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ABSTRACT

The ever rising popularity of online social networks has not
only attracted much attention from everyday users but also
from academic researchers. In particular, research has been
done to investigate the effect of social influence on users’ ac-
tions on items in the network. However, all social influence
research in the data-mining field has been done in a context-
independent setting, i.e., irrespective of an item’s character-
istics. It would be interesting to find the specific contexts
in which users influence each other in a similar manner. In
this way, applications such as recommendation engines can
focus on a specific context for making recommendations. In
this paper, we pose the problem of finding contexts of social
influence where the social influence is similar across all items
in the context. We present a full-space clustering algorithm
and a subspace clustering algorithm to find these contexts
and test the algorithms on the Digg data set. We demon-
strate that our algorithms are capable of finding meaningful
contexts of influence in addition to rediscovering the prede-
fined categories specific to the Digg news site.

1. INTRODUCTION

Since the introduction of Web 2.0, online social networks
like Digg have gained in popularity and have become ubiqg-
uitous in our every day lives. Just like how these social net-
working sites are popular among the general public, they are
also a popular topic of study among researchers in the data
mining field. A particular area of interest is the study of
social influence in social networks. Social influence theory
claims that the behavior of users can influence their net-
work of friends to perform similar actions. The dynamics
of a social network is in part governed by this social influ-
ence [3,20,21,28].

Previous work has been done to prove the existence of
social influence within a social network, as well as maxi-
mizing and modeling influence [8,20,27]. The presence of
social influence can diffuse through a network and can be
exploited for tasks like viral marketing, recommendation,
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and numerous other applications. As such, it is advanta-
geous to learn the varying influence weights of a user on his
neighbors. Even more advantageous is to identify the con-
texts (collection of items) where the influence weights are
similar for the items in the context, thereby allowing us to
focus on a particular context for viral marketing or other
applications [20,23,26]. If a company, for example, wants to
sell sports equipment, it should target their advertisements
to users showing high influence in the “sport” context. How-
ever, all related work in the data mining area has been done
in a context-independent setting [8,17,22,27]. In this paper,
we investigate social influence in a context-specific setting.

1.1 Motivating Example

Studies in sociology have established that the social influ-
ence of an individual varies from context to context [9, 14].
As an example, within the domain of automobiles, user A
may have a strong influence on his neighbors because he is
an expert in this area. Whereas in the domain of garden-
ing, user A may have little influence because he is not an
expert in gardening. Thus, for companies selling automotive
equipment, user A might be a good candidate for target mar-
keting, while for companies from different sectors it might
be better to select other users.

To illustrate this phenomenon more concretely, we per-
form a preliminary analysis on the Digg network. Digg is a
news-sharing and voting site where users submit news sto-
ries and vote on them by “digging”. The more votes a story
receives, the higher it gains in popularity and is more likely
to spread across the network. Six news topics are selected:
basketball, celebrities, US 2008 Elections, health, Nintendo,
and technology. For each topic, the average influence prob-
ability for each user is calculated [8], i.e., the average proba-
bility that a user’s network of friends voted for a story after
he has voted for the same story.

Figure 1 compares the average influence probabilities for
the six selected topics and for all topics combined for a ran-
dom sample of five users. As can be seen, the context-specific
influence probabilities vary from topic to topic for each user.
For example, user 31 has some influence on his neighbors in
the topic of basketball but no influence in the topics of health
and Nintendo. We also see that user 122 has a significantly
higher influence in all categories except for Nintendo. These
results support our hypothesis that the context-specific in-
fluence probability of a user is different for different contexts.

Furthermore, when a user’s influence probability is mea-
sured irrespective of the topic (as in the existing approaches),
we lose useful information that can otherwise be obtained
if we focus on a certain context. For example, user 31’s



context-independent influence probability is very small since
he has little or no influence in five out of six categories.
However, the user obviously has some influence in basket-
ball. This motivates us to find the contexts in which users
exhibit significant social influence.

We wish to identify these contexts and the users associated
with those contexts who exhibit similar social influence. For
example, given the topics in Figure 1, a possible context can
be {basketball, election, health and technology} since the
influence probabilities of users 50, 53 and 122 are similar
across these topics. It would also be interesting to discover
novel contexts that are less conventional and not expected
such as the grouping of health and Nintendo.

