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ABSTRACT

Recommending items to new or “cold-start” users is a chal-
lenging problem for recommender systems. Collaborative
filtering approaches fail when the preference history of users
is not available. A promising direction that has been ex-
plored recently [12] is to utilize the information in the so-
cial networks of users to improve the quality of cold-start
recommendations. That is, given that users are part of a
social network, a new user shows up in the network with no
preference history and limited social links, the recommender
system tries to learn the user’s tastes as fast as possible.

In this work, we model the learning of preferences of cold-
start users using multi-armed bandits [5] embedded in a so-
cial network. We propose two novel strategies leveraging
neighborhood estimates to improve the learning rate of ban-
dits for cold-start users. Our first strategy, MixPair, com-
bines estimates from pairs of neighboring bandits. It extends
the well-known UCBI algorithm [5] and inherits its asymp-
totically optimal guarantees. Although our second strategy,
MixNeigh, is a heuristic based on consensus in the neighbor-
hood of a user, it performed the best among the evaluated
strategies. Our experiments on a dataset from Last.fm show
that our strategies yield significant improvements, learning
2 to 5 times faster than our baseline, UCBI1.

Categories and Subject Descriptors

H.3.5 [Information Systems]: On-line Information Ser-
vices; 1.2.6 [Computing Methodologies]: Learning

General Terms

Algorithms, Experimentation
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1. INTRODUCTION

Collaborative filtering methods [13] are widely used by
recommendation services to predict the items that users are
likely to enjoy. These methods rely on the consumption his-
tory of users to determine the similarity between users (or
items), with the premise that similar users consume similar
items. Collaborative filtering approaches are highly effective
when there is sufficient data about user preferences. How-
ever, they face a fundamental problem when new users who
have no consumption history join the recommendation ser-
vice [22]. A new user needs to enter a significant amount of
data before collaborative filtering methods start providing
useful recommendations. In this work, we study this spe-
cific problem of recommending items to new users, referred
to as the “cold-start” recommendation problem.

Ideally, a recommender system would like to quickly learn
the likes and dislikes of cold-start users (i.e., new users),
while providing good initial recommendations with fewest
mistakes. To minimize its mistakes, a recommender sys-
tem could recommend the item predicted as the “best” from
its current knowledge of the user. However, this may not
be optimal as the system has very limited knowledge of a
cold-start user. On the other hand, the system may try
to gather more information about the user’s preferences by
recommending items that may not appear to be the “best”,
and learning from the user’s response. This inherent trade-
off between exploration (trying out all items) and exploita-
tion (selecting the best item so far) is aptly captured by
the Multi-Armed Bandit model [4, 5], a framework which
has been extensively studied within the Machine Learning
community.

In this model, a decision maker repeatedly chooses among
a finite set of K actions. At each step t, the action a chosen
yields a reward X, ; drawn from a probability distribution
intrinsic to @ and unknown to the decision maker. The goal
for the latter is to learn, as fast as possible, which are the
actions yielding maximum reward in expectation. Multiple
algorithms have been proposed within this framework. In
particular, a family of policies based on Upper Confidence
Bounds (UCBSs) [5, 4, 23, 6] has been shown to achieve opti-
mal asymptotic performances (in a sense defined by a semi-
nal paper [14] by Lai and Robbins) in terms of the number
of steps t.

However, recent works have shown that one can leverage
side observations from the social network to provide even
stronger guarantees and faster learning rates [18, 7]. Build-
ing on the idea of using additional information from an un-
derlying social network among users, we model the cold-start



problem as one of learning bandits in a graph where each
node is a bandit, and neighboring bandits have “close” re-
ward distributions. After formally defining this multi-armed
multi-bandit setting, we propose novel strategies to improve
the learning rate of “young” bandits (i.e., which have been
played a small number of times) by leveraging the informa-
tion from their neighbors in the network.

Intuitively, our solution converges faster when friends have
similar tastes, a well-accepted indicator for predicting users’
preferences [8]. In addition, Jamali et al. [12] have shown
the usefulness of social data in improving the quality of
cold-start recommendations. To the best of our knowledge,
we are the first to leverage the neighborhood over multiple
multi-armed bandits embedded in a graph.

