
Community Finding within the Community Set Space

Jerry Scripps
Grand Valley State University

Allendale, MI 49506, USA
scrippsj@gvsu.edu

Christian Trefftz
Grand Valley State University

Allendale, MI 49506, USA
trefftzc@gvsu.edu

ABSTRACT
Community finding algorithms strive to find communities
that have a higher connectivity within the communities than
between them. Recently a framework called the community
set space was introduced which provided a way to measure
the quality of community sets. We present a new community
finding algorithm, CHI, designed to minimize the violations
defined by this framework. It will be shown that the CHI
algorithm has similarities to kmeans. It is flexible and fast
and can also be tuned to find certain types of communities.
It is optimized for the community set framework and results
so that it performs better than other algorithms within that
framework.

Categories and Subject Descriptors
Data: 07 Social Networks [Community Finding]

General Terms
Community Finding, Networks, Link Analysis

Keywords
Community Finding, Networks, Link Analysis

1. INTRODUCTION
Increasingly, networks are being used in programs to rep-

resent the complex relationships that naturally occur in so-
cial, biological, computer and other networks. Often, prac-
titioners are interested in grouping the nodes into commu-
nities. These community sets can be helpful in describing
and analyzing the network.

There is general agreement that ”good” communities are
ones that have many links (or edges) within the communities
and fewer of them between the communities. However, an
exact definition of the ”best” set of communities for a net-
work is elusive. One issue is that the search space is large.
The Bell number [1] tells us the exact number of partitions
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for a network of size n. For a very small network such as
Zachary’s karate club [17], where n = 34, the Bell number
is 2.1 × 1028. The solution space grows exponentially with
the number of nodes.

Another issue is that community sets have different char-
acteristics that appeal to different analysts. Overlapping
communities are appropriate for some uses and for others
it is better to use disjoint communities. Some communities
will be similar to cliques while others are not. Finally, com-
munities can be ego-centric (where nodes are in with a high
proportion of their neighbors) or not.

A number of algorithms have been proposed [9, 5, 16] that
automatically detect communities by using the link struc-
ture. There are many of them for several reasons:

• the algorithms are designed to detect communities with
specific characteristics

• because there is no agreed-upon metric for measuring
quality, it is difficult to judge between them

• there are many approaches to the problem, such as op-
timizing an error function, minimizing a graph theory
metric or clustering techniques

In addition to the issues above, the efficiency of algorithms
varies. Because the solution space is so large, making an ef-
ficient algorithm is difficult. Many of the proposed solutions
can produce good results but are very slow.

The algorithm that we present in this paper makes use
of the community set space framework [10]. It contains the
concept of communities and home communities. A node can
be placed in more than one community but it can only be
placed in one home community. This framework also pro-
vides a way to measure and compare community sets using
three metrics (or violations): missing neighbors Mmn, ex-
traneous nodes Men and overlap Mol. These metrics will
be formally defined in a later section, but briefly, a missing
neighbor is a linked node that does not appear in the node’s
home community, an extraneous node is a non-neighbor that
appears in a node’s home community and overlap is the num-
ber of times a node appears in communities other than its
home.

The concepts can be illustrated by looking at Figure 1.
One can see nodes a through n are placed in communities
comm1, comm2 or comm3, with only node d being placed
in both comm1 and comm2. Assume that the home com-
munity for d is comm1 and for the others, it is simply the
community they are already in. Notice that, among other
violations, d has two missing neighbors in comm2, that k is



Figure 1: Network to describe the metrics of the
community set space

in a community with one node extraneous to it and there is
only one overlap, that of node d.

In this paper we introduce the algorithm CHI in which
we use the total of the metrics Mtot = Mmn + Men + Mol,
as our objective function to be minimized. We do this by
alternately changing the communities and then the home
communities. In the first step we hold the home communi-
ties constant and re-assign nodes to communities so that we
reduce Mtot. Next, we hold the communities constant and
re-assign nodes to home communities, again reducing Mtot.

This is illustrated by the very small network in Figure
2. In (a), we see the network with two cliques of 3 nodes
each. We are going to attempt to discover two communities.
Assume that the initial community assignment in (b) where
a, b and d are assigned to one community and c, e and
f are assigned to the other. Also assume that the home
communities are the same as the communities.

