
CUT: Community Update and Tracking in Dynamic Social
Networks

∗

Hao-Shang Ma
National Cheng Kung University

No.1, University Rd., East Dist., Tainan City ,
Taiwan

ablove904@gmail.com

Jen-Wei Huang
National Cheng Kung University

No.1, University Rd., East Dist., Tainan City ,
Taiwan

jwhuang@mail.ncku.edu.tw

ABSTRACT
Social network exhibits a special property: community struc-
ture. The community detection on a social network is like
clustering on a graph, but the nodes in social network has
unique name and the edges has some special properties like
friendship, common interest. There have been many cluster-
ing methods can be used to detect the community structure
on a static network. But in real-world, the social networks
are usually dynamic, and the community structures always
change over time. We propose Community Update and
Tracking algorithm, CUT, to efficiently update and track
the community structure algorithm in dynamic social net-
works. When the social network has some variations in dif-
ferent timestamps, we track the seeds of community and
update the community structure instead of recalculating all
nodes and edges in the network. The seeds of community is
the base of community, we find some nodes which connected
together tightly, and these nodes probably become commu-
nities. Therefore, our approach can quickly and efficiently
update the community structure.

Categories and Subject Descriptors
H.3.4 [Information systems applications]: Data min-
ing—Clustering ; J.3.2 [Collaborative and social com-
puting]: Collaborative and social computing design and
evaluation methods—Social network analysis

General Terms
Theory

Keywords
Social Network Analysis, Community Detection, Dynamic
Algorithm

1. INTRODUCTION
∗SNAKDD’13, August 11 2013, Chicago, IL, USA Copyright
2013 ACM 978-1-4503-2330-7/13/08$15.00.

Social networks could be modeled as graphs with a set of
nodes and edges. Each node represents an individual and
the edge between two nodes represent the relationship or in-
teraction of these nodes. In addition, social networks exhibit
a very special property, the community structure [1]. Mem-
bers in the same community of a social network usually have
more common relationships such as interests, friends, topics
of discussion or topics of research. Members usually interact
with members in the same community more frequently than
with members outside of their community. The detection
of communities in a network usually chooses an objective
function to gather network nodes into groups in such a way
that nodes in the same group are densely connected to one
another. Different objective functions may lead to different
sizes and numbers of communities in a network. Knowing
the community structure could help us to understand the
properties of a network. For example, a community in a
coauthorship network is the set of authors sharing the sim-
ilar research topic.
One of challenges associated with community detection is
the dynamic network. In fact, the real-world social net-
works are usually not static networks. The social network
usually changes its own structure with the time. The rela-
tionship between two nodes may change or disappear, and
some nodes may join or leave the social network. Conse-
quently, the communities are altered with the variations of
the social network over time. The community may grow,
shrink, split or merge. When some nodes join or leave a
community, the community grows or shrinks. If a big com-
munity becomes two or more small communities, the big one
splits. Those small communities can also merge into a big
one. Generally, we can know the community dynamics by
tracking communities and identifying community represen-
tatives [2] [4] [17]. There are many research proposed for
detecting communities in a static network [5] [8] [11]. Even
though we can use their methods to find new community
structures in a dynamic social network, any change of the
social network will lead to recalculation of relationships be-
tween nodes and edges. However, the consequent temporal
variation of nodes or edges in a dynamic network is usually
small. If we could only update the communities of a so-
cial network in an efficient way instead of recalculating the
properties of whole network, it would save lots of time. For
this reason, we have to not only detect communities but also
need to track them in order to update the changes efficiently.
In this work, we propose a Community Update and Track-
ing, abbreviated as CUT, algorithm to track the seed of com-
munity in a dynamic social network, and deal with the net-