The task of identifying these contexts is a clustering prob-
lem. More specifically, it is a graph clustering task as we
require the structural properties of the social network graph
to measure the social influence probabilities associated with
the edges. However, many graph clustering methods per-
form the clustering based on only the network’s structural
properties. More recently, there have been new methods
that leverage the structure of the network as well as the
attributes associated with vertices to find more meaningful
clusters [10,11,18]. While these methods exploit the at-
tributes on the vertices, we are interested in using the edge
attributes (i.e., social influence probabilities) to find clusters.

In this paper we make the following contributions:

e We introduce the novel problem of finding contexts of
social influence in a social network.

e Using a social network and social influence probabili-
ties associated with the edges, we develop a full-space
clustering model to learn K contexts of social influence
within the network.

e We extend the full-space model by presenting a sub-
space clustering model to also find the corresponding
communities of users for each context.

e We carry out experiments to evaluate our models using
a real life social network data set and demonstrate the
ability of our methods to identify meaningful contexts.

The remainder of the paper is organized as follows: In Sec-
tion 2, we present a survey of related work. In Section 3, we
describe some related concepts and formally introduce the
problem definition. Section 4 presents the solution to our
problem of interest and Section 5 presents experimental re-
sults. We then make some concluding remarks in Section 6.

2. RELATED WORK

In this section, we present a summary of the related work
in the area of modeling social influence and clustering in
large network graphs.

Social Influence Modeling. For a time, the presence of
social influence in online social networks was questionable.
After Anagnostopoulos et al. [3] and La Fond et al. [6] devel-
oped tests to prove the existence of social influence, the next
concern for researchers is how to model this influence and
predict it? Rodriguez et al. [21] propose a model to infer
the influence propagation given a set of observed user ac-
tions and associated timestamps to produce a network that
best explains the observed actions times. Xiang et al. [28]
develop an unsupervised latent variable model to learn the
relationship strengths between users based on user behav-
ior and user similarity, but their model mostly focuses on
homophily effects and not social influence.
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Figure 1: Comparison of influence probabilities for six indi-
vidual topics and all topics combined

Goyal et al. [8] quantify the influence strengths using influ-
ence probabilities. They use the independent cascade model
to learn these probabilities, where the influence probability
from user u to user v increases with the number of items
items v adopts from u. The intuition is that as more of a
user’s friends perform an action, the more likely the user will
perform the same action. Recently, some works [13,19] argue
that there are further factors impacting the users’ behavior
besides social influence. [13] propose a user behavior model,
which considers all major factors as social correlation, user,
item, and sparsity factors. The work of [22] claims to ac-
curately predict a user’s actions, it is also necessary to take
into account his passivity. They propose a method to infer
the influence scores together with their passivity scores.

All these works, however, do not consider the users’ so-
cial influence in different contexts as in our paper. As we
discussed in the previous section, measuring a user’s context-
independent influence can be disadvantageous.

Tang et al. [27] introduce the problem of quantifying social
influence with respect to different topics and propose a Top-
ical Affinity Propagation approach to model the topic-level
social influence in social networks. Liu et al. [17] continue
this work by developing a generative graphical model to es-
timate the direct and indirect topic-based influence between
nodes in a network. Their models rely on heterogeneous net-
works with nodes representing users and items, where each
node is associated with a topic distribution. The similar-
ity of their topic distribution is used to infer the (context-
independent) degree of social influence between two users.
In our paper, we are given a set of topic-specific social influ-
ence weights and we are interested in finding the groups of
topics that have similar influence weights.

Graph Clustering. To find contexts of social influence,
we use a combination of subspace clustering and dense sub-
graph mining methods [2,15]. Presently, there are relatively
few works that combine both methods to take advantage
of the different sources of data. Subspace clustering meth-
ods use subsets of an object’s attributes to find meaningful
groups among a collection of objects. We use this approach
to find the most useful subset of edges to serve as the support
for our contexts. Similarly, dense subgraph mining methods
also finds groups of objects (cliques or quasi-cliques) by us-
ing the structure of the graph. In our paper, we are require
the graph structure and the attributes associated with the
edges to find the contexts.