(a) (b)

(c) (d)

Figure 2: Community Set Space Plot for Teen

First, we fix the home communities and re-assign nodes
to communities. Notice that we can put node c into the
community with a and b which will increase the overlap by
one but decrease missing neighbors by 2. We can do the
same for d. The result can be seen in Figure 2 (c). Then
we fix the communities and re-assign the home communities.
Again we can reduce Mtot by changing the home community

of both c and d. Now, we fix the home communities and
remove c and d from the communities they were originally
in (to reduce Mtot and we are left with the communities in
Figure 2 (d).

CHI will be shown to have similarities to and many of
the advantages of the kmeans clustering algorithm. First
of all it is efficient. Second, within the framework of the
community set space, it has fewer violations than any of the
other methods tested. This is not surprising as it is designed
to optimize Mtot. Third, like kmeans, it starts with an input
community set. This is a disadvantage because it is sensitive
to the initial set. However, this is also an advantage because
an analyst can use the result from another algorithm as input
to CHI and it will improve its Mtot. Unlike kmeans, it is
flexible in that it can produce community sets with many
different characteristics.

After this introduction, necessary terms will be defined.
Following that section, the community set space is defined
and analyzed. In the next section the new problems and
algorithms are introduced. Then the experiments section
shows the results of tests run on the new algorithm. After
the experiments, we discuss related work and then finally
present conclusions.

2. NOTATION AND METRICS
A network G = (V, E) is a closed systems of nodes V

which are linked to each other by edges E ⊂ V × V . Nodes
can also be grouped into communities, ci = {vj , ...vm},
through a process called community finding. A node vi can
be placed in more than one community, but only one com-
munity is designated as its home community. A community
set S = {G, C, h} is a triplet where C = {c1, ..., cK} is a
collection of K communities and h is a home community
function. We use the symbol SK to represent the collection
of all community sets of K communities.

For describing the algorithm it will be convenient to rep-
resent the network G by an adjacency matrix A = [aij ]n×n

where aij = 1 if there is a link between nodes vi and vj and
aij = 0 if there is not a link. Furthermore, we shall also
represent both the communities and home communities by
0/1 matrices. For communities, C = [cik]n×K where cik = 1
if vi is in community k and zero otherwise. Likewise, for
home communities, H = [hik]n×K . Later we will represent
the network as a neighbor list and the home communities as
a vector to make the algorithm more efficient.

2.1 Metrics
The community set space is defined by the following met-

rics:

Definition 1. Missing neighbors are those neighbors of a
node that do not appear in the node’s home community.

Mmn(S) =
∑

vi∈V


deg(vi)−

∑

vj∈c(h(vi))

I((vi, vj) ∈ E)




where deg(vi) is the degree of vi and I(·) is an indicator
function which is one when the argument is true and zero
otherwise. We also use c(h(vi)) to represent the set of nodes
in vi’s home community.

Definition 2. Extraneous nodes are nodes not directly linked



Figure 3: Community Set Space Canvas

to a node within its home community.

Men(S) =
∑

vi∈V


 ∑

vj∈c(h(vi))

I((vi, vj) /∈ E)




Definition 3. Overlap is the number of communities that
a node is placed in besides its home community.

Mol(S) =
∑

vi∈V


 ∑

cj∈C

I(vi ∈ cj)


− |V |

Using these metrics we can quantitatively judge a com-
munity set. Generally, an analyst would probably choose
lower values for all three of these metrics however, there is a
trade-off. A lower value of one of the metrics will normally
result in a larger value for one or both of the others. What
constitutes an ideal community set cannot be objectively
defined but is specific to a user’s needs.

2.2 Canvas
The community set space canvas is a two dimensional

chart for plotting community sets. It provides a visual means
to compare community sets and to see where a community
set fits into the space of all possible community sets.

Figure 3 shows the canvas as an equilateral triangle in
which each side corresponds to a low or zero measurement
of one of the metrics. The lower edge corresponds to low
extraneous values, the left edge corresponds to low missing
neighbors and the right edge corresponds to low overlap.
Moving away from an edge towards the other side of the
triangle, the value of the metric gets increasingly larger.