work variations to update communities at successive times-
tamps. The seed of community is a set of nodes which are
connected to one another very tightly, and can be further
extended to be a larger community. It is more efficient to
track seeds of community than the whole nodes in communi-
ties. Based on the clique percolation method, we define the
seed of community as a set of adjacent k-cliques (k equals
3)in the social network graph. If a 3-clique is shared some
edges with another clique, these two cliques are said to be
adjacent. In order to track seeds of community easily and ef-
ficiently, we transform the original social network containing
nodes and edges into a bipartite graph containing informa-
tion of cliques and the connectivity of those cliques. We give
an serial number to each 3-clique in original graph and trans-
form the number to bipartite graph as nodes in a disjoint
set. Then, we put edges as nodes in another disjoint set in
the bipartite graph. In the bipartite graph, each clique links
to three edges. CUT is able to efficiently find the seeds of
community by traversing the connecting components in that
bipartite graph. When network changing with the time, if
there are some nodes/edges added or removed, we can up-
date them in the bipartite graph and obtain new seeds of
community very quickly. Instead of tracking all communi-
ties, CUT only monitors seeds of community, which makes
CUT more efficiently. Then, the communities in the dy-
namic network are constructed by expanding the seeds of
communities.
The contributions of this work are as follows
1. We define the seeds of community to represent the core of
communities. The seeds of community are most important
parts of communities.
2. We propose a clique bipartite graph, CAB, to represent
the relations of the seeds of community.
3. We design an efficient algorithm, CUT, to update and
track the communities in dynamic social networks.
The experimental results show the advantages of CUT. CUT
can efficiently update the communities and identify the com-
munity structure well. In addition, CUT has particularly
prominent advantage when dealing with large variations of
the network.
The rest of this work is organized as follows. In Section 2,
a brief survey of related works is presented. The proposed
algorithm is introduced in Section 3. Section 4 describes
the experimental results. Finally, the work is concluded in
Section 5.

2. RELATED WORKS
2.1 Static Community Detection
There are several methods proposed to detect the commu-
nity structure in static social networks. Girvan [11] proposed
a community discovery algorithm based on the iterative re-
moval of edges with high betweenness scores. Following this,
to reduce the computational cost of the betweenness-based
algorithm, Newman [12] proposed a fast greedy modular-
ity optimization method. The modularity is a measurement
function to evaluate the overall quality of a graph partition.

Some community detection methods are based on finding
cliques which are complete connected sub-graphs. Palla [8]
proposed a clique percolation method, CPM. Communities
are built up from k-cliques. Two k-cliques are said to be ad-
jacent if they share k-1 nodes, and a k-clique community cor-
responds to a set of k-cliques in which they are all adjacent

to one another. Yang [19] proposed ComTector algorithm to
find all maximal cliques. Then, ComTector converts maxi-
mal cliques to initial partitions and assigns the rest vertices
to the most appropriate partition. Yan [18] proposed an
algorithm to detect disjoint cliques and then merged these
cliques into communities to optimize the modularity.

2.2 Tracking Community Dynamics
Tracking community deviations can discover interesting be-
haviors in evolutionary network and understand the evolu-
tion of community with time. Tantipathananandh [16] pro-
posed a framework for identifying communities by temporal
changes. Kumar et al. [10] presented a model of network
growth to capture singletons, isolated communities, and a
giant component. Chen [4] proposed a method to detect
community dynamics based on graph representatives and
community representatives. Wang [17] presented a core-
based algorithm of tracking community evolution by finding
the most important nodes in a community to represent that
community. Palla [14] used the k-clique percolation tech-
nique to investigate the time dependence of communities on
a large scale social network.

2.3 Dynamic Community Detection
The problem of detecting communities in a dynamic social
network has received much attention. The methods in this
field have a common characteristic. They do not want to
calculate all nodes and edges in the evolutionary network
at each timestamp. Instead, updating existing community
structures to new community structures is the most impor-
tant issue. Cazabet [3] proposed a iLCD algorithm to update
the existing community by two scores. Gregory [9] proposed
a label propagation algorithm, COPRA. Each vertex up-
dates its community by computing a belonging coefficient
and the coefficient is the average coefficient from all of its
neighbors. Nguyen [13] presented QCA algorithm based on
tracing the community structure and processing the network
changes. QCA uses the current community structure, and
deal with the changing cases, new nodes, new edges, nodes
removed, and edges removed to maximize the modularity.
In QCA algorithm, they keep whole community structures
to next timestamp. QCA needs to execute the procedure of
CPM to obtain the remaining communities when every re-
move case. And CPM costs too much time at each updating
procedure.