The literature on dense subgraph mining is extensive and
we only briefly discuss a few of the relevant works here.
In [7], Gibson et al. present a method to find dense sub-
graphs in a large graph, which employs the shingling algo-
rithm in each recursive step. Another approach by Shi et
al. [24] partitions the graph into cuts having small cut size
to find dense subgraphs. However, these methods do not in-



corporate the use of attribute data associated with vertices
or edges like in our work.

The works of [12] and [5] introduce a distance function
that simultaneously measures the similarity of attributes
and network shortest paths, which can then be used with any
distance-based clustering algorithm. A limitation of these
distance-based methods is that the graph structure is lost
in the final output. In [25] a normalized modularity defini-
tion where vertex features are incorporated as edge weights
is used. For minimizing this normalized modularity, a spec-
tral clustering approach is used. Multiple further clustering
methods have been introduced that simultaneously consider
network and vector information. Most of the approaches,
however, take a full-space clustering perspectives, making
their application for high-dimensional data questionable.

The method of [18] combines subspace clustering and dense
subgraph mining. It aims to find dense, connected sub-
graphs that are highly similar in a subset of attributes and
meet a minimum density threshold. The methods of [10,11]
extend this principle by excluding redundant clusters from
the final output. While these methods use attribute data as-
sociated with the vertices, we introduce a method that uses
the attribute data associated with the edges.

3. PROBLEM DEFINITION

In this section, we present some related concepts and
formulate our problem definition. For our research prob-
lem, we have a social network graph G = (U, E), where
U = {ui,uz,...,un} is the set of users and E C {e =
(u,v)|u,v € U} is the set of directed edges representing the
relationships between users. An edge from u to v indicates
that user v is a “follower” or “friend” of user wu, henceforth
referred to as a neighbor of u. In our paper, we assume that
the social network is static. That is, all relationships are
established at the same time as the creation of the network
and no edges are deleted.

In addition to users, there is a set of items I = {i1,...,im},
a set of topics T = {t1,...,tp} with t, C I, and a set of
actions associated with each user.

DEFINITION 1. Action: Each user u can perform an ac-
tion on an item i € I denoted as a’, = (u,i,d%,), where di, is
the date of the action. The set of all actions performed by a
user u 1s denoted as A,.

Please note that each user can perform an action on an item
only once. In the Digg data set, the items are news stories
and users perform an action by “digging” a story. For sim-
plicity, we assume the set of items is also static. Further-
more, we only consider users who have performed at least
one action, i.e., |A,|>1 as they are the most interesting from
a social influence perspective. We can infer that an individ-
ual is influenced by one of his neighbors if he performs an
action on an item after his neighbor performed an action on
the same item. Similar to [4], we define an item adoption as:

DEFINITION 2. Item Adoption: For a pair of neighbors
e = (u,v) and an item i, if user u performs an action on
item i (i.e., a', € A, ) and v performs an action al, on item i
where d', < di,, then we define (a’,,a%) as an item adoption.
Furthermore, we denote the set of all items adopted by v
from u as TAe = {ila}, € Ay Nal € A, NdL < dL}.

As noted in the motivating example, users demonstrate
different degrees of social influence for different contexts. In

this paper, we wish to learn the contexts in which the social
influence is similar. We represent a context C' as a subset of
the topics T, i.e., C' € 27. For the Digg data set, a context
can represent all stories related to the topics basketball and
health for example.

To quantify social influence, we define a simple social in-
fluence weight as in the work of [8]:

DEFINITION 3. Social Influence Weight: For every edge
e = (u,v) € E and topic t € T, the social influence weight
w? is defined as follows:

t
wt = 1 if |AL] # 0
undefined if |AL| =0

where Al = {a}, € A,|i €t} and TAL = {i € [A.|i €t}

In the first case, we measure the number of items in topic
t the user u has performed an action on, compared to the
number of items which have been adopted by v from u. The
more items v adopts from u, the more evidence we have that
u influences v, resulting in a higher influence weight w?. In
particular, if v has not adopted any items, then we assume u
has no influence on v and w! = 0. In the second case, u has
not performed an action on any items in t. Consequently,
the edge weight is undefined as we cannot infer the degree
of social influence from the lack of action by wu.