The three points of the triangle represent special cases
and are labeled as such. The top point, where there is zero
overlap and zero missing neighbors would be the community
set defined by one large community. It would be every node’s
home community, would contain all neighbors of all nodes
and would have no overlap. Note however that there would
be many extraneous nodes which is why it is opposite from
that edge.

The point in the lower left is where there are zero missing
neighbors and zero extraneous nodes. This is defined as the
set of all neighborhood communities – that is, for each node,
a home community is created, consisting of that node and
its neighbors. Every node’s home community would contain
all of its neighbors and have no extraneous nodes. There
would however, be much overlap.

The point in the lower right has zero extraneous nodes and
zero overlap. This point is the set of singleton communities
– that is where each node is in its own community. Again,
two of the metrics, overlap and extraneous nodes are zero
while the third, missing neighbors is very high.

Community sets that are mapped near to the edges also
have distinctive characteristics. Disjoint communities – those
with no overlap – are appropriate for partitioning nodes.
An example would be placing students into study groups.
Clique-like communities, which have low values of extra-
neous nodes, are those where nearly all nodes in a com-
munity are connected to nearly all others. These types of
communities occur naturally when people form small, spe-
cial interest groups. Ego-centric communities – where every
node has at least one community, to which it and all of its
neighbors belong – have zero missing neighbors. Terrorism
experts may be interested in forming ego-centric communi-
ties of suspected terrorists with known connections. Each
suspect would have at least one community with all of his
known connections with the other nodes in the community
being possible accomplices. In the middle of the triangle,
community sets take on a mixture of the characteristics de-
scribed above.

3. METHOD
The CHI algorithm was conceived to operate within the

community set space as described in Section 2. This section
provides the theory behind it and the details of its operation.

3.1 CHI Algorithm
CHI was designed to optimize the objective function:

L = Mmn + Men + Mol

The input to the algorithm is an initial community set S =
(G, C, H) and the output is the (locally) optimal community

set Ŝ = (G, Ĉ, Ĥ). We begin by restating definitions 1, 2 and
3 in terms of the adjacency, community and home matrices
and for particular nodes vi and vj :

Mmn(vi, vj) =

(
1−

K∑

k=1

(hikcjk)

)
· aij

Men(vi, vj) =

K∑

k=1

(hikcjk) · (1− aij)

Mol(vi) =

K∑

k=1

cik − 1

The objective function can be rewritten as:

L =

n∑
i=1

n∑
j=1

(
1−

K∑

k=1

hikcjk

)
aij +

n∑
i=1

n∑
j=1

K∑

k=1

hikcjk (1− aij) +

n∑
i=1

K∑

k=1

cik − 1 (1)



Our approach to optimization is to alternate between im-
proving H and C. In step 1, the C values are held fixed
and the H values are changed. Step 2, changes the C values
while the H values are fixed.

3.1.1 Step 1
Each node, vi is placed in one and only one home commu-

nity, that is hik = 1 for some k and hix = 0 for x 6= k. For
each node vi and each community k, we isolate the terms in
L with hik in them:

n∑
j=1

(1− hikcjk) aij + (1− aij)hikcjk (2)

For vi we need to set hik = 1 for exact one k and the rest
must be zero. With C fixed, to minimize 1 we set:

hik =

{
1 for arg min

k

∑n
j=1−aijcjk + (1− aij)cjk

0 otherwise

This process moves each node to the community that mini-
mizes the objective function given the current values of C. It
should be noted that changing the values of H for vi will not
effect the decision of home community for any other node
because we are not changing the value of any terms that
contain H values other than for vi.

3.1.2 Step 2
In the next step we change C while holding H fixed. Recall

that C allows for overlapping communities so that there is
not just one cik that can to be set to 1 (but at least one
needs to be 1). Like before, we isolate the terms with cik:

n∑
j=1

(1− hikcjk) aij + (1− aij)hikcjk + cik (3)

We consider each ck in C for vi. Setting cik = 1 can cause
Formula 3 can be positive or negative. Since negative values
reduce the objective function we set all values of cik = 1
where it is negative. For the case when none of the values
of Formula 3 are negative, we set cik = 1 for the minimum
value. :

cik =





1 for
∑n

j=1 aijhjk − (1− aij)hjk − 1 > 0

1 for arg max
k

∑n
j=1 aijhjk − (1− aij)hjk − 1

0 otherwise

This process puts node vi into any community that makes
the objective function smaller given the current values of H.
Again, changes can be made in C to any node vi without
affecting the other nodes.