3. COMMUNITY UPDATE AND TRACKING

ALGORITHM
In this section, we will illustrate the step of CUT algorithm.
Given G = (V, E) an undirected graph with N nodes and
M edges. V is the set of nodes in a graph. E is the set of
edges in a graph. In social networks each node represents
a unique person or item. Two nodes are linked together
if they have some common relationships. Note that we as-
sume the weight of edges are all one, i.e., unweighted graph
in this work. Detecting the community structure of a dy-
namic social network is different to detecting the community
structure of a static network. One of the better ways is to
update the community structure by an efficient algorithm at
different timestamps instead of applying a community detec-
tion procedure in every graph. For this propose, CUT traces
and updates the community structure by previous known in-

Community Update and Tracking

Part1: Initial //Execute only once

Input: nodes and edges at the initial timestamp

1. Find 3-Cliques;

2. FindSeedofCommunity();

Output: seeds of communities of initial social network

Part2: Update and Track

Input: nodes and edges at the next timestamp

1. Detect variations of network;

2. While(there are some changes)

3. UpdateSOC_New();

4. UpdateSOC_Remove();

5. ExtendCommunities();

Output: communities at the current timestamp

Figure 1: Community Update and Tracking Algo-
rithm

1

2

6

3

7

17

12

10

8

11

13

1415

5

9

4

16

18

19

C1 1

2

4 5

73

6

C1

C2

C3

C3 C1 C2

(5,6) (5,7) (6,7) (1,2) (1,4) (2,4) (2,3) (3,4)

(a) Example social network and 3-clique (b) Example of CAB

Figure 2: Example social network and example of
CAB

formation instead of recalculating the relationships between
nodes and edges in the graph. We define seed of community
as the core of community structure. The seed of community
is the most densely connected sub-graph in a community.
CUT has to keep this information at each timestamp. CUT
algorithm contains two parts as Fig. 1
1. At first timestamp, finding the seeds of community as
previous known information .
2. At later timestamps, tracking the seeds of community
and updating them if there are some changes. Then, CUT
extends the seeds of community to finally communities.

CUT detects the community structure on a social network
by running once time of the part 1 of CUT at initial times-
tamp. Then, CUT can get the seeds of community of this
social network. Finally, CUT assigns the remain nodes to
become communities. When the social network changing at
later timestamp, CUT just need to apply the procedure of
tracking and updating part at each timestamp.

3.1 Discovery of seeds of community

FindSeedofCommunity (G,V,E)

Stack A := {}; (start with an empty stack)

1. for each vertex u, set visited[u] := false;

2. push A, v;

3. while (S is not empty) do

4. u := pop A;

5. if (not visited[u]) then

6. visited[u] := true;

7. for each unvisited neighbor w of u

8. push A, w;

9. end if

10. end while

Figure 3: Procedure of finding the seeds of commu-
nity

The first step of CUT is to find 3-cliques. A clique is a strong
connected sub-graph which has the greatest possible edge
density. In principle, we can easily image a community is
consisted by cliques. But the computation cost of detecting
maximum clique is very expensive and depends on the size
of clique. Therefore, we choose the 3-clique based method to
find the seeds of community. There are many methods can
detect all 3-cliques in the graph. We apply the backtracking
algorithm to find all 3-cliques. For example, Fig. 2(a) rep-
resent a 3-clique has a unique id C1, and C1 contains three
node N8, N10, N11 and three edges E8,10, E8,11 and E10,11.
Then, based on the clique percolation method, we build up
the seeds of community from 3-cliques which correspond to
complete (fully connected) sub-graphs of 3 nodes. And we
define the seed of community as the Definition 1.

Definition 1. Seed of community is a collection of 3-cliques.
Each 3-clique share more than one edge with at least an-
other 3-clique in the same seed of community, denoted by
S = {s1, s2, . . . , sn}, it represents the most important sub-
collection of a community.

