-
s section on the previous page.) Heat map show-
ing most-similar users on the vertical axis, highest-
recommended restaurants for a specific user on the
horizontal axis, and the ratings by similar users for
those recommended restaurants within each cell.

Note that the similar users (listed on the y-axis) were found
using the user-ratings matrix from the iterative SVD algo-
rithm. The adjustment made to Funk’s iterative algorithm
- training every dimension simultaneously - allowed for a
simple L2 norm to be used to find user-similarity.

4. ACKNOWLEDGMENTS
The authors would like to thank Dr. Polo Chau of the

Georgia Institute of Technology for his help in editing this
text.

5. REFERENCES
[1] S. Argamon-Engelson, M. Koppel, and G. Avneri.

Style-based text categorization: What newspaper am i
reading. In Proc. of the AAAI Workshop on Text
Categorization, pages 1–4, 1998.

[2] M. Balabanovic and Y. Shoham. Fab: Content-based,
collaborative recommendation. CACM, 40(3):66–72,
1997.

[3] J. Basilico and T. Hofmann. Unifying collaborative
and content-based filtering. In Proceedings of the
twenty-first international conference on Machine
learning, page 9. ACM, 2004.

[4] J. Bennett and S. Lanning. The netflix prize. In
Proceedings of KDD cup and workshop, volume 2007,
page 35, 2007.

[5] K. Crammer and Y. Singer. On the algorithmic
implementation of multiclass kernel-based vector
machines. The Journal of Machine Learning Research,
2:265–292, 2002.

[6] S. Funk. Netflix update: Try this at home, 2006. URL
http://sifter. org/˜ simon/journal/20061211.html,
2011.

[7] G. H. Golub and C. F. Van Loan. Matrix
computations, volume 3. JHUP, 2012.

[8] T. K. Landauer, P. W. Foltz, and D. Laham. An
introduction to latent semantic analysis. Discourse
processes, 25(2-3):259–284, 1998.

[9] K. Lang. Newsweeder: Learning to filter netnews. In
In Proceedings of the Twelfth International Conference
on Machine Learning. Citeseer, 1995.

[10] A. Ng. Cs229 lecture notes. CS229 Lecture notes,
1(1):1–3, 2000.

[11] B. Pang and L. Lee. Opinion mining and sentiment
analysis. Foundations and trends in information
retrieval, 2(1-2):1–135, 2008.

[12] B. Pang, L. Lee, and S. Vaithyanathan. Thumbs up?:
sentiment classification using machine learning
techniques. In Proceedings of the ACL-02 conference
on Empirical methods in natural language processing,
pages 79–86. Association for Computational
Linguistics, 2002.

[13] M. Pazzani and D. Billsus. Learning and revising user
profiles: The identification of interesting web sites.
Machine learning, 27(3):313–331, 1997.

[14] B. Sarwar, G. Karypis, J. Konstan, and J. Riedl.
Application of dimensionality reduction in
recommender systems, a case study. ACM WebKDD
Workshop, 2000.

[15] B. Snyder and R. Barzilay. Multiple aspect ranking
using the good grief algorithm. In Proceedings of the
Joint Human Language Technology/North American
Chapter of the ACL Conference (HLT-NAACL), pages
300–307, 2007.

[16] R. Van Meteren and M. Van Someren. Using
content-based filtering for recommendation. In
Proceedings of the Machine Learning in the New
Information Age: MLnet/ECML2000 Workshop, 2000.

[17] T. Westergren. The music genome project. Online:
pandora.com/about/mgp, 4(25):07, 2007.

[18] A. Woodruff, R. Gossweiler, J. Pitkow, E. H. Chi, and
S. K. Card. Enhancing a digital book with a reading
recommender. In Proc. of ACM CHI 2000 Conference
on Human Factors in Computing Systems, pages
153–160, 580. ACM, 2000.