Since the decision to change one node will not affect the
decisions for the others, the changes can be made to nodes in
any arbitrary order. It follows that in each step, the total of
the objective function will either decrease or stay the same
(if no changes are made).

CHI starts with a random or given initial community set
S = (G, C, H) and then to loop through step 1 and step
2 until no more changes are possible. As stated above, af-
ter each step either the objective function is reduced or no
changes are made so that we are guaranteed to find a local
minimum. The details of CHI can be seen in Algorithm 1.

Notice that in the two inner loops in which the values of
H and C are reassigned, the order in which the program

input : Initial community set S = (G, C, H)

output: Optimum community set Ŝ = (G, Ĉ, Ĥ)

Ĉ = C;

Ĥ = H;
while no more changes do

foreach vi ∈ G do

ĥi = k for arg mink

∑n
j=1−aij ĉjk + (1− aij)ĉjk;

end
foreach vi ∈ G do

ĉik = 0;
for k ← 1 to |C| do

if
∑n

j=1 aij ĥjk − (1− aij)ĥjk + 1 > 0 then

ĉik = 1;
end
ĉik = 1 for
arg mink

∑n
j=1 aij ĥjk − (1− aij)ĥjk + 1;

end

end

end

Algorithm 1: CHI algorithm

exams the nodes is not important. In the first loop, the
values of H are reassigned using only the network A and the
communities C. In the second loop, the C are reassigned
using only A again and H. This means that changing one
node’s home community will not influence another’s. The
same applies to C.

3.2 Similarity to Kmeans
The Kmeans algorithm [13] separates n samples into k

clusters. Each sample xi is a vector of d data values. Typi-
cally, the Euclidean distance is used to compute the distance
between the samples and the cluster centers cj . The algo-
rithm is designed to minimize the objective or error function:

E =

n∑
i=1

k∑
j=1

(cj − xi)
2

The algorithm proceeds by alternating between assigning
samples to the nearest center and recalculating the centers
until convergence.

The CHI algorithm introduced in this paper has many
similarities to the Kmeans algorithm. They both are de-
signed to minimize an objective function by a converging,
alternating process. In the CHI algorithm, the H values
are the assignments of the nodes to communities, similar
to the assignment table used by Kmeans. Each column of
the H matrix represents the assignments for one of the k
communities. The adjacency matrix A corresponds to the
data samples X = {x1...xn}, where the neighbors of a node
provide evidence of which nodes should be grouped together.

The C matrix corresponds to the data centers. Each col-
umn vector of n elements lists the nodes that belong to that
community. While this is not really an average of the nodes
that are home to that community, it provides evidence to
which nodes should be considered to be home to that com-
munity. A node that is home to community k1 but is also
assigned in C to k3 may later be assigned a home community
of k3.

Like Kmeans, CHI must also begin with an initial commu-



nity configuration. This is a weakness for both algorithms.
A poorly chosen initial community set for CHI results in an
suboptimal local minimum.

3.3 Complexity
The complexity of the CHI algorithm as described above,

is bound first by the number of iterations I, necessary for
convergence. Within that loop we alternate between step 1
and step 2 for each of the n nodes. Both of the steps involve
summing data for each of the k communities for each of the
n possible neighbors. The complexity is thus O(Ikn2).

For the actual implementation, we chose different struc-
tures for the network graph and home communities H. Rather
than using the adjacency matrix, we selected the neighbor
list format where, for each node, there is a list of its neigh-
bors. Not only does this require less memory but also speeds
up the algorithm. Notice in Algorithm 1, the summaries in-
side the loop must examine all n nodes. With the neighbor
list it need only iterate over the nodes neighbors.

For the home communities, instead of using an n by k
matrix where each row contains only one 1 value, we chose a
vector of n numbers 0...n−1 representing the community to
which it belongs. Using these choices, allows the algorithm
to be written more efficiently, specifically in O(Ikna), where
a is the average number of neighbors for a node.

