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ABSTRACT
Link prediction is used by many applications to recommend new
products or social connections to people. Link prediction lever-
ages information in network structure to identify missing links or
predict which new one will form in the future. Recent research
has provided a theoretical justification for the success of some
popular link prediction heuristics, such as the number of com-
mon neighbors and the Adamic-Adar score, by showing that they
estimate the distance between nodes in some latent feature space.
In this paper we examine the link prediction task from the novel
perspective of network flows. We show that how easily two nodes
can interact with or influence each other depends not only on
their position in the network, but also on the nature of the flow
that mediates interactions between them. We show that different
types of flows lead to different notions of network proximity, some
of which are mathematically equivalent to existing link prediction
heuristics. We measure the performance of different heuristics on
the missing link prediction task in a variety of real-world social,
technological and biological networks. We show that heuristics
based on a random walk-type processes outperform the popular
Adamic-Adar and the number of common neighbors heuristics in
many networks.

1. INTRODUCTION
Link prediction is a the heart of many graph mining and
network analysis applications, including recommendations
for new products or social connections. The link prediction
task can be stated as follows: given a network, or a graph,
predict what edges will form between nodes in the future.
Alternatively, in domains where data collection is costly and
the resulting graphs are noisy and incomplete, link predic-
tion can be used to identify unobserved edges. A variety of
heuristics have been proposed for the link prediction task,
including those based on various notions of network prox-
imity, such as neighborhood overlap [8], the Adamic-Adar
score [1], which weighs the contribution of each common
neighbor by the inverse of the logarithm of its degree, and
number of paths connecting the two nodes. Several studies
have compared the effectiveness of these heuristics on link
prediction task in real-world networks [17, 20, 14, 27, 31, 11,
3, 19]. Generally, simple local measures, such as the number
of common neighbors and the Adamic-Adar score, work best
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in predicting new or missing links [17, 20]. Recently, Sarkar
et al. [25] explained why these heuristics work so well. They
envision nodes residing in some latent space, where more
similar nodes are closer to one other than dissimilar nodes,
and prove that link prediction heuristics, such as the num-
ber of common neighbors, estimate distance between nodes
in the latent space. In this view, specific network topology
is a realization of the positions of the nodes in the latent
space; therefore, network proximity estimates the true dis-
tance between nodes.

We argue that link prediction heuristic should take into ac-
count not only how close two nodes are in a network, but
also their ability to exchange information or to influence each
other. This is determined by the nature of the flow taking
place on the network, i.e., the process by which information
or influence is transmitted from one node to another. The
flow shapes our view of who the important nodes are [4, 15],
as well as the community structure of the network [5, 16]. In
this paper we show that network flows also affect the notion
of network proximity. Consider a social network in which
people pass around a book. Each person chooses one friend
and sends her the book. After finishing the book, the friend
will mail the book to one of her friends. Used-good circu-
lation, money exchange, and Web surfing are all examples
of such one-to-one interactions, which can be modeled as a
random walk. In the book exchange network, two individu-
als can be considered to be socially close even if they don’t
know each other, if a book mailed by one is often received
by the other, and vice versa. In other words, the probabil-
ity that a random walk originating at one node reaches the
other measures the proximity of two nodes in the network.
Heuristics based on the random walk-based proximity were
used by [14, 3] in the link prediction task.

The spread of a virus through a population, on the other
hand, cannot be modeled as a random walk. In an epi-
demic, rather than picking one neighbor, a node attempts
to infect all neighbors. As we show in this paper, network
proximity in this case can be measured by the number of
common neighbors, one of the most common link prediction
heuristics. Still other network flows are possible. Consider a
flow in which a node’s capacity to receive incoming messages
is limited by its bandwidth. As a consequence, the more in-
coming connections (in-links) a node has, the less likely it
is to receive a message from an arbitrary connection, e.g.,
because it has already reached the limit of its capacity by
processing other incoming messages. This alters the char-



acter of the flow and leads to novel measures of network
proximity.

In this paper, we define a flow-based network proximity and
introduce several novel proximity measures based on differ-
ent types of flow (Section 3). We relate well known link
prediction heuristics to these proximity measures and intro-
duce new ones that have not previously been considered in
literature. Our approach unifies link prediction heuristics
by viewing them as instances of network proximity under
different network flows. In Section 4 we compare the perfor-
mance of the new and existing heuristics on the missing link
prediction task in a variety of real-world social, technological
and biological networks. Our work adds a new dimension to
this popular problem by connecting different link prediction
heuristics to dynamic flows taking place on the network.