For easily tracking and updating seeds of community, we
build up Clique Adjacent Bipartite graph, abbreviated as
CAB, to represent these 3-cliques instead of original nodes
and edges in the social network graph. In the original graph,
a 3-cliques has three nodes and three edges. We give an serial
number to represent each 3-clique in original graph. We
treat the serial number of 3-clique as a node in a disjoint
set of CAB. Then, we transform original edges as nodes
to another disjoint set in the CAB graph. In CAB graph,
each clique links to three edges. For example, Fig. 2(b)
shows the CAB of three 3-cliques. There are two disjoint sets
C ={C1, C2, C3} and Eb ={Eb1,2 , Eb1,4 , Eb2,4 , Eb2,3 , Eb3,4 ,

Eb5,6 , Eb5,7 , Eb6,7}. A 3-clique C1 links to three edges, Eb5,6 ,
Eb5,7 , and Eb6,7 , and 3-clique C2 links to Eb1,2 , Eb1,4 , and
Eb2,4 , and 3-cliques C3 links to Eb2,4 , Eb2,3 , and Eb3,4 which
C2 and C3 share the edge Eb2,4 .

By definition 1, CUT finds the 3-cliques which share more
than one edge. CUT joins these adjacent cliques to the same
seed of community. Therefore, using CAB has two reasons as

C1 C2 C3 C4 C5 C6 C7 C8 C9 C10 C11 C12 C13

(1,2) (1,6) (2,6) (12,14) (11,14) (13,14) (11,13) (12,15) (11,15) (10,12) (11,12) (6,8) (6,10) (8,10) (10,11) (8,11) (5,8) (5,11) (5,9)(12,13) (9,11) (8,9)

seed of community

(2,3) (3,6)

C14

S1 S2

Figure 4: Seeds of community in the bipartite graph

New nodes & New edges

Input: seeds of communities(S), new nodes, new edges

Output: new seeds of communities

1. if (there are new cliques Ci) then

2. AddtoBipartiteGraph(Ci, Ei1, Ei2,Ei3);

3. if(Ei1, Ei2,Ei3which any two edges link to

different seeds of communities Si, Sj) then

4. Merge(Si, Sj);

5. else if(Ei1, Ei2,Ei3 which any edge links to any Si
)

6. Join(Si ,Ci);

7. end if

8. endif

Figure 5: Procedure of new nodes or edges case

follows. First, two 3-cliques are connected if they share more
than one edge. Therefore, traversing the connected compo-
nents in bipartite graph can get the seeds of community
efficiently. Second, tracing the bipartite graph and finding
the connected components by depth-first-search algorithm
has great complexity of computation. The connected com-
ponents represent seeds of community in the bipartite graph.
Fig. 3 is the procedure of tracing and finding seeds of com-
munity. Fig. 2(b) shows the seeds of community in bipartite
graph, there are two seeds of community S1 and S2.

3.2 Tracking and updating the seeds of com-

munity
The social network always are changed with the time. There
are some differences in the network between two timestamps.
CUT reserve the seeds of community at each timestamp.
When the new graph coming at current timestamp, CUT
track the seeds of community of previous timestamp. There
are four cases in updating the seeds of community, new
nodes, new edges, nodes removed, and edges removed. In
this section we will discuss them.

3.2.1 New edges and new nodes
Let us consider the first case. If there are new edges added
into graph. CUT sweeps the adjacent edges around the new
edge and combines these edges if there are new 3-cliques
produced by these edges. Then, CUT adds these 3-cliques