The motivation behind this weighting scheme is to predict
a user’s future actions. As in the case of viral marketing,
an individual’s probability of being exposed to a piece of
marketing increases as more of his friends are exposed to
the same piece of marketing. Similarly, a user in an online
social network is more likely to perform an action on an item
if many of his neighbors have already performed the same
action. This concept is reflected in the work of [8].

We would like to identify subsets of topics that exhibit
similar influence patterns in terms of which edges in the
network demonstrate high influence and which edges demon-
strate low influence for that set of topics. This influence
pattern is captured by the topic’s influence signature repre-
sented by an |E|-dimensional vector where each element is
the social influence weight assigned to each edge in F, i.e.,

t t E
t— (wel,...,wewl) c R

The topics that form a cohesive context are those that
share similar influence signatures because these topics elicit
the same behavior from all users in the network. That is, for
an ideal context C' € 27, the same users are being influenced
by the same neighbors. Conversely, the users who are not
influenced and users who are not influential with respect to
a topic in C remain consistent across all other topics in C.

Each context can be characterized by its own influence
signature, the context centroid p, that is representative of
all t € C.

DEFINITION 4. Context Centroid: For a context C, the
context centroid is defined as p = (pl, e ,,u‘E|) where

He = ‘We|_l Z w;

teC
wé;&undef

and We = {t € Clw! # undef}.

e=1,...,|E|

Furthermore, to measure the similarity between influence
signatures, we define a distance function as follows:



DEFINITION 5. Distance Function: For a pair of influ-
ence signatures s, t, the distance between these signatures is
computed as

Dist(s,£) = IN|™" 3 diff(w?, w)
ecE
where

digte.) = {

and N = {e € E|ws,w! both defined A (ws # 0V wl #0)}.

x,y both defined A (x #0Vy#0)
otherwise

The distance function calculates the difference between
two social influence weights of an edge for all edges in the
network. However, many users in the network have no influ-
ence on any of their neighbors for most topics (i.e, wt = 0),
resulting in a highly sparse data set. Therefore, if defining
the difference as 0 as soon as one of the influence weights is
undefined, the distance between two influence signatures s
and t will be more or less the same. Thus, we are only con-
cerned with measuring the difference between weights that
are both defined and are both not equal to zero. The sum of
the differences is normalized by how many edges possess this
property so that the distance function does not favor influ-
ence vectors with many undefined and 0 influence weights.

With these concepts and definitions established, we present
our first problem definition.

PrOBLEM 1. Finding full network contexts Given a
set of topics T, actions A and a social network graph G,
we are interested in partitioning these topics into a set of
conteats C = {Cr, € 27, k=1,...,K} (i.e.Vi,j: C;NC; =
g AUE C, = T) to minimize

K
Q(C) =) > Dist(t, ) (1)

k=1teCy,

It is possible that even after finding a good set of con-
texts, some users have little or no influence on their neigh-
bors within those contexts. It makes sense to restrict the
context to just those users who exhibit significant influence
on their neighbors for topics in the context, i.e., the asso-
ciated community of users for a context. First, we define a
partial distance function for a subset of edges as follows.

DEFINITION 6. Partial Distance Function: For a pair
of influence signatures s,t and a subset of edges E' C E,
the distance between these signatures is computed as

Distp/(s,t) = [INOE'|™" > diff(w?, we)

eENNE’

where diff(x,y) and N are defined as in Definition 5.

This partial distance function measures the distance be-
tween two influence signatures with respect to a community,
i.e., a subset of edges. With this distance function, we ig-
nore those edges that have insignificant influence weights for
a context, as they do not contribute any useful information
when forming a context. However, since we consider only
users u with |Ay| > 1, every edge has a defined social influ-
ence weight for at least one item 7 and that edge contributes
to the formation of at least one context, i.e., the edge be-
longs to at least one community. Thus, we want to ensure
that each edge is associated to at least one context. This
leads us to our second problem definition.