The presence of a social network among users of recom-
mender systems is fairly common. Some services such as
Last.fm (www.last.fm) and YouTube (www.youtube.com) al-
low users to explicit declare their social connections, while
others including Hulu (www.hulu. com), Digg (digg.com), and
Spotify (www.spotify.com), are integrated with Facebook
(www.facebook.com). Facebook integration provides users
with the simplicity and convenience of logging in to many
different services with a single Facebook account, and in re-
turn, the services get access to rich social data that users
share on Facebook. In this work, we propose a principled
approach for exploiting the information known about the
friends of a new user in order to quickly learn the prefer-
ences of this new user.

In this study, we focus on recommender systems for the
music domain®. Our setup is as follows. Users sign in to the
recommender system to get music recommendations. When
new users sign in for the first time, their social graph in-
formation is gathered. This may be from their account on
social networking sites such as Facebook, their email address
books, or an interface where users can explicitly friend other
users of the recommender system. Once a user is signed in,
the recommender system picks an artist and samples a song
by that artist to recommend to the user. The user may
choose to skip the song if she does not enjoy it and move
to the next song. From such repetitive feedback, the system
wants to learn as fast as possible a set of artists that the user
likes, giving her an incentive to continue to use the service.

The key contributions of our work include:

e We are the first to propose mixing strategies over mul-
tiple bandits embedded in ego-centric networks.

e In contrast to prior work that optimizes accuracy of
the estimates (measured using RMSE) [12], our focus
is on fast discovery of top items for cold-start users.

e We propose novel metrics for comparing the perfor-
mances of bandit strategies in the cold-start regime
(whereas the bandit literature usually focuses on the
asymptotic regime).

e We empirically evaluate our strategies and show that
they achieve up to 5x improvement in learning prefer-
ences of cold-start users.

Outline. The rest of the paper is organized as follows.
In Section 2 we describe our framework, and present the

LOur framework is general and can be applied to other do-
mains such as news, movies, etc.

N(u) neighborhood of user u
A, set of artists user u has listened to
Su set of artists to suggest to user u
pc,lal # times user u listened to artist a
Dusa Pluser u likes a song from artist a]
X = (Xa) estimate vector (intrinsic)
Y = (Y,) | estimate vector (from neighbors)
n=(ng) sample-size vectors
r reward profile of a strategy
b, c confidence radii

Table 1: Notations

background on bandit algorithms. Next, we describe base-
line strategies for recommendation using bandits, followed
by two strategies—MixPair and MixNeigh—geared towards im-
proving cold-start recommendations in Section 3. We detail
our evaluation metrics in Section 4 and present our exper-
imental results in Section 5. We discuss related work in
Section 6 and conclude in Section 7.

2. PROBLEM SETUP

Consider a social graph G = (V, E) and let us reserve
letters w and v to denote vertices of this graph, i.e., users
of a music recommender system. The set of neighbors of a
vertex u is N(u) := {v € V|(u,v) € E}. Our scenario is the
following: user u just joined the music recommender service,
indicating neighbors v € N(u) that are already known to
the system. The system has already collected information
on them through their listening history, and we want to
leverage this information to improve the performances of
a multi-armed bandit B, associated with user u. Table 1
describes the notation used in the rest of the paper.

After providing background on multi-armed bandits, we
detail in this section how we model user preferences through
their implicit feedback (play counts) and how we define the
bandits {B.}.

2.1 Preliminaries

A K-armed bandit problem is defined by K distributions
Pi,..., Pk, one for each “arm” of the bandit, with respective
means pi,...,px. When the decision maker pulls arm a
at time ¢, she receives a reward Xg¢ ~ P,. All rewards
{Xa,a € [1,K],t > 1} are assumed to be independent.
We also assume that all {P,} have support in [0,1]. The
mean estimate for E[X,,.] after m steps is

1™
Ya,,m = ZXa,s
m s=1

The standard measure of a bandit’s performances is its ex-
pected (cumulative) regret after T steps, defined as

E[R(T)] := Z E[Xo: — Xr@),e]

where a* = argmax{pq} and I(¢) is the index of the arm
played at time ¢. Another (equivalent) measure is the aver-
age per-step reward, up to the current step n:

HT) = 2.3 Xy = BIr(T)]|=p" ~ ZBIRT) (1)

t<T



DEFINITION 1. A reward profile of a strategy is a function
t — r(t) mapping any time step t € [1,T] to the average
per-step reward up to time t of a given run, as defined in
Equation (1).