1

2

6

3

7

17

12

10

8

11

13

1415

5

9

4

16

18

19

20

21

1

2

6

3

7

17

12

10

8

11

13

1415

5

9

4

16

18

19

(a) New nodes 20 and 21 (b) node 10 removed

Figure 6: Some variations of social network

into seeds of community if they satisfy the definition of the
seed of community. CUT can focus on tracking the seeds
of community effectively. The seeds of community in CAB
are composed by the serial number of 3-cliques and their
associated 3 edges. When CUT tracking the seeds of com-
munity in CAB, CUT does not need consider the nodes in
the original social network. Therefore, CUT can deal with
new nodes and new edges as the same case. The procedure
of new nodes and new edges is showed as the Fig. 5. There
are two dynamics of seeds of community, merge and join.
The join case is the edges of new clique just link to one seed
of community. Another case is merge seeds of community.
CUT check if the edges of new clique which any two edges
link to different seeds of community Si and Sj in the bi-
partite graph, then the two seeds of community are merged
together. For example, as Fig. 6(a), new node 20 and 21
are added into the social network, and edges NE = {NE2,8,
NE5,20, NE9,20, and NE11,21} are added at the same time.
CUT checks if there are new cliques produced, and add these
new cliques into the bipartite graph as Fig. 7 shows. There
are two new cliques C15 and C16 produced by new nodes
and edges. In the bipartite graph, there is a edge Eb2,8 of
new clique links to S2, we can join the clique into S2. In
addition, there are edges Eb2,6 , Eb6,8 let S1 and S2 merge
together.

3.2.2 Nodes removed and edges removed
The second case contains nodes removed and edges removed.
No matter there are nodes or edges removed, the procedure
checks if some removes lead to 3-cliques broken or not. The

C2 C3 C4 C5 C6 C7 C8 C9 C10 C11 C12 C13

(12,14) (11,14) (13,14) (11,13) (12,15) (11,15) (10,12) (11,12) (6,8) (6,10) (8,10) (10,11) (8,11) (5,8) (5,11) (5,9)(12,13) (9,11) (8,9)

seed of community

C16

(5,20) (9,20)

C1

(1,2) (1,6) (2,6)(2,3) (3,6)

C14 C15

(2,8)

S1

Figure 7: New clique are added into bipartite graph

C2 C3 C4 C5 C6 C7 C8 C9 C10 C11 C12 C13

(12,14) (11,14) (13,14) (11,13) (12,15) (11,15) (10,12) (11,12) (6,8) (6,10) (8,10) (10,11) (8,11) (5,8) (5,11) (5,9)(12,13) (9,11) (8,9)

seed of community

C10 C11 C12 C13

11) (8,11) (5,8) (5,11) (5,9) (9,11) (8,9)

C1

(1,2) (1,6) (2,6)(2,3) (3,6)

C14

S1 S2S3

Figure 10: Cliques and edges are removed from seeds of community

procedure of remove nodes and remove edges as shown in
the Fig. 8. If there are 3-cliques broken, CUT deletes the
3-cliques from the bipartite graph of seeds of community.
Then, CUT updates the seeds of community by finding con-
nected components. For example, as Fig. 6(b), the node 10
is removed from this social network. CUT finds the all edges
which link to node 10 since the adjacent edges of node 10
are removed at the same time. CUT deletes these edges and
cliques from the seeds of community. Executing the proce-
dure of finding seeds of community to find the connected
components again, CUT can update the seeds of commu-
nity. As Fig. 10 shows the S2 split to two small seeds of
community S2 and S3 since there are two disjoint connected
components.

Edges removed & Nodes removed

Input: seeds of communities(S), remove nodes N, remove

edges E

Output: new seeds of communities

1. if(remove nodes N) then

2. E = FindAllEdge(N);

3. RemoveEdge(S,E);

4. else if(remove edges E) then

5. RemoveEdge(S,E);

6. End if

Figure 8: Procedure of nodes or edges removed case

In addition, if there are new nodes/edges and nodes/edges

1

2

6

3

7

17

12

10

8

11

13

1415

5

9

4

16

18

19

20

Figure 9: New node 20 added and edge(10,12) re-
moved

removed at the same time, CUT processes the new nodes/edges
case before processes the nodes/edges removed case can de-
crease the times of unnecessary split. The remove case may
lead to split or shrunk, and the add case may lead to merge
or grown. In some cases CUT can merge the seeds of commu-
nity, then CUT removes some edges may not cause to split.
For example, as Fig. 9, there are a new node 20 added and
edge (10, 12) removed. As Fig. 11, if CUT process the new
node 20 before process the edge (10, 12) removed, the new
cliques C15 are joined into S2 before delete C7 from S2 so
that CUT do not need to split the seed of community and
then merge them again.