3.4 Generalization
One potential weakness of the CHI algorithm is that the

choice of objective function is somewhat arbitrary, that is, it
weights Mmn, Men and Mol equally. To make the algorithm
more general we offer the following objective function:

L = λ1Mmn + λ2Men + λ3Mol

where the lambda values are parameters that the user can
enter to shape the communities to their specific needs. For
example, if overlap is something one wants to avoid, one
could use the values λ1 = λ2 = 1 and λ3 = 10. In the
section above where the algorithm is developed, one can
easily substitute the lambda values in the appropriate places.

In Section 4, we provide experiments to demonstrate the
effectiveness of using the parameters. In running our exper-
iments, it became clear that even for the small data sets,
there were many solutions (local minimums) using the CHI
algorithm. For a user who is looking for communities in
a network it may be that it is more important to get the
right type (ego-centric, disjoint, etc.) of community than
the community set with the lowest number of violations.

4. EXPERIMENTS
The intention of the experiments section is to demonstrate

the usefulness of the CHI algorithm. It will be shown that
CHI

• compares favorably against other algorithms using the
metrics of the community set space

• is flexible, by creating overlapping or disjoint commu-
nities

• is versatile, creating community sets of differing char-
acteristics

• is fast

Table 1: Data Sets
data set nodes links density
karate 34 78 0.1390
teen 50 77 0.0629
foot 115 613 0.0935
jazz 198 2742 0.1406
webkb 877 1388 0.0036
cora 2708 5278 0.0014
wiki 8297 103689 0.0030
slash 82168 870161 0.0003

4.1 Set up
Many data sets were used in the experiments to provide a

variety of small and large sets as well as a low and high den-
sity of links. The sets with their attributes are listed in Table
1. All of the sets are non-directional networks. The karate
[17] set is the famous Zachary karate set from the study of re-
lationships within a karate studio. The teen [15] set, a study
of the relationships of 50 school girls in Scotland, comes from
a collection on the Siena website. The American college
football (http://www-personal.umich.edu/∼mejn/netdata/)
network represents the schedules of teams in the NCAA
college football, division 1A division. The jazz musician’s
dataset [8] represents musicians and their collaboration. Both
the webkb (web page network) and cora (citation network)
data sets are from the Linqs [6] web site. The wiki (a net-
work built from the votes from wikipedia) and slash (taken
from the slashdot social network) are from the SNAP web-
site [12].

A number of the experiments compare the CHI algorithm
to two other algorithms, cmn (or FastCommunity) by Clauset,
et al. [2] and spectral clustering, also known as normalized
cut (ncut), by Shi and Malik [11]. These algorithms were
chosen because they are well accepted algorithms and the
code was readily available. While there are many overlap-
ping algorithms published, finding the code proved to be
more difficult. We did some early tests using the agglomer-
ative method by Tang et al. [14] but the results were not
very good and the algorithm was very slow.

For CHI, unless specified, λ1 = λ2 = λ3 = 1. Both cmn
and ncut take the network as input and deterministically
return a set of communities. CHI on the other hand, starts
with the network and an initial community set S = {C, h}
and from that produces an improved community set. Since
the results of the algorithm are dependent on the initial (ran-
dom) community set chosen, the tests that compare it to the
other algorithms average the results of 10 runs. In multiple
comparisons, the results of 10 runs were fairly consistent.

4.2 Comparison of Algorithms
The experiments in this section compare the results of the

different algorithms against the others using the data sets
and three different levels of grouping, i.e. different values of
k. The results will be presented in two sets of charts. The
first set compares the algorithms using the total number of
violations (Mtot = Mmn + Men + Mol). In these charts we
used the entire community set of overlapping communities
from CHI, S = {G, C, h}. The second set of charts uses
modularity for comparison. Because modularity is a mea-
sure for only disjoint communities, we used only the home
communities, h from CHI.



karate (x 100) teen (x 100)

foot (x 100) jazz (x 1000)

webkb (x 10k) cora (x 100k)

wiki (x 1 M) slash (x 100 M)

Figure 4: Comparison of CHI to ncut and cmn. The
horizontal axis groups the algorithms by k (nbr of
communities). The vertical axis is violations. No-
tice the violations are scaled for each data set, e.g.
hundreds for karate.