Topic 2

WAC)=0

w(C,A) = UD

w(C,B)=0 /JW;]\\ M\
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Figure 2: Toy example demonstrating problem definition.
(a) is the social influence graphs for each topic; (b) is the
set of actions; (c) is the social influence matrix obtained
from the graphs. The blue rows represent context C; and
the pink rows represent context C>. The associated edges
for each context are highlighted in the corresponding color
with yellow edges shared by both contexts. (d) values of
Qx(C) for K = 2 contexts with 2 items in each context.

PROBLEM 2. Finding subnetwork conterts Given a set
of topics T, actions A and a social network graph G, we are
interested in partitioning the topics into K contexts C as in
Problem 1 but to also find a community, i.e., a set of edges
Ex C E for each context Cy, with UszlEk = F to minimize

Qi(©) =3 Distr,(t, m) (2)

k=1teCy

Note that in the literature a community is often assumed
to be connected. However, there may be multiple connected
sub-networks that exhibit social influence within the same
context but that are not connected to each other. Therefore,
our Algorithm 2, presented in Section 4.2, enforces a loose
connectivity constraint, i.e. a community is a set of a few
connected components.

As an example, suppose we have a network G = (U, E)
with U = {4, B,C} and E = {(A, B), (B, A), (B,C), (C, B),
(C,A), (A, C)}), aset of items I = {1,2,3,4}, a set of topics
T = {t1,t2,t3,ta}, where t1 = {1},...,t2 = {4}, and the
actions given in Figure 2b. Using the weighting scheme as
defined in Definition 3, each edge in G has a weight with
respect to a given topic as shown in Figure 2a. Converting



Algorithm 1 Learning full network contexts

Algorithm 2 Learning contexts using subspace clustering

Require: G, T = {t1,...,tp}, K
Ensure: C ={Cy,...,Ck}
: for allt € T do
Ci «+t,kel,..., K (random assignment)
: Initialize: Qg (C) < 0
repeat
for all Cy, € C do
compute(p)
for allt € T do
Ck < argminDist(t, py), k€ l,..., K
k

PP W

9:  previous < Qg (C)
10:  update(QK (C))
11: until Qi (C) > previous
12: return C

these graphs to a matrix of influence ratings as in Figure 2c,
the optimal partitioning for K = 2 contexts is C1 = {1,3}
and Cy = {2,4} as this produces the most homogeneous
contexts and minimizes (1) (cf. Figure 2d).

Furthermore, if we want to restrict the set of edges for each
context we can have E1 = {(4,C), (C, A),(B,C),(C, B)} as
these are the most similar edges for C;. For C3, we first
select (B,C) and (A,C) by the same reasoning. To sat-
isfy the constraint that all edges are included in at least
one context, we assign the remaining edges to Cs to get
E, = {(A, B),(B,A),(B,C),(A,C)} and minimize (2) to
get Q5({C1,C2}) = 0. If we had assigned the remaining
edges to C1, we get Q5({C1,C2}) = 0.5.

4. ALGORITHMS

In the following section, we present two algorithms to par-
tition the set of topics T" into contexts C = {C1,...,Ck} and
minimize the objective functions Qx (C) and Q' (C) in (1)
and (2) respectively. The first approach uses the full network
G to perform the partitioning while the second approach is
an extension of the first and associates a subset of the edges
to each context.

Algorithm 1: Full-space clustering.

Minimizing Qx(C) is equivalent to grouping all ¢ € T
into K homogeneous clusters. Finding the optimal solution
for this objective is obviously intractable. Instead, we re-
fer to a near-optimal solution be exploiting a K-means like
algorithm that takes into account the data’s sparsity. An
overview of the method is given in Algorithm 1. The social
network graph G, the set of topics T' and the number of
contexts K are the inputs to the algorithm, which outputs
the set of contexts C.

In lines 1-2, the algorithm begins by creating K initial con-
texts by randomly assigning each item to one of the contexts.
In line 6, the context centroid u,, k =1,..., K is computed
for each context as defined in Definition 4. In this step, any
undefined values are ignored and do not contribute to the
calculation of the context centroid. In lines 7-8, each topic is
reassigned to the nearest context according to the distance
function defined in Definition 5. The reassignments are done
to minimize the within-context sum of distances and further
minimize Qx(C) with each iteration. In line 10, Qx(C) is
recomputed as defined in (1) for the current iteration’s clus-
tering. These steps are repeated until Qx (C) has converged
to a minimum and no more reassignment of topics occurs.