2. BACKGROUND
We represent a network as a directed, unweighed graph
G = (V, E) with V nodes and E edges. An example of a
directed graph is shown in Fig. 1, where an edge direction
indicates the direction of the flow of information or influ-
ence. Nodes receive messages from their in-neighbors and
send messages to their out-neighbors. Such a graph could
represent the Web, with nodes as Web pages and edges as
hyperlinks between pages, or airports linked by direct routes,
etc.

Figure 1: Example of a directed graph.

The adjacency matrix of the graph is defined as: A(u, v) =
1 if (u, v) ∈ E; otherwise, A(u, v) = 0. The set of out-
neighbors of u is Γout(u) = {v ∈ V |(u, v) ∈ E}, and the
out-degree of u is

dout(u) =
X
v∈V

A(u, v) = |Γout(u)|.

Similarly, Γin(u) represents the set of in-neighbors of u, and
din(u) is the in-degree of u. The total degree of the node
is d(u) = dout(u) + din(u). In undirected graph, A(u, v) =
A(v, u), and the neighborhood of u, Γ(u), consists of nodes
that are connected to u: Γ(u) = {v ∈ V |(u, v) ∈ E}.

Intuitively, the closer the nodes are in a network, the easier
it is for them to exchange information or to influence one an-
other. Link prediction studies leveraged this intuition by us-
ing measures of network proximity to predict new or missing
links. Some of the measures used in previous studies [17, 20,
31] are listed in Table 1 and include the number of common
neighbors (CN), fraction of common neighbors, or Jaccard
(JC) coefficient, Adamic-Adar (AA) score [1], which weighs
each common neighbor by the inverse of the logarithm of its

Table 1: Heuristics used in link prediction appli-
cations. Popular existing link prediction heuristics
appear above the double line: number of common
neighbors, Jaccard and Adamic-Adar score, and re-
source allocation. Below the double line are link
prediction heuristics introduced in this paper.

name symbol
common neighbors CN

Jaccard score JC
Adamic-Adar AA

resource allocation RA

conservative CS
(random walk)

limited-bandwidth lCS
conservative

non-conservative NC
(epidemic)

limited-bandwidth lNC
non-conservative

hybrid conservative hCS
hybrid limited-bandwidth hlCS

conservative
hybrid non-conservative lNC

hybrid limited-bandwidth hlNC
non-conservative

degree, and resource allocation (RA) measure [31], which
weighs each common neighbor by the inverse of its degree.

Sarkar et al. [25] explained why these simple heuristics work
well in the link prediction task. They imagine nodes embed-
ded in a metric latent space, each dimension of which cor-
responds to some feature that nodes share. Nodes that are
close to each other in the latent space are more similar than
more distant nodes. They showed that some of the popular
link prediction heuristics, such as the number of common
neighbors, provide a good bound for the distance between
nodes. However, their work did not account for the nature
of the flow between nodes and its effect on how readily they
can exchange information or influence each other.

3. NETWORKS FLOWS AND PROXIMITY
The likelihood that information or influence will reach the
target node from the source node depends not only on net-
work topology, but also on how information flows on the
network. The flow is a stochastic dynamic process whose
transitions are mediated by the interactions between nodes.
Consider a graph of hyperlinked Web pages, for example.
The process of browsing this graph is best described as a
random walk. At each page, a Web surfer picks one of the
hyperlinks to a neighbor of that page in the Web graph and
navigates to it. The flows in the air transportation network
and one-to-one social interactions, such as book exchange,
can also be modeled as a random walk. Not all flows, how-
ever, can be modeled by a random walk, and different types
of interaction lead to different notions of proximity even in
the same network. Below we discuss several different types
of network flows and define proximity measures for each type
of flow.



3.1 Random walks
A random walk is a stochastic process that starts at some
node and transitions to a randomly chosen out-neighbor of
the node. Random walks are used to model a variety of phys-
ical processes based on diffusion, but also social processes,
such as Web surfing, money and used goods exchange. These
can be modeled as one-to-one interactions, since each person
must first choose one out-neighbor to interact with. Because
random walks conserve the probability distribution of the
stochastic process, we call network flows based on random
walks conservative.