In what follows, for a run of bandit B,, we denote by
Nu,a(t) the number of times arm a has been pulled up to time
t and X, .(t) the corresponding reward estimate. We call
n, and X, the sample-size and estimate vectors (indexed
by arms), respectively.

2.2 Modeling user preferences

The k-hop ego-centric network of user u is defined as the
sub-graph of G comprising v and all vertices that are less
than k hops away from wu. Each user u has listened to a
given set of artists A,, and for a € A,, we denote by pc,[a]
(play counts) the number of times u has listened to any song
from a. Thus, the probability that a song sampled uniformly
from u’s listening history comes from a is

pc,[a]
Y aca, PCuld]

Tu,a ‘=

Within our framework, each user u is associated with a
multi-armed bandit B, whose arms correspond to artists
a € A,. During consecutive steps ¢, the bandit strategy
picks an artist a € A, and recommends it to wu; the reward
is 1 if w accepts the recommendation and 0 otherwise. We
model this reward as a random variable following a Bernoulli
distribution B(pu,q), where py.o = Plu likes a song from a]
will be modeled from the data.

It has been established that user play counts distributions
tend to follow a power law, which we also observed in our
dataset. Therefore, using m,,, as ground-truth p,,, would
result in putting all the weight on a single artist and give
similar losses to the others, a trivial learning problem where
one would only discover the top artist. Instead, we are in-
terested in fast learning of a set of top-artist. This is a well-
known issue in recommender systems with implicit feedback
[11]. An effective solution is to transform 7, using a logistic
function and define p,, as:

_ 1
T 1t e tutrua—ra)’

Pua (2)
where v, and v, are scalars defined w.r.t. the complete
distribution m,. We experimentally found the values v, :=
median(m,) and v, := 5/vy, to discriminate well between the

most and least liked artists in the crawled artist sets.

2.3 Artists selection

Our solutions follow two steps: (1) compute a set S, of
artists that u may like, then (2) learn online the top artists of
w in S,. As we focus on the first recommendations made to
u, we want to keep |Sy| reasonably small: otherwise, by the
time the learning algorithm has tried every action once, one
wouldn’t be in a cold start situation any more. We define

Sy = ﬂ A, (3)

vEN (u)

i.e., artists that all your neighbors have heard of. This fol-
lows the homophily property that users are more likely to
listen and like artists that their friends listen to. Taking a
strict intersection is a conservative option; a more general

Algorithm 1 UCB1

1: X,n+< 0,0

2: fort > 1do

3:  a <« argmax {Ya + \/210g(t)/na}
a€Sy

4:  pull arm a, getting reward Xg ¢

5.

6

Mg < T +1 _
Xo—1/naXar+ (1—1/na)X;

approach would be to consider artists that at least k neigh-
bors have heard of, i.e., Su 1= Uy, ,....vp }C N () Nk, Ao We
leave a thorough exploration of this for future work.

To summarize, we have a multi-armed bandit B, associ-
ated with cold-start user u. The arm set of B, is S, C A,
and the expected reward of arm a € S, is pu,q as defined
by Equation (2). Similarly, each neighbor v € N(u) has
a bandit B,. We assume that these neighbors are already
subscribers of the recommender system and their respective
bandits B, have been trained when wu joins the service. The
goal of the strategies we propose in the next section is to
learn B,’s optimal arms as fast as possible.

3. STRATEGIES

In this section we describe three strategies. The first strat-
egy is the well-known UCB1 policy which we use as a base-
line. Next, we propose two novel strategies combining in-
formation from both the current bandit B, and neighboring
bandits {Bu}ven(u)-

3.1 UCBI1: A baseline

One of the most prominent algorithms in the stochastic
bandit literature, UCB1 from Auer et al. [5] achieves a
logarithmic expected regret:

E[R()] = Ollogt) & B[r(t)] ~_p" — "8
for some constant k. A previous result from Lai and Robbins
[14] states that this is optimal in terms of the number of
steps t, i.e., the asymptotic regret of any multi-armed bandit
strategy is Q(logt).

UCBI1 chooses which arm a to play at time ¢ based on
an Upper Confidence Bound (UCB), which is the sum of
two terms: the empirical average X, on its past rewards,
and a bias term by (t) := y/2logt/ng, which is a confidence
bound on the exactness of X,. The arm chosen is the one
maximizing the sum of these two terms. Intuitively, an arm
is thus played because it has either high historical rewards
or its outcome is uncertain. This strategy is summarized in
Algorithm 1.