The first charts, in Figure 4, show a chart for each data
set. The legends in the bottom two charts (wiki and slash)
apply to all of the charts. The bars represent the various
algorithms, grouped by value of k. The height of the bars
is the number of violations. The violations have been scaled
to make them easier to read - thus the number of violations
for karate, using cmn with 5 communities is close to 300.

In all of the tests, the only case where CHI did not have
the lowest number of violations was with foot, with k = 10.
The CHI algorithm does not guarantee to find the commu-
nity set with the absolute lowest number of violations, but it

karate teen

foot jazz

webkb cora

wiki slash

Figure 5: Comparison of disjoint CHI to other algo-
rithms using modularity.

does find a local minimum. Given the large number of pos-
sible community sets there are probably many, many local
minima. In this particular case, the ncut algorithm found a
community set that had fewer violations than many of the
local minimums found by CHI (the experiment was repeated
several times with similar results).

Outside of this one case, CHI consistently finds commu-
nity sets with fewer violations than ncut or cmn. With the
larger sets, the results are particularly striking. The re-
sults of the experiments were also compared using just the
disjoint community sets (h) of CHI with nearly identical re-
sults. These results are omitted due to space constraints.

The second set of charts, in Figure 5, compares the re-
sults of the disjoint communities of CHI against the results
of ncut and cmn. These charts look similar to the previous



Table 2: Mean and std. dev. of size of communities
std dev

dataset k mean chi ncut cmn

karate
5 6.8 1.2 3.1 5.6

10 3.4 1.2 1.4 3.3
15 2.3 1.6 0.9 1.7

teen
5 10.0 1.6 3.5 3.2

10 5.0 1.2 1.7 2.7
15 3.3 1.5 1.3 2.3

foot
10 11.5 1.5 2.1 9.2
20 5.8 3.8 3.6 8.4
30 3.8 3.8 2.1 6.9

jazz
10 19.8 7.2 16.0 28.5
20 9.9 6.7 8 21
30 6.6 5.8 6 17

webkb
20 43.9 1.1 50 70
40 21.9 0.9 22 45
60 14.6 0.8 14 36

cora
50 52.2 0.5 67 101

100 27.1 0.7 28 66
150 18.1 0.8 17 51

wiki
100 83.0 7.1 220 458
300 27.7 4.7 90 260
500 16.6 3.1 64 196

slash
500 164.3 3.9 2911 1782

1000 82.2 2.8 1598 1235
1500 54.8 3.9 967 990

ones, except that they measure modularity. Modularity is
the fraction of edges that fall within communities minus the
expected fraction. It has a maximum of 1 and can be neg-
ative. Sets that are closer to 1 are considered better than
ones that are lower.

In these charts, the taller bars are the ones that are bet-
ter. With only a few exceptions, the CHI sets score lower
than either ncut or cmn and sometimes both. This is not
surprising as the cmn algorithm is designed to maximize the
modularity metric. Since modularity is a measure only of
the fraction of edges within a community, higher scores are
given to sets with lower Mmn. It does not consider either
Men or Mol.

While CHI did not do as well as the other two algorithms
it did better than chance (zero). This is not surprising as
it is not designed to optimize the modularity. In a later
section, it will be shown that the algorithm can be tuned by
changing the values of λ1,λ2 and λ3. By tuning the lambdas,
community sets can be generated that have much better
modularity scores.

4.3 Distribution of nodes across communities
The way in which nodes are distributed amongst the com-

munities is another characteristic of community sets that
may interest analysts. One analyst may desire a balanced
spread of nodes across the communities, while another may
not care about the spread as long as Mmn is minimized.

Much depends on the network. For example, given a net-
work with a fifty node clique and 10 singleton nodes, we
would expect that with k = 11 an algorithm would place
the clique in one community and each singleton in its own
community. For a regular network, we would expect an al-
gorithm to find a more balance set of communities.

Figure 6: Spread of communities for jazz with k = 10.
The bars within each algorithm group represent
communities with the vertical axis measuring the
number of nodes in a community. Bars are or-
dered from largest community to smallest within al-
gorithm.