Random walk-based proximity measures compute the proba-
bility a random walk starting at source node u will reach the
target node v through any path in the graph [14]. A walker
starting at node u can reach v only through a common neigh-
bor z. While there could be longer paths that connect u to
v, a local measure considers only paths of length two that go
through intermediate nodes such as z or z′ in Fig. 1. A ran-
dom walker moving from u to v first needs to pick an edge
that will take it from u to z, which it will do with proba-
bility 1/dout(u). Then it has to pick an edge that will take
it from z to v, which it will do with probability 1/dout(z).
Since we are interested in an edge-based measure, either u
or v could be the source of the message. Therefore, we have
to make the measure symmetric by considering flows from
either direction. Symmetrizing, we obtain a random walk-
based proximity measure, that we refer to as conservative
measure, which gives the probability a random walk will
reach u from v or vice versa through paths of length two:

CS =
1

2

hX
z∈∆

1

dout(u)dout(z)
+
X

z∈∆′

1

dout(v)dout(z)

i
. (1)

This measure is defined in terms of the directed neighbor-
hoods of the source u and target v nodes:

∆ = Γout(u) ∩ Γin(v)

∆′ = Γin(u) ∩ Γout(v).

In an undirected graph, neighborhood overlap is defined as
∆̄ = Γ(u) ∩ Γ(v), and conservative proximity measure re-
duces to

CS =
1

2

h 1

d(u)
+

1

d(v)

iX
z∈∆̄

1

d(z)
. (2)

Like the Adamic-Adar score [1] and resource allocation mea-
sure [31], conservative proximity downweighs the neighbors’
contributions to proximity by their degree.

3.2 Bandwidth-limited random walks
In the discussion above, we assumed that the target node
has unlimited capacity to receive incoming messages. This
may not always be true. Suppose a Web server can pro-
cess a limited number of http requests, in an extreme case
only one. Then the probability that a Web surfer starting
at page u will reach z depends on whether the Web server
in charge of page z is available to process the incoming page
request. If it is already processing another request received
through an incident hyperlink, it will reject the current re-
quest. If walkers arrive at random, the probability a walker
will successfully transition to the target node is inversely
proportional to the number of target node’s incoming edges.

In Fig. 1, node z has one incoming edge. A walker starting
at u will successfully transition to z. In contrast, z′ has five
incoming edges; therefore, a walker attempting a transition
to z′ will be successful one fifth of the time.

Nodes’ limited bandwidth alters the flow of messages on the
network. Now, in order for a message to get from u to z,
not only must u pick an edge that will get the message to z,
but z must also have the bandwidth to receive that message.
We model the effect of limited bandwidth by weighing the
probability the node will receive a message by the inverse
of its in-degree 1/din(z). The proximity measure for nodes
interacting via limited-bandwidth random walks is:

lCS =
1

2

hX
z∈∆

1

dout(u)din(z)dout(z)din(v)

+
X

z∈∆′

1

dout(v)din(z)dout(z)din(u)

i
.

3.3 Epidemics
Now imagine that information flows on a network not via
one-to-one interactions, which can be modeled as a random
walk, but via one-to-many broadcasts, which can be modeled
as an epidemic process. Epidemics are used to describe many
types of social processes, including the spread of a disease
or innovation in a social network. In contrast to a random
walk, in an epidemic, a node attempts to infect, or broadcast
a message to, all of its out-neighbors. Because epidemics do
not have a conserved quantity associated with it, we call
such flows non-conservative.

In Fig. 1, for a message to get from node u to v via epidemic
interactions, first u broadcasts it to its out-neighbors, in-
cluding z, and then z broadcasts it to its own out-neighbors.
Probability of the message being transmitted from one node
to another is one. Therefore, symmetrized epidemic-based
proximity measure is:

NC =
1

2

hX
z∈∆

1 +
X

z∈∆′

1
i

=
1

2

ˆ
|∆|+ |∆′|

˜
. (3)

This measure counts the expected number of times a mes-
sage is received and is identical to the neighborhood overlap
measure CN . While this measure was originally motivated
by the intuition that when people have many friends in com-
mon, they are more likely to attend the same events and be
in the same community, therefore, considered “close” [8], our
work shows that it also can be derived from the principles
of one-to-many interactions, of which social interactions are
a prime example.