Later in Section 5, we validate UCB1 as a reasonable base-
line by showing that it performs better than naive strategies
in our cold-start setting.

3.2 MixPair strategy

Our first strategy, MixPair, considers single edges (u,v) €
E of the social graph, where user w is a cold-start user and
the system has already collected a listening history for v.
Following the intuition that u and v have similar tastes, our
MixPair strategy computes upper confidence bounds based
on all samples seen so far, both from 5, and B5,.

Formally, let us denote by X(¢) and n(t) (resp. Y and m)
the estimate and sample-size vectors of B, (resp. B,) after



Algorithm 2 MixPair

Algorithm 3 MixNeigh

1: X,n+— 0,0

2: fort > 1do

pick v € N(u)

a — argmax { Za(v) + ba(v,t)}
a€Sy,

pull arm a, getting reward X, ¢

Na «— Na + 1

Xa—1/naXae+ (1 —1/na)X;

B, has been played t times. We assume that neighboring
bandits are not being played while B, is trained, hence X(t)
and n(t) are parametrized by ¢ while Y and m are step-
independent. For an arm a € S,, we define

— . na(t) Ma —
Za(v) = na(t) +ma Xa(0) + na(t) +ma =
2logt
ba(v,1) 1= | —28Y
(v ) na(t) + Mg

MixPair is an UCB strategy, using Z(v) and b(v,-) as its
exploitation and bias term, respectively. As emphasized by
its name, it is designed for a pair of neighbors (u,v) € E,
while |N(u)| is often more than 1. To aggregate data from
the whole neighborhood, the neighbor v is then re-sampled
from N(u) at the beginning of each step t. Algorithm 2
summarizes the complete strategy.

Note that t here only accounts for the number of times
bandit B, has been played, which biases MixPair towards
exploitation on arms a for which m, is large (which should
also correspond to high-reward arms in B, if its regret is
small).

There are multiple sampling processes that can be used at
line 3 of Algorithm 2. We considered two natural solutions:

e Uniform sampling, based on the assumption that all
neighbors are equally similar to user wu;

e “Bandit” sampling: define a multi-armed bandit on
neighbors v € N(u), and learn the most similar ones
online.

Later, we evaluate these two approaches and observe that
the Bandit sampling is more risk-averse, as detailed in Sec-
tion 5.3.

3.3 MixNeigh strategy

Our previous strategy combines bandit estimates, and then
aggregates them on the neighborhood through sampling.
The strategy we propose thereafter, coined MixNeigh, works
the other way round: we first aggregate reward estimates
from all neighbors, and then choose between this aggregate
and the user’s empirical estimate using a heuristic based on
confidence radii, as explained below.

Formally, consider a user u and an artist a € S,. Let
X, = {Yv,a;’u S N(u)} denote the set of empirical esti-
mates for arm a in all neighboring bandits, with its average
Y, := avg(X,) and standard deviation ¢, := o(X,). Algo-
rithm 3 describes the MixNeigh strategy. At each step ¢, it
decides between estimates Yu,a and Y, of the reward for
arm a based on a confidence criterion.

This criterion can be interpreted as follows: at step ¢, b, is
such that p, lies w.h.p. in the interval [Yu —ba/2; X, +ba/2)

Require: neighbor estimates Y, cq for all a € S,
1: X,n < 0,0

2: fort > 1do

3: forae€clS, do

4 b, o ) Plost
Na
= i v ba — ¢
5 Zaed Yo HIXe—Val<=5—
X, otherwise
6: a < arg max {7a}
a€Sy
7:  pull arm a, getting reward X, +
8: Mg < Ng + 1 -
9: Xo<—1/naXar+(1—1/na)X;

(see the proof of UCB1’s upper bound in [5] for further de-
tails); similarly, we interpret c, as confidence radius on Y.
When Wd — ca/2;7a + ca/ﬂ C [YG — ba/Q;Ya + ba/Q],
MixNeigh chooses it as the estimate for p,., a case we il-
lustrate in Figure 1. Otherwise, X, is deemed as the best
option. The intuition behind this heuristic is to use Y,
when it is both a more precise estimate than X, and an
admissible value for p, .. In our empirical evaluation, this

ba

Ca
l
® >

OI Reward Xa Ya

Figure 1: Case where MixNeigh will choose the esti-
mate Y, instead of X,

strategy interpolated nicely between using the neighborhood
estimate Y, as a prior, and exploiting the empirical estimate
X, when its precision had become good enough. Results re-
ported in Section 5 point it out as our best strategy for
the cold start problem; however, contrary to MixPair, its
asymptotic behavior differs from that of UCBI1 so it does
not inherit the theoretical guarantees regarding convergence

to the optimal solution.