Because CHI minimizes the three violation metrics (rel-
ative to the λ values), with λ1 = 1, λ2 = 1 and λ3 = 1,
the algorithm produces fairly balanced communities. Table
2, shows the results of calculating the standard deviation of
the sizes of the communities. With a few exceptions, CHI
has a smaller standard deviation. With the larger data sets,
the difference is profound.

Since most algorithms attempt to find communities by
grouping linked nodes together, large communities of densely
linked nodes are inevitable. CHI, too, will create large com-
munities if the nodes are clique-like. However, because it is
designed to balance the three metrics Mmn, Men and Mol,
it produces more balanced communities. Figure 6 shows the
communities for jazz and k = 10. Clearly the ones for CHI
are much more balanced than the other two, which have
about 3 larger communities and several smaller ones.

Of course, by changing the lambda values, one will also
change the distribution of nodes. For instance, if λ1 is much
greater than the other two, the community distribution will
be less uniform. Then, one would expect the communities to
look more like the ones produced by an algorithm like cmn.

4.4 Tuning
One of the advantages to CHI is the flexibility to find

community sets with desired characteristics by tuning the
lambda parameters. For these experiments we chose to show
the results from the jazz dataset as they were a little more
expressive than the others.

In Table 3, one can see the results from CHI using seven
different sets of values for the lambdas. We chose these
values as they represent a balanced approach (1,1,1) and
vectors in six different directions of the triangle. Figure 7
shows where these community sets would be plotted on the
community set space canvas.

Note that the points are not placed as ideally as one would
hope, e.g. (10,10,1) is not in the lower left corner. The way
the sets appear on the canvas has to do with the network and
the value of k. For any given data set, as k gets smaller, the
possible solutions become closer to the upper corner. The
type of network will influence the community sets that CHI
produces, placing them in different locations on the canvas.

Changing the lambda values can produce sets more like



Figure 7: Plot of community sets for jazz with k = 10
and different lambda values

Table 3: Community set violations for different
lambda values

λ1 λ2 λ3 Mmn Men Mol

1 1 1 2131 350 190
10 1 1 5 2871 3051
1 10 1 2585 1 298
1 1 10 2856 290 8

10 10 1 1050 184 1594
10 1 10 428 5519 378
1 10 10 3556 2 0

cmn and improve the modularity score. Since cmn produces
zero overlap and does not consider extraneous nodes, we set
λ1 = 1000, λ2 = 1 and λ3 = 10000. We do not present all
of the results here but for the webkb set, it improved the
modularity score for k = 20 from 0.59 to 0.73.

4.5 Complexity
As stated in the previous section, the complexity of CHI

is O(Ikna). In tests, the number of iterations, I ranges from
3 to 5 for the smaller datasets and from about 4 to 20 for
the larger ones. The average number of neighbors a depends
upon the network. So for sparse networks, the algorithm is
closer to O(kn).

For the four small networks, each of the algorithms could
find communities in less than a second. Figure 8 summarizes
the run times for the other data sets. The chart is scaled
at a maximum of 1800 seconds, so the results for ncut on
the slash data set run off of the top of the chart. The time
k = 500 was about 2000 seconds and for k = 1500 it was over
14 hours. Under many conditions CHI will not be as fast as
cmn. Notice in the chart that cmn has nearly constant time
for the slash set. As k is increased, CHI will get progressively
slower, so that cmn has a speed advantage for large values
of k. There have also been some improvements to cmn [cite]
that have made it even faster.

5. RELATED WORK
There have been many community finding algorithms pro-

posed; it is not our intention to review each one here. The
reader is directed to one of the recent reviews [9, 5, 16].

Figure 8: Comparison of runtimes

There are many ways in which the algorithms can be orga-
nized: overlapping vs. disjoint, local vs. global, approach
(agglomerative, iterative, divisive, etc). They are organized
here in how they fit into the community set space, that is,
the amount of Mmn, Men and Mol their communities pro-
duce. It should be noted that a simple way to control Mmn

and Men is to vary k. Our implied intention is that we are
comparing the algorithms using the same number of com-
munities.

Algorithms that find disjoint communities implicitly hold
Mol to zero. Some then attempt to minimize Mmn. One of
the first is the algorithm by Girvan and Newman [4] which
uses the betweenness metric to remove edges to reveal com-
munities. Starting with a single large community (top cor-
ner of the canvas), it separates the graph into communities,
moving down the left edge until it has reduce the network
to singletons (bottom right corner). Any divisive algorithm
that creates disjoint community sets will follow the same
path.