Since there might exist several partitionings of the topics
that locally minimizes Qx(C) depending on the initial as-

Input: G, T = {t1,...,tp}, K, L
Output: C={Cq,...,Ck}
E ={En,...,Ex|Ex C E} (the set of edges for each context)

1: for allt € T do
2:  Cp+t,kel,...,K (random assignment)
3: Initialize: Q% (C) + 0
4: repeat
5: for all Cy € C do
6 compute(pr)
7 for all Cy € C do
8: Ej, < findedges(Cy, L)
9: for alle € E\UX | Ej, do
10: Ej + findcommunity(e,C), k€ 1,..., K
11: for allt € T do
12: Cy « argminDistg, (t, ug, Ex), k€1,..., K
k

13:  previous < Q% (C)
14:  update(Q', (C))

15: until Q% (C) > previous
16: return C, £

signment of topics, we perform the algorithm several times
and choose the best solution.

Algorithm 2: Subspace clustering.

Besides finding a partitioning of the topics, in our second
problem definition, we are interested in finding the support-
ing communities. Thus, we simultaneously want to find sets
of topics and sets of edges. This task corresponds to the
principle of subspace clustering [15]. Thus, our second al-
gorithm exploits a subspace clustering approach which is
similar to the PROCLUS algorithm [1]. Our method finds
the L most relevant subset of edges for each context. The
parameter L can be thought of as the minimum size of the
context’s community and needs to be specified to avoid fa-
voring small communities. Pseudocode for the algorithm is
presented in Algorithm 2.

The main difference between Algorithm 2 and Algorithm 1
is the findedges routine (line 8). The routine uses the cur-
rent clustering to find the most influential community for
each context. Specifically, it starts with the most influential
edge for a context. For our purposes, the most influential
edge for a context C} is the edge that maximizes the influ-
ence weights w? for each t € Ck. Given this edge, the routine
grows a community by finding the next most influential edge
that is connected to the current community, and adds it to
FE, the subset of edges associated with context Cf.

If the next most influential edge is not connected to the
current community, it serves as the starting edge for a new
community, thereby allowing a context’s community to be
composed of one or more connected communities. This is
permitted since it likely that there exists disconnected com-
munities that show similar influence patterns for a single
context. This process is repeated until L edges are included
in the community and is performed for each context. Note
that we allow an edge to belong to several contexts so that
contexts are not competing for the same edges. In essence,
by starting with the most influential edges and growing the
communities from these edges, the routine mimics the vi-
ral marketing phenomenon where the influence propagation
starts with the most influential users. More formally,

findedges(Cx, L) = argmax Z Z wk

’
E'CE, \eecE! teCy,
|E'|=L



Category Topics
Lifestyle arts & culture, autos, educational, food & drink, health, travel & places
Offbeat comedy, odd stuff, people, pets & animals
Science environment, general sciences, space
Sports football, baseball, basketball, extreme sports, golf, hockey, motorsports, Olympics, other sports, soccer, tennis
Technology Apple, design, gadgets, hardware, Linux/Unix, Microsoft, mods, programming, security, software, tech news
World business & finance, political news, political opinion, US Elections 2008, world news
Entertainment | celebrity, comics & animation, movies, music, TV
Gaming gaming, Nintendo, PC games, web games, Playstation, Xbox
Figure 3: Digg categories and topics
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Figure 4: Characteristics of the Digg social network

Since every edge should participate in at least one context,
in lines 9-10 of the algorithm, any unassigned edge is added
to the context for which it has the highest influence weights
and for which it is connected to that context’s community
(routine findcommunity). If an unassigned edge is not con-
nected to any community, then it is randomly assigned to a
context uniformly. Formally, given an edge e = (u,v) and a
set of contexts C,

findcommunity((u,v),C)

argmax Y, wl if Is € U|(s,u) € Ex V (s,v) € Ey,

= k  teCy

uniform(1l, K) otherwise

Note that if L = |E|, then Algorithm 2 is the same as
Algorithm 1. The remainder of the algorithm is similar to
Algorithm 1 but the distances to the context centroid
are calculated relative to the associated set of edges Fi as
in Definition 6.