4. EVALUATION METHODOLOGY

It is not straightforward to extend existing collaborative
filtering-based solutions for the cold-start problem to the
online framework. The evaluation metric in the former is
RMSE, whereas time is a critical factor for cold-start recom-
mendations. Hence we restrict our evaluation to baselines
defined in the online setting. In this section, we propose
metrics that we will use in our experiments to compare the
learning rates of multi-armed bandit strategies.

4.1 Comparing two bandit runs

figwidth Consider two strategies (1) and (2) for the bandit
B.. Running each strategy once yields two reward profiles
r1,r2, as described in Definition 1. The standard regret
metric is equivalent to comparing r1(¢) and r2(t) for some
time step t. However, in a cold-start setting where we want
to measure an initial speedup in learning rate, the choice
of an appropriate step ¢t becomes a difficult question. We
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Figure 2: Example of T*%"8°* for two sample reward
profiles

circumvent it by looking at its reciprocal: how long does
it take before a strategy’s average reward rs(t) gets “close
enough” to the optimum value?

Let p* := maxges, (Pu,a) denote the optimal reward of
bandit B., and let ¢ € [0,1]. We define a metric called time
to target, T™&" as,

T (r, q) == inf {t | t > 10%T, r(t) > qp*},

so that T8 (r,, q) is the first time at which strategy s
achieves an average reward greater than a fraction g of the
optimum. Figure 2 shows an example of two sample reward
profiles in a setting where ¢ = 75% and p* = 1.

The improvement of run 71 over run ro is then defined as
the relative variation from T**"&%* (15, q) to T"*"& (71, q):

Ttarget (7"1 , q)

s(ri,m25q) == 1 — WT(W,Q)

For instance, s(ri,72;q) = 50% corresponds to a 2x im-
provement of 7o over 71, s(r1,72;q) = 75% to a 4x improve-
ment, and so on.

One can argue that this metric is optimistic as the re-
ward profiles are not always monotonic. They tend to in-
crease (resp. decrease) when the algorithm exploits (resp.
explores), so one may observe “bumps”; i.e., ordered pairs
t1 < t2 such that r(t1) > gp* > 7(t2). T**"&s(q) is thus
an optimistic indicator of strategy s’s learning speed. How-
ever, we note that this optimism is applied equally to both
strategies s € 1,2 (we also noted in our experiments that
such bumps become rare as ¢ — 1). The main idea here
is to compute the time taken to first achieve a target re-
ward. This can be extended to more relaxed definitions,
where the target is said to be achieved when the reward is
over a threshold for some ¢t number of steps.

4.2 Comparing two strategies

Our metric s(r1,72; q) is defined over pairs of reward pro-
files (r1,72), one per strategy s € {1,2}. We define the
speedup ¢y (1,2; q) of strategy (1) against strategy (2) in ban-
dit B, as the expected value of s(ri,r2;q) for two random
runs ri,To:

du(1,2;q) =By ) [5(r1, 725 )]

In practice, we computed ¢ (1,2;g) through successive runs
(r11,721), -, (T1k,T25), until a Student’s test [10] on the set

{s(r1;,725,q);1 < j < k} backed the average Qu(1,2;q) :=
%25:1 s(r15,72559) as a reliable estimate for ¢.(1,2;¢).
The final step of our comparison procedure is the analysis
of the distribution {¢.(1,2;q)} over users u of the system.
In particular, we focus on the following properties of this
distribution for a user u sampled uniformly at random,

e 1 = E[¢.(1;2)], the average speedup in learning for
strategy (1) over strategy (2)

e p' :=P[p.(1;2) > 0], the probability that strategy (1)
learns faster than strategy (2)

o ut = pt - Eldu(1;2) | ¢u(1;2) > 0], average speedup
when (1) improves on (2), weighed by the probability
of this event

o u = (1—p")-E[¢u(1;2) ] ¢u(1;2) < 0] average slow-
down (negative speedup) when (1) is worse than (2),
weighed by the probability of this event

We make use of these aggregate metrics in the following
section.