3.4 Bandwidth-limited epidemics
A node’s limited capacity to receive incoming messages can
also affect dynamics of an epidemic. Consider, as an ex-
ample, the spread of information in a social network, which
is often modeled as an epidemic process. However, peo-
ple have finite attention [13], or effort they are willing to
spend on some task, including responding to messages they
receive from their friends. Not only is the attention lim-
ited, but people must also divide it among all friends [10].
Hence, a person’s probability to respond to a message from a
friend decreases with the number of friends she follows [10].



For simplicity, we assume that a node’s attention, or band-
width, is distributed uniformly over all in-neighbors. We
model the effect of limited bandwidth by weighing the prob-
ability the node will receive a message by the inverse of its
in-degree 1/din(z). In an example in Fig. 1, node z has one
in-neighbor, and is able to receive all messages that it sends.
In contrast, node z′ has five in-neighbors, and will receive a
message that an in-neighbor sends only 20% of the time.

Nodes’ limited bandwidth alters the nature of epidemic flow
on the network, and how easily nodes can communicate or
influence each other. The resulting proximity between nodes
can be written as:

lNC =
1

2

"X
z∈∆

1

din(z)din(v)
+
X

z∈∆′

1

din(z)din(u)

#
. (4)

In undirected graphs, this reduces to:

lNC =
1

2

»
1

d(u)
+

1

d(v)

– X
z∈Γ(u)∩Γ(v)

1

d(z)
,

which is identical to conservative proximity (CS) in undi-
rected networks (Eq. 2).

3.5 Hybrid flows
In the examples above we considered pure flows, in which all
nodes interacted using the same rules. This need not always
be the case: in some cases a flow could be hybrid, composed
of flows of different types. While a great variety of hybrid
flows are possible, the most useful ones to consider are those
in which the source and target nodes broadcast message via
epidemic diffusion and do not have any bandwidth limita-
tions, while their neighbors continue to be bound by the
rules of the respective flow. One useful feature of this type
of hybrid flow is that the resulting proximity measure does
not contain the properties of the source and target nodes,
e.g., their in-degree, and is, therefore, symmetric. Some of
the more popular link prediction heuristics, such as Adamic-
Adar score and RA, are independent of the properties of
the end point nodes and only consider the properties of the
neighboring nodes.

Hybrid conservative proximity measures the likelihood a mes-
sage sent by the source node will be received by the target
node (and vice versa) when the source node broadcasts the
message, which is relayed to the target node by the com-
mon neighbors via a random walk. The probability that a
common neighbor z forwards the message to the target node
is proportional to inverse of z’s out-degree. Hence, hybrid
conservative proximity is:

hCS =
1

2

hX
z∈∆

1

dout(z)
+
X

z∈∆′

1

dout(z)

i
. (5)

In an undirected network, this becomes

hCS =
X
z∈∆̄

1

d(z)
.

This measure is identical to the resource allocation measure
RA shown by Zhou et al. [31] to give good performance on
the task of predicting missing links in several real-world net-
works, including the electric power grid, router-level Internet
graph, and US air transportation network.

Similarly, proximity measures for other types of hybrid flows
that do not include the in- and out-degree of the source and
target nodes can be written as:

hlCS =
1

2

hX
z∈∆

1

din(z)dout(z)
(6)

+
X

z∈∆′

1

din(z)dout(z)

i
hNC =

1

2

ˆ
|∆|+ |∆′|

˜
(7)

hlNC =
1

2

"X
z∈∆

1

din(z)
+
X

z∈∆′

1

din(z)

#
. (8)

Note that non-conservative proximity is the same as the hy-
brid non-conservative proximity. Also, in undirected net-
works, there is no distinction between hybrid limited-bandwidth
non-conservative proximity and hybrid conservative proxim-
ity:

hlNC =
X
z∈∆̄

1

d(z)
= hCS = RA.

4. EMPIRICAL STUDY
Missing link prediction task has been used to evaluate link
prediction heuristics on networks for which temporal infor-
mation about creation of edges is not available [31, 20]. This
task has other applications in network analysis, for example,
predicting edges in partially observed networks for which
obtaining complete data may be infeasible or prohibitively
expensive, for example, criminal networks.