3.3 Assign remain node
The seeds of communities are still not the current commu-
nities of a social network. After processing the variations of

C2 C3 C4 C5 C6 C7 C8 C9 C10 C11 C12 C13

(12,14) (11,14) (13,14) (11,13) (12,15) (11,15) (10,12) (11,12) (6,8) (6,10) (8,10) (10,11) (8,11) (5,8) (5,11) (5,9)(12,13) (9,11) (8,9)

seed of community

(9,20) (11,20) (13,20)

C14 C15C1

(1,2) (1,6) (2,6)(2,3) (3,6)

C14

S1 S2

Figure 11: New seeds of community in bipartite graph

seeds of community, CUT assigns the nodes outside of seeds
of community to the closet seed of community to become
a community. In this procedure, CUT ignores the sparse
nodes in the network first. If a node satisfies the following
two conditions, we call the node is sparse node. First, the
degree of node is smaller than 2. We want to ignore the
bordering nodes in social network. Second, the degree of
adjacency node is also smaller than α. We experimented
with the α values and found that 2 gives good results across
the datasets. As 9 shows, the node 19 satisfy these two con-
ditions. These sparse nodes have less contribution to the
communities. In CUT, these nodes cannot be joined into
any community. CUT assigns the remaining nodes to the
seeds of community which have most links to the nodes.
This procedure finally can obtain the community structure
in a social network.

3.4 Complexity analysis
We analyze the complexity of CUT algorithm. In initial part
of CUT, finding all k-clique in an undirected graph represent
a NP-complete problem. We implement the backtracking al-
gorithm to solve this problem. The backtracking algorithm
starts with each node as a clique of one. Then backtrack-
ing algorithm checks any possible merges until there are no
two cliques can be merged into larger one. Each clique tests
all neighbors as candidates to merge if the neighbor is con-
nected to every node in that clique. The backtracking al-
gorithm terminates when the size of clique equal to k. The
complexity is O(nk) in which k is 3 since CUT want to find
all 3-clique on a social network. Although the complexity of
finding all 3-clique is expensive, but CUT just need to run
the initial procedure once. At later timestamps, CUT does
not apply the initial part. In the initial part, CUT also runs
the procedure of find seeds of community, CUT traverse the
bipartite graph to find the connected component by depth
first search. The complexity is O((|C| + |Eb|) + 3 ∗ |C|)=
O(|C|+|Eb|). The |Eb| is the number of edges in CAB. CUT
just runs the initial procedure once at initial timestamp and
repeats the tracking and updating procedure when the social
network changes at each later timestamp. The complexity of
tracking and updating procedure, at first, let us discuss trac-
ing procedure. CUT needs to check if there are new cliques
produced, the complexity is O(|E| ∗ |NE|). The |NE| is the
number of new added edges in CAB. The next step, CUT
checks if there are seeds of community merged or joined. The
complexity which depends on the number of new cliques is
O(|C|+ |Eb|). In the procedure of remove case, CUT has to

check if there are cliques in seeds of community contain the
remove edges. the complexity is O(|C|+ 3 ∗ |C|) = O(|C|).
Deleting the cliques which contain the removed edges from
seeds of community, the complexity is same as procedure of
find seeds of community.

4. EXPERIMENT

4.1 Coauthor network dataset
In this section, we test the performance of CUT algorithm
on different datasets and compare with QCA algorithm.
Since in QCA algorithm, their experiment result outper-
forms Blondel method [1] and MIEN algorithm [6], we just
compare with QCA algorithm. We use modularity as a mea-
sure function to measure the overall quality of a graph par-
tition [7]. Given a network graph and divided into several
partitions, and define a matrix C where the element Cij rep-
resents the total fraction of edges which stating at a node
in group i and ending at a node in group j. They further
define the row sums ai =

∑
Cij corresponds to the frac-

tion of edges which are connected to group i. Thus, the ex-
cepted fraction of within-community edges is a2

i . The actual
fraction of edges within each group is Cii. The modularity
function defined by Q =

∑
i
(Cij − a2

i). Modularity well
considered its robustness and usefulness that closely agrees
with intuition on a large scale network.