S. EXPERIMENTS

In this section, we describe our dataset and how we crawled
it. We show that UCB1 improves on naive bandit strategies,
justifying its use as a baseline. We then compare MixPair and
MixNeigh to this baseline. Finally, we evaluate the impact
of the parameter g on our scoring metric. In all experiments
that follow, g is set to 80%, unless specified otherwise.

5.1 Data

We evaluate our algorithms on a dataset crawled from
a music recommendation service, Last.fm, where users can
listen to specific songs or radio stations compiled by the
system. Users also have the option of creating their profile,
where they can enter their demographic details, friend other
users, and record their favorite tracks etc. We crawled a
portion of the Last.fm social graph in May 2012 using the
Last.fm API? service. We started with the user “RJ”, one
of the co-founders of Last.fm, and performed a breadth-first
crawl from this user to obtain complete ego-centric networks
around the crawled users.

Last.fm has two notions of links among users. It allows
users to explicitly “friend” other users of Last.fm, and implic-
itly defines “neighbors” as pairs of users with similar “music
tastes”. We crawled the explicit friend relationships to avoid
any artificial performance boost from Last.fm neighbors. For
user music preferences, we crawled the 500 most frequently
heard artists®, or top artists, along with the number of times
each artist was listened to, i.e., artist play count. To build a
dataset for evaluating our algorithms, we included a crawled
user u in our dataset if there were at least three artists in
Su heard five times each. This filtering was required to en-
sure that each bandit has more than two arms that we learn
on, and that we have reasonable estimate on the preference
of that arm (artist) by a user. The resulting dataset has
ego-centric networks and artist preferences of 5,357 users of
Last.fm.

’http://last.fm/api
3The choice of 500 artist was to ensure we have some infor-
mation on the overlap among top artists of pairs of users.
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Figure 3: Last.fm dataset

Figure 3 illustrates the properties of the crawled graph.
The filtering step resulted in small ego-centric networks,
with a maximum degree of any node being 18 as shown in
Figure 3(a). There are about 120K artists with play counts
as shown in Figure 3(b). Finally, to get an intuition on the
disagreement in the likeness of artists by neighboring nodes,
we plot a histogram of the L1 norm between the preference
vectors computed as ||pu — pu||1 for all (u,v) € E presented
in Figure 3(c). The pairs with small values of the norm in-
dicate higher agreement in the preferences of the two neigh-
boring nodes. Interestingly, the mean of the distribution is
0.4, which illustrates that our dataset is not heavily biased
towards agreeing pairs of nodes.

Artist selection. We defined in Equation (3) the artists
Sw to be used as arms in the bandit B, as those who have
been listened to by all neighbors of user u. This set is easy
to compute for the recommender system. However, for some
users in our dataset it occurred that A, NS, C Sy, i.e., some
artists heard by all neighbors have never been listened to
by w. For such artists a, we did not have ground-truth to
model py,q. In order to perform simulations, we thus used
§u =5, N A, instead of S, as the set of arms for B,. We
would like to point out that the evaluation of online learning
algorithms with offline data is a difficult problem [17], hence
the need to resort to such measures to build well-grounded
simulation environments.

5.2 Baseline

Our first experiment compares UCB1 (which will be our
baseline for the MixPair and MixNeigh strategies) to two sim-
ple multi-armed bandit strategies:

e Uniform: pick arms uniformly at random;
e ep-greedy: a variant of e-greedy proposed in [5].

This last strategy has two parameters (c,d) and provable
asymptotic guarantees for a optimal (instance-based) val-
ues of these parameters [5]. In this experiment, we used
instance-independent values ¢ = 5 and d = 1, which were
the most efficient on average.

Table 2 quantifies the aggregate improvement UCB1 brings
over these two baselines. As shown in the p™ column, it is
more efficient most of the time with a significant expected
improvement (u* > 30%). In the case of e,-greedy, how-
ever, the score distribution is heavy tailed on negative val-
ues, yielding a non-negligible ©~ as well. Figure 4 shows
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Figure 4: Performance of UCB1 against ¢,-greedy

| [ v 1o [ p" [ ]
v. Uniform || 33% | 0.88 | 34% | 5.3%
v. en-greedy || 4.3% | 0.73 | 39% | -37%

Table 2: Aggregate improvement of UCB1 over sim-
ple bandit strategies

a histogram of this distribution. = The conclusion of this
first experiment is two-fold. First, our statistical environ-
ment and our scoring metric are non-trivial: neither a purely
exploratory nor a statically-tuned exploration/exploitation
tradeoff perform well. Second, it suggests that UCB-based
strategies are an interesting direction to explore in our set-
ting.