4.1 Missing Link Prediction Task
Each trial of the missing link prediction task is composed
of the following steps. First, we randomly remove 10% of
all edges and assign them to the test set Etest. The re-
maining 90% of links comprise the training set, the graph
Gtrain = (V, Etrain). While removing the edges, care is
taken to ensure that the graph remains connected, i.e., delet-
ing an edge will not cause the node to become disconnected
from the rest of the graph and node should have a minimum
degree of 2 after removal of an edge. We then compute net-
work proximity using a given link prediction heuristic for all
pairs of nodes |V ×V −Etrain| and rank them in decreasing
order. We take the top-M predicted edges Epredicted(M)
and score the prediction based on how many of them are
correct: correct(M)=|Epredicted(M)

T
Etest|.

We evaluated the performance of metrics in the link predic-
tion task using the Receiver Operating Characteristic (ROC)
Curve, which has been extensively used in data mining and
machine learning research.The ROC curve is plotted using
the fraction of true positives (TP Rate) vs. fraction of false
positives (FP Rate) at different values of experimental pa-
rameter. For our experiment, we computed the two ratios
at varying values of M :

TP Rate@M = correct(M)/Etest

FP Rate@M = (M − correct(M))/(0.9 · E − Etrain − correct(M))

We repeat the steps above for a different set of randomly re-
moved links. The performance of a given link prediction



Table 2: Networks studied in the missing link pre-
diction task in this paper and their properties.

network nodes edges missing density
social networks

dolphins 62 159 16 0.084
email 1133 5452 545 0.0085
jazz 198 2742 274 0.14

connect 1095 7825 783 0.014
hep-th 8710 14254 1425 0.0003

netscience 1461 2742 274 0.0013
imdb 6260 98235 9824 0.005

technological networks
us air 332 2126 212 0.0193

power grid 4941 6594 660 0.0004
biological networks

protein 1870 2277 228 0.0013
c. elegans 453 2040 204 0.02

heuristic is given as Area under the ROC curve (AUC),
which allows us to compare the performance of different
proximity heuristics.

4.2 Data Sets
We conducted experiment on disparate undirected datasets
belonging to broadly 3 categories: Social, Technological
and Biological networks. Table 2 lists some of the statistics
of the datasets.

Social networks. We studied co-authorship networks of a)
theoretical physicists (hep-th) and b) researchers working
in network science (netscience).1 Each node is a scientist,
and an edge between two scientists exists if they coauthor
a paper together. The hep-th dataset was constructed on
the basis of authors list of preprints available in Los Alamos
e- print archive in High-Energy Theory particles area in
physics between Jan 1, 1995 and December 31, 1999 [22].
The netscience dataset is based on preprints in the area of
Network Science till May 2006 [23].

We also study the e-mail2 communication network of URV
University in Tarragona, Spain collected over a period of 3
months. This dataset contains around 1700 users varying
from faculty, graduate students to administrators and tech-
nicians. Bulk emails which were sent to more than 50 recipi-
ents were excluded, as well as unidirectional exchanges, e.g.,
if A has sent a mail to B but B hasn’t sent a message back
to A or vice versa. An edge between two people signifies at
least one email message was exchanged between the nodes
from both sides [9].

The jazz3 dataset contains a network of Jazz bands per-
forming from 1912 to 1940. This dataset was obtained from
Red Hot Jazz Archive.4 The database lists the name of the
musicians who performed in each band at least once in that
period. An edge is created between the two Jazz bands if

1http://www-personal.umich.edu/~mejn/netdata/
2http://deim.urv.cat/~aarenas/data/welcome.htm
3http://deim.urv.cat/~aarenas/data/welcome.htm
4www.redhotjazz.com

they have at least one musician common in both the bands
[6].

The dolphin5 dataset contains the social network of Bot-
tlenose dolphins breeding in Doubtful Sound, New Zealand.
This data was collected for the research program of the Uni-
versity of Otago-Marine Mammal Research Group. Network
is compiled from the frequent and statistically significant so-
cial associations observed amongst dolphins [21].

The movie actor network, imdb6, was obtained from In-
ternet Movie Database website, which contains records of
movies and their actors since 1890s. We have built a partial
network of first 1000 movies where actors who have worked
in the same movie are connected to each other.

The connect dataset represents face-to-face interactions be-
tween attendees of the 2009 Grace Hopper Conference. Each
participant of the conference was given a badge. When they
entered a conversation, the participants’ badges were read,
establishing an edge between them.7

Technological networks. US power grid8 dataset con-
tains a network of generators, transformers and substations
in the western US power grid, which are physically connected
by high-voltage transmission lines [29]. The second techno-
logical network we study is us air,9 which contains airports
connected by flights.