The improved algorithm by Clauset, et al. [3], starts with
singletons and merges them based on the modularity metric
until they are all merged into one community. This creates
community sets that follow the same disjoint edge in the op-
posite direction from the divisive algorithms. This will be
true for any agglomerative approach that starts with single-
tons.

Other disjoint algorithms are not designed to minimize
Mmn but appear to detect communities with low values of
both Mmn and Men. Spectral [11] methods cluster the eigen-
vector components of nodes. As a result, it is more likely to
group connected node pairs while separating unlinked pairs.
There are many other disjoint algorithms [5] that appear to
have a similar, balanced approach. It should be noted that
while we did not come across any disjoint algorithms that
minimized Men, it is easy to imagine an agglomerative al-
gorithm that starts with singletons and merges them based
on minimizing Men.

The divisive and agglomerative approaches can also be
applied to ego-centric communities. In particular, the ap-
proach by Tang, et al. [14], starts with the neighborhood
communities (in the lower left corner of the canvas) and
merges the communities based on the Jaccard index (using
overlap) until it reaches a single community. This is es-
sentially holding Mmn = 0 while minimizing Mol. It can be



shown [10] that a community set that is ego-centric (no miss-
ing neighbors) can have two communities merged and the re-
sulting community set will also be ego-centric. So similarly
to the disjoint agglomerative methods, this one creates sets
that move along an edge of the canvas but the ego-centric
edge instead of the disjoint one.

Any approach that creates cliques will be placed on the
bottom edge of the canvas. The CFinder [7], algorithm
starts with cliques of a certain size and then merges them.
The resulting communities are not cliques but are very close.
We are not aware of any algorithms that start with single-
tons and copy nodes into communities until they become
neighborhood communities (or the other direction) but such
an algorithm is not inconceivable.

Other algorithms detect community sets that would be
plotted in the interior of the canvas. Where exactly the
sets will appear depends on the emphasis that the algorithm
places on the three metrics and the number of communities
found. There are many such algorithms listed in [16]. While
all of the community finding algorithms that we reviewed, in
one way or another, minimized one or a combination of two
or all three of the metrics, none of them explicitly minimized
them all.

One last note should be made about fuzzy clustering.
Overlapping sets can be crisp (where every node is either
in or not in a community) or fuzzy (where nodes belong to
a community in proportion to a weight). The metrics de-
fined in Section 2 cannot be applied to fuzzy sets. One could
get around this problem by applying a threshold to convert
them to crisp sets. Another way would be to modify the
metrics but it is not clear how one would determine overlap
for fuzzy sets.

6. CONCLUSIONS
The CHI algorithm was proposed in this paper to opti-

mize the metrics that define the community set space. The
algorithm starts with a random community set and makes
changes to optimize the metrics until it reaches a local min-
imum. It was shown that CHI is very similar to the Kmeans
clustering algorithm except in the way that it represents the
characteristics (averages in the case of Kmeans) of the com-
munities. It was demonstrated to be fast and performed
favorably against other well-known algorithms.

CHI produces two community structures, one overlapping
and the other disjoint while other community finding algo-
rithms return only overlapping or disjoint. This leads to
another advantage of CHI. Since it starts with a seed com-
munity set, one can either choose to have it use a randomly
chosen set or use the result of another algorithm as input.
This allows one to use CHI to further tune the result of an-
other algorithm. In addition, it can also be used to turn a
disjoint algorithm into an overlapping one and vice versa.
One could, in theory take the output of say, spectral clus-
tering, and use it in CHI for one iteration and then use the
overlapping community output.

Many algorithms allow the user to decide on the number
of communities (k), as CHI does. In addition, CHI has pa-
rameters (λ1, λ2 and λ3) that coerce the algorithm to find
community sets with certain characteristics. For example,
an analyst may be interested in disjoint communities or ego-
centric communities.

The CHI algorithm is based on our contention that finding
the best community set is a combination of low violations

and type of set. An analyst should first of all determine
what characteristics they are interested in (overlap, missing
neighbors and extraneous nodes) and find the community
set that best fits their interests.
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