In our experiment, one real dataset is the coauthor network.
The nodes in this graph represent authors of article and the
edges represent the co-authorship between two authors. We
build the coauthor network from DBLP. DBLP is a com-
puter science bibliography website hosted. DBLP listed
more than 2.1 million articles on computer science before
November 2012. Each article has title, authors, published
date, conference name, journal name, book name, and web-
site address. For satisfying the new nodes or edges cases
and nodes or edges removed case, we cut the network by a
time period. We capture the data of each time period from
DBLP to build the coauther network. Between two time
period, there are some articles added or deleted. If two au-
thors have co-authorship in a time period, there is an edge
between these two authors. In addition, if the same two au-
thors have no co-authorship in next time period, the edge
between them are removed. We take five years data as a
time period. In this experiment, the first time period t0 is
2000 to 2004, the next time period t1 is 2001 to 2005, and
so on. Fig. 12(a) shows a part of coauthor network at time
period t0. We run the initial part of CUT at the first time

period t0. When the next network coming, CUT obtains the
seeds of communities and update the community structure.

We choose several important authors of data mining area
as seeds, then propagating to two levels of their coauthors.
There are about 20k authors in first time period t0. The
coauthor network is densely connected graph, and the vari-
ations of network between two time periods are small. We
first run the initial part of CUT to find the seeds of com-
munity and communities in the network at the first time
period t0. Note that the time period t1 is the first time to
track and update the community structure, t2 is the sec-
ond time, and so on. As Fig. 13 shows, when updating the
community structure CUT has better performance on run-
ning time. The running time of CUT is almost stable at
each time stamp. But CUT loses a little in modularity since
CUT is not based on optimizing modularity and regards the
bordering nodes as several independent communities. The
modularity in the network of CUT is decreasing as Fig. 14
shows.

(a) coauthor network (b) p2p-Gnutella network

Figure 12: Coauthor network and p2p-Gnutella net-
work

R
u
n
n
in
g
ti
m
e(
s)

Timestamps

Figure 13: Running time simulation on coauthor
network

4.2 p2p-Gnutella network dataset

M
o
d
u
la
ri
ty

Timestamps

Figure 14: Modularity on coauthor network

Another social network in our experiment is p2p-Gnutella
network [15]. Nodes represent hosts in the Gnutella net-
work topology and edges represent connections between the
Gnutella hosts. The network recorded the host and the con-
nections between the hosts by a day from August 5th to
August 9th, 2002. There are about 6k nodes in Gnutella
network. This network is a sparse graph and changed fre-
quently. As Fig. 12(b) shows a small part of Gnutella net-
work. We run the initial part of CUT at the first time stamp
t0, August 5th, 2002. Then, we update the community struc-
ture by CUT at each time stamp.

In this network, the connections between the Gnutella hosts
are usually changed soon. Thus, the variations of nodes and
edges are large between each time stamp. As Fig. 15 shows,
CUT still can deal with this type of network well on running
time, but the modularity of sparse graph is lower and shown
as Fig. 16.

R
u
n
n
in
g
ti
m
e(
s)

Timestamps

Figure 15: Running time simulation on p2p-
Gnutella network

5. CONCLUSIONS

M
o
d
u
la
ri
ty

Timestamps

0

0.1

0.2

0.3

0.4

0.5

0.6

t1 t2 t3 t4

QCA

CUT

0

0.1

0.2

0.3

0.4

0.5

0.6

t1 t2 t3 t4

QCA

CUT

Figure 16: Modularity on p2p-Gnutella network

We propose a Community Update and Tracking (CUT) al-
gorithm to track the seed of community in a dynamic social
network, and deal with the network variations to update
communities. In order to find the communities by maximiz-
ing modularity, our contribution is discovering the approx-
imate community structure and updating the community
structure efficiently in dynamic social network. CUT can
update the community structure efficiently.

Considering memory space, when updating the community
structure, CUT only keep seeds of communities can be bet-
ter than the whole communities. Moreover, using bipartite
graph to track and update the seed of community has bet-
ter performance on time complexity. Experimental results
show that the performance of CUT outperforms that of other
methods in terms of the running time.