Biological networks. We also investigated biological net-
works, including the neural network of c. Elegans nema-
tode,10 which contains neurons that are physically bound by
either a synapse or gap junction [29]. Another one is the
protein network of yeast, which represents interactions be-
tween proteins observed in complex molecular interactions
from data obtained from two-hybrid analysis [12].

4.3 Results
In this section we report the performance of link predic-
tion heuristics on the missing link prediction task in these
networks. Since all the networks studied here are undi-
rected, some of the heuristics are mathematically equivalent:
CS = lNC, RA = hCS = hlNC, and CN = NC = hNC.

Missing link prediction task is easiest in social networks,
as shown in Figure 2, with AUC values approaching 1.0 in
some cases. Jaccard score JC performs better than other
heuristics only for jazz and dolphins datasets. In other
networks, Adamic-Adar AA and resource allocation heuris-
tic RA produce best results, because they correctly identify
a higher fraction of missing links for the same number of
predictions than other heuristics. Both random walk-based
measure CS (and lNC) and its limited-bandwidth version

5http://www-personal.umich.edu/~mejn/netdata/
6http://www3.nd.edu/~networks/resources.htm
7Data provided courtesy of Tracy Champ.
8http://www-personal.umich.edu/~mejn/netdata/
9http://vlado.fmf.uni-lj.si/pub/networks/data/

10http://www-personal.umich.edu/~mejn/netdata/

http://www-personal.umich.edu/~mejn/netdata/
http://deim.urv.cat/~aarenas/data/welcome.htm
http://deim.urv.cat/~aarenas/data/welcome.htm
www.redhotjazz.com
http://www-personal.umich.edu/~mejn/netdata/
http://www3.nd.edu/~networks/resources.htm
http://www-personal.umich.edu/~mejn/netdata/
http://vlado.fmf.uni-lj.si/pub/networks/data/
http://www-personal.umich.edu/~mejn/netdata/


Figure 2: Performance of different link prediction
heuristics on missing link task in social networks

Figure 3: Performance of different link prediction
heuristics on missing link task in the technological
networks

lCS, along with Jaccard score (except for the jazz network),
perform considerably worse than other heuristics.

Similar conclusions apply to the missing link prediction task
in technological networks, shown in Figure 3. Resource allo-
cation RA and AA heuristics produce best results, although
in the power grid network, the common neighbors heuristics
CN has better performance initially. Interestingly, links in
the us air network are ten times easier to predict than in
the power grid network.

In biological networks, shown in Figure 4, Jaccard score JC
performs much worse than other heuristics, while RA and
hlCS lead to best performance. In the protein network,
performance of the Adamic-Adar heuristic AA is similar to
that of RA and hlCS.

Figure 4: Performance of different link prediction
heuristics on missing link task in the biological net-
works

4.4 Discussion of results
We compare the overall performance of different link predic-
tion heuristics by aggregating AUC scores, Figure 5, across
all datasets within each domain, giving us a sense of their
relative performance. We expected epidemic-like heuristics,
such as CN to work well in social networks, and random
walk-based heuristics CS and RA to give better results in
biological and technological networks. However, in reality,
performance of different heuristics is far more nuanced. In-
terestingly, in social networks, there is far less difference in
the performance of different link prediction heuristics than
in the other domains, suggesting it is less critical which spe-
cific heuristic is used for the prediction task.

The resource allocation measure RA (and by extension hCS
and hlNC) works consistently best across all domains, fol-
lowed by AA and hlCS. The common neighbors heuristic
CN (and also NC and hNC), which has been used widely
in social network applications, does not work at all well in
biological networks. Jaccard (JC), random walk-based mea-
sure CS (and lNC) and limited-bandwidth random walk
(lCS) lead to the worst performance in all domains. Both
RA and AA weigh the contribution of the common neigh-
bors by the inverse of their degree (RA) or log of the degree
(AA), which will tend to suppress contributions of high de-
gree neighbors. However, penalizing high-degree source and
target nodes, as is done by CS measure, does not produce
good results. In fact, the limited bandwidth measure lCS,
which further penalizes high-degree source and target nodes,
produces even worst results. Surprisingly, its hybrid ver-
sion hlCS, which penalizes the contribution of high-degree
neighbors by the square of their degree, gives results that
are competitive with RA and AA, in fact, it beats AA in
biological networks.