5.3 MixPair strategy

From now on, UCBI1 will be our baseline strategy. In this
second experiment, we evaluate the MixPair algorithm from
Section 3.2. Table 3 and Figure 5 summarize its performance
in the case where neighbors are sampled uniformly at ran-
dom. In particular, we note that, on the overall dataset,
MixPair learns 1.54x faster than UCB1 on average.

Uniform sampling of neighbors relies on the assumption
that all of them are evenly similar to the user. As this hy-
pothesis may be questioned, we evaluated a second sampling
strategy: train a multi-armed bandit on the neighbors of
user u, which will learn the most similar neighbors and play
them more often. In practice, for ¢ = 75%, this approach
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Figure 5: Performance of the MixPair strategy
(neighbors sampled uniformly)
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Table 3: Aggregate improvement of MixPair over
UCB1
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Figure 6: Score CDF for MixPair with Uniform and
Bandit neighbor sampling (q = 75%)

yielded a similar average score pu =~ 5% while reducing risk:
improvements are less significant (smaller u*) but failures
are of smaller extent as well (u~ closer to 0). Figure 6 com-
pares the score CDFs of both neighbor sampling strategies.

5.4 MixNeigh strategy

In this section we evaluate the MixNeigh algorithm from
Section 3.3. Table 4 and Figure 7 summarize the improve-
ments it brings compared to UCB1 and MixPair. Most no-
tably, it learns 2.94x faster on average than UCB1 (u =
66%).

Recall that, at each step t, MixNeigh chooses between the
empirical estimate X, of B, and an aggregate estimate Y,
coming from the neighborhood. In our simulations, the lat-
ter turned out to be close to 80% of the time, which shows
that this information plays a crucial role in the improvement
brought by MixNeigh over UCBI1.
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Figure 7: Performance of the MixNeigh strategy com-
pared to UCBI1

p | opt [T [ uT

66% | 0.96 | 69% | -3%

Table 4: Aggregate improvement of MixNeigh over
UCB1

5.5 Impact of the ; parameter

Our performance metric is heavily dependent on the pa-
rameter g € [0, 1] quantifying the fraction of the optimum p*
the average reward needs to reach before one considers the
strategy has a sufficient estimate of user preferences. The
higher g, the more demanding this criterion is. We there-
fore study the impact of ¢ on the performance of our various
strategies. Results are reported in Tables 5 and 6. For low

q [ pt | ut [

60% % | 0.21 | 2.5% | -39%
75% || +18% | 0.79 | 37% | -20%
80% || +35% | 0.84 | 48% | -14%
85% || +35% | 0.80 | 40% | -16%
90% || +6% | 0.29 | 9.1% | -64%

Table 5: MixPair vs. UCBI1 for various values of ¢

La [l w [p" [ uo [ u
60% || -0.7% | 0.26 | 3.1% | -105%
75% +47% | 0.92 | 52% -7.6%
80% || +66% | 0.95 | 68% | -3.8%
85% || +74% | 0.97 | 5% | -2.0%
90% || +66% | 0.97 | 67% | -2.4%

Table 6: MixNeigh vs. UCB1 for various values of ¢

values of ¢ (< 70%) we observe means p close to 0, which is
due to the fact that almost any strategy quickly reaches
these threshold regardless of the exploration/exploitation
dilemma. There is a sweet spot for 80% < q < 85%, which
our strategies reach much faster than the baseline. How-
ever, as ¢ — 1, all strategies converge to the same asymp-
totic regime. Figure 8 shows score CDF's in the “MixPair vs.
UCB1” setting for various values of ¢; worst cases correspond
to ¢ = 60% and ¢ = 90%, and best is at ¢ = 80%.
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6. RELATED WORK

Collaborative filtering. Collaborative filtering [1, 13] is
the de-facto standard in recommender systems. These meth-
ods recommend an item ¢ to a user w if the item is liked by
other users whose preferences are similar to that of u. Since
they rely on the historical ratings or preferences provided
by users, their performance is poor for cold-start users. As
a simplistic solution, hybrid approaches were proposed that
combine collaborative filtering with content-based methods
which learn similarities among items based on features of
the items themselves. The hybrid approaches were shown
to perform better than collaborative filtering for cold-start
recommendations by Schein et al. [24]. Taking hybrid ap-
proaches a step forward, Park et al. [21] proposed an ap-
proach that constructs tensor profiles for user/item pairs
from their respective features and performs tensor regres-
sion to minimize pairwise preference loss. They show that
with meta-data about both users and items, cold-start rec-
ommendations can be made even for recommending a new
item to a new user.