6. REFERENCES
[1] V. D. Blondel, J. Guillaume, R. Lambiotte, and

E. Lefebvre. Fast unfolding of communities in large
networks. Journal of Statistical Mechanics: Theory
and Experiment, vol. 2008, 2008.

[2] R. Bourqui, F. Gilbert, P. Simonetto, F.Zaidi,
U. Sharan, and F. Jourdan. Detecting structural
changes and command hierarchies in dynamic social
networks. Social Network Analysis and Mining,
International Conference on Advances, pages 83–88,
2009.

[3] R. Cazabet, F. Amblard, and C. Hanachi. Detection of
overlapping communities in dynamical social
networks. In Proceedings of Social Computing
(SocialCom), 2010 IEEE Second International
Conference, pages 309–314, 2010.

[4] Z.-Z. Chen, K. A. Wilson, Y. Jin, W. Hendrix, and
N. F. Samatova. Detecting and tracking community
dynamics in evolutionary networks. In Proceedings of
Data Mining Workshops (ICDMW), 2010 IEEE
International Conference, pages 318–327, 2010.

[5] G. Clauset, M. E. J. Newman, and C. Moore. Finding
community structure in very large networks. Physical
Review E, vol. 70, 2004.

[6] T. N. Dinh, Y. Xuan, and M. T. Thai. Towards

social-aware routing in dynamic communication
networks. In Performance Computing and
Communications Conference (IPCCC), 2009 IEEE
28th International, pages 161–168, 2009.

[7] M. Girvan and M. E. J. Newman. Community
structure in social and biological networks.
Proceedings of the National Academy of Sciences, vol.
99:pp. 7821–7826, 2002.

[8] G.Palla, I. Derenyi, I. Farkas, and T. Vicsek.
Uncovering the overlapping community structure of
complex networks in nature and society. Nature, vol.
435:pp. 814–818, 2005.

[9] S. Gregory. Finding overlapping communities in
networks by label propagation. New Journal of
Physics, vol. 12, 2010.

[10] R. Kumar, J. Novak, and A. Tomkins. Structure and
evolution of online social networks. In Proceedings of
12th ACM SIGKDD international conference on
Knowledge discovery and data mining (2006), pages
611–617, 2006.

[11] M. E. J. Newman. Fast algorithm for detecting
community structure in networks. Physical Review E,
vol. 69, 2004.

[12] M. E. J. Newman and M. Girvan. Finding and
evaluating community structure in networks. Physical
Review E, vol. 69, 2003.

[13] N. P. Nguyen, Y. X. T. N. Dinh, and M. T. Thai.
Adaptive algorithms for detecting community
structure in dynamic social networks. In Proceedings
of the IEEE Conference on Computer
Communications, pages 2282–2290, 2011.

[14] G. Palla, P. Pollner, A. Barabasi, and T. Vicsek.
Social group dynamics in networks. Adaptive
Networks, pages 11–38, 2009.

[15] M. Ripeanu, I. Foster, and A. Iamnitchi. Mapping the
gnutella network: Properties of large-scale peer-to-peer
systems and implications for system design. IEEE
Internet Computing Journal, vol. 6:2002, 2002.

[16] C. Tantipathananandh, T. Berger-Wolf, and
D. Kempe. A framework for community identification
in dynamic social networks. In Proceedings of the 13th
ACM SIGKDD international conference on Knowledge
discovery and data mining, pages 717–726, 2007.

[17] Y. Wang, B. Wu, and X. Pei. Commtracker: A
core-based algorithm of tracking community evolution.
In Proceedings of the 4th international conference on
Advanced Data Mining and Applications, pages
229–240, 2008.

[18] B. Yan and S. Gregory. Detecting communities in
networks by merging cliques. In Proceedings of 2009
IEEE International Conference on Intelligent
Computing and Intelligent Systems, pages 832–836,
2009.

[19] S. Yang, B. Wu, H. Long, and B. Wang. Commtrend:
an applied framework for community detection in
large-scale social network. In Proceedings of the 6th
international conference on Fuzzy systems and
knowledge discovery, pages 139–143, 2009.