5. RELATED WORK
In social networks, network proximity can be literally inter-
preted as social closeness. In his seminal paper Granovet-
ter [8] argued that social proximity, or tie strength, which
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Figure 5: Aggregated performance of different link prediction heuristics.

can be defined as the intensity and the depth of interaction
between two people, can be estimated from their local net-
work structure. He proposed the number of common neigh-
bors as the empirical measure of tie strength. Subsequently,
a study of a massive mobile phone network established a
correlation between social tie strength and network proxim-
ity [24]. This study measured tie strength by the frequency
and duration of phone calls between two people, and it mea-
sured proximity by the fraction of common neighbors (JC).
In this paper we extend Granovetter’s notion of proximity
to define how easily two nodes can interact of influence each
other, which we argue also depends on the dynamics of in-
teraction between nodes.

Several researchers have studied the link prediction task, in
which they used network proximity to identify unobserved
or missing links or to predict future links in a network.
These studies used a number of measures, including the
number and fraction of common neighbors, Adamic-Adar
score [17, 20], as well as a measure based on resource alloca-
tion (RA) [31], and those based on the random walk, such
as effective conductance [14], Local Random Walk [18], Su-
pervised Random Walk [2] and escape probability [27, 28].
Although some measures were shown to perform better than
others, no explanation was given for these differences.

There have been another set of recent studies which have
used topological or attribute features for link prediction.
Huang [11] proposed to look at clustering coefficient for pre-
dicting links while Koren et al. [14] used “cycle-free effective
conductance” measure for improved link prediction. Zheleva
et al. [30] used community information of friendship ties and
family circle information to assist in predicting links. Gong
et al. [7] also looked at network structure and node attribute
for improving the performance of both link prediction and
attribute inference problem. Another interesting work by
Tang et al. [26] leveraged information from one network of
coauthorship with known advisor-advisee relationship to im-
prove prediction in a similar enterprise email network. Al-
though these studies showed encouraging results but they
are not generalizable for each network and may require cer-
tain domain knowledge to select the required attributes or
information from the network.

On the link prediction task in the co-authorship networks,
for example, Adamic-Adar score gave best results [17], while
on the missing link prediction task in power grid and trans-

portation networks, the linear version (RA) of Adamic-Adar
performed best [31]. Sarkar et al. [25] explained why CN
and AA heuristics work so well. They envision nodes resid-
ing in some latent space, where more similar nodes are closer
to one other than dissimilar nodes, and prove that CN and
AA estimate distance between nodes in the latent space. In
this paper we argue that another dimension that has to be
considered in the link prediction task is the nature of inter-
actions between nodes. Each type of interaction, whether
mediated by random walks or epidemics, leads to a differ-
ent notion of network proximity, and therefore, a different
link prediction heuristic. We mathematically defined heuris-
tics based on different types of interactions, related them to
known link prediction heuristics, and evaluated their per-
formance on a variety of real-world networks. Like [20], we
find that RA measure performs best on many datasets and
relate it to hybrid conservative flows in networks.

6. CONCLUSION
In this paper we studied the link prediction task from the
novel perspective of network flows. The flow, which me-
diates interaction between network nodes, determines how
easily two nodes can communicate with or influence each
other. We argued that network flows are linked to notions
of network proximity — the closer two nodes are in a net-
work, the easier they can interact or influence each other —
with different flows leading to different notions of network
proximity. We mathematically specified network proximity
measures associated with different types of flows, includ-
ing random walks, epidemics, limited-bandwidth walks and
epidemics, and hybrid flows that are a combination of other
flows, and related these to popular link prediction heuristics.
Our work unifies different link prediction heuristics by view-
ing them as instances of network proximity under different
network flows. We used these heuristics to predict missing
links in a variety of social, technological and biological net-
works. Large variance in performance of different heuristics,
especially in biological and technological networks, suggests
that care should be taken in selecting an appropriate mea-
sure for each network. While the newly defined heuristics
measures did not beat existing ones in the missing link pre-
diction task, our work motivates these heuristics in terms of
a flow-based framework. We postulate that the difference in
performance of different heuristics lies in how well each one
captures the type of flow taking place on the network.
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