Cold-start problem. There have been other approaches
proposed for the cold start problem, for instance, the use
of filterbots by Park et al. [22]. Filterbots are bots that in-
ject ratings into the recommender system to reduce the data
sparsity. This simple approach improves cold-start recom-
mendations, however, inserts “fake” ratings into the system.
In a different setting, Leroy et al. [16] studied the cold-start
problem for recommending friends to new users in a social
network using group membership preferences of the users.

Social information. Closer to our setting of recommender
systems with access to additional social information, Lam et
al. [15] and later Jamali et al. [12] studied how incorporating
social data about users can improve collaborative filtering
results. In particular, Jamali et al. focus on cold-start rec-
ommendations and show that their method, TrustWalker,
which performs a random walk on the social network among
users to find items to recommend improves the F-measure on
predicted ratings of cold start users by about 50% compared
with standard item-based collaborative filtering. The results
of Jamali et al. validate the usefulness of social data for im-
proving the cold-start recommendations. Unlike the offline
setting of [12] our interest is centered on fast online learn-
ing of cold-start user preferences. Finally, Noel et al. [19]

recently proposed a social collaborative filtering framework,
however, they do not focus on the cold-start problem.

Multi-armed bandits. One of the key results in the bandit
literature [14] states that the asymptotic expected regret for
any stochastic bandit is always Q(log t), where ¢ is the num-
ber of steps. Policies based on Upper Confidence Bounds
achieved this lower-bound up to a constant multiplicative
factor [5, 4] while being simple to implement. They were
further improved under additional assumptions, e.g., statis-
tical [3] or leveraging an underlying structure space between
arms [20, 6].

Bandits for recommendations. Bandits have been widely
used in online advertising and content recommendation set-
tings. Refer to [2] for an overview of bandits algorithms
in recommender systems. Li et al. [17] applied Linearly
Parametrized Bandits [9, 23] to personalized news recom-
mendations. Recent works [18, 7] have shown the useful-
ness of side-observations to improve learning rates: in this
setting, a reward is earned from the arm pulled at time ¢,
but side observations reveal (without earning) the feedback
from neighbors of that arm as well. In our present setting,
we “mix” the reward estimates from playing an arm at a
cold-start user with that of the neighbor(s) of the cold-start
user. To the best of our knowledge, this work is the first
to propose mixing strategies for combining bandits in an
ego-centric network.

7. CONCLUDING REMARKS

In this work we study the problem of cold-start users in
recommender systems. We formulate the problem with the
multi-bandit multi-arm framework, popular in the online
learning community. We proposed novel strategies for mix-
ing bandits embedded in egocentric networks to learn them
faster, which corresponds to faster learning of preferences
of cold-start users. Most previous works on the cold-start
problem that extend collaborative filtering methods focus on
achieving high quality (often, RMSE) in recommendations
made to cold-start users. In contrast, we focus on making
high quality recommendations quickly. In addition, we pro-
pose novel evaluation metrics that can be used to effectively
compare the learning rates of two bandit strategies.

A concrete next step of our work is to study different ways
of selecting artists as mentioned in Section 2.3. For instance,
instead of only considering artists that all neighbors like, one
can consider those that a majority of neighbors have like, or
those that are in the top-10 of any neighbor. As discussed
in [17], evaluating bandit strategies is challenging. It would
be interesting to get access to multiple snapshots of data
from a recommender service and evaluate our algorithms
on real cold-start users. Further, it would be interesting
to find the features that discriminate users on which one
strategy does better than the other. In particular, which
strategy performs well when the given user’s interests match
that of neighbors’, or the interests are aligned with only
one neighbor, or if they are orthogonal to the neighbors’
interests.

Our work on the cold-start problem is just one example
of using multiple multi-armed bandits embedded in a social
network. Several applications such as user profiling, online
advertising, and advertising on social networks can benefit
from this framework.
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