S. EXPERIMENTS

In this section we test our algorithms on the Digg data
set to find contexts of influence and the corresponding com-
munity for each context.

5.1 Data

The data used comes from the Digg social network as of
2008 [16]. We pre-process the data to remove any edges
(u,v) where neither u nor v has performed any action. We
also remove any items from the data where no user has per-
formed an action on it. Figure 4a summarizes the statistics
of the Digg social network after the pre-processing step. We
see from this table that the Digg dataset is highly connected
with an average of 43 neighbors per user, with only a small
percentage of users having more than 100 neighbors (cf. Fig-
ure 4b). We also see that the network is quite active with
930 actions/user on average. However, the number of actions
per user is exponentially distributed as seen in 4c. In terms

of the number of actions performed on items, each item has
had on average 35 actions performed on it. The number of
actions per item is also exponentially distributed, with more
than 50% of items being “digged” by only a handful of users
(cf. Figure 4d). This pattern is typical of rating networks
where there are significantly more items than users.

The news stories (items) in the Digg network are clas-
sified into 51 topics (e.g., basketball, baseball, music) and
these topics are further classified into eight categories (e.g.,
basketball and baseball belong to the category of sports) (cf.
Figure 3). For each edge e and for each topic ¢, we compute
the social influence weight w’ as in Definition 3.

We first run Algorithm 1 to find K = 4,6,8,10 con-
texts of influence. We then apply Algorithm 2 for L =
400, 8000, 16500, 25000, 33159 (corresponding to 1%, 25%,
50%, 75%, and 100% of the edges respectively) to possibly
improve these contexts and find the corresponding commu-
nity of users associated with each context.?

5.2 Context Analysis

In the absence of ground truth for the contexts, we present
a qualitative analysis of the contexts learned by both algo-
rithms. The contexts are analyzed objectively by quality
(Qr(C)\Q’%(C)) and subjectively by clarity (i.e., how eas-
ily interpretable and intuitive are they?). Figure 5 presents
the contexts learned by Algorithm 1 for K = 4,6,8,10. For
K = 4, we have one large context (context K4.1) and three
smaller contexts. While the poor clarity of context K4.1 does
not allow for easy interpretation, the small contexts are a
partitioning of predominantly sports, technology and gam-
ing news. These contexts make intuitive sense since most
individuals who have an interest in sports typically share an
interest in video games, which in turn is closely related to
the topic of technology. Furthermore, it is known that 94%
of Digg users are male between 18-35 years of age, many of

we implemented our algorithms using the C Clustering Library
available at http://bonsai.hgc.jp/~mdehoon/software/cluster/
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Figure 5: Contexts learned by Algorithm 1

whom work in the technology industry.? As such, the ma-
jority of actions in the Digg network are performed by this
group of users to share and read news in these categories,
explaining why these contexts are easily identifiable.

For K = 6, we get more clarity in the composition of each
contexts. Context K4.1 is now divided into two smaller con-
texts (K6.1, K6.2). The clarity continues to increase for
K = 8 and K = 10 as contexts become stabilized and the
original categories are rediscovered. For example, contexts
K8.1/K10.10 and K8.3/K10.2 consists of mostly items from
the World category and the Entertainment category respec-
tively. We also see that the Offbeat category is rediscovered
in context K10.9. The other contexts are a mixture of sports,
technology and gaming news since they are the most popular
categories in Digg.

Not only do the learned contexts make sense semantically,
but they are also meaningful in terms of social influence.
For example, note that hockey news is consistently its own
context for K = 6,8,10 (contexts K6.4, K8.5, and K10.5)

2www.zdnet .com/blog/micro-markets/can-digg-go-
mainstream/790

and is not grouped with other sports news. After examining
the data set, we observe that there are only 30 hockey news
stories and they are “digged” by the same group of 200 users.
Consequently, this exclusive set of neighbors are influencing
each other in a similar manner in only hockey news, resulting
in a cohesive context.

For the contexts learned by Algorithm 2, we observe an
interesting trend. The quality of the contexts improves as
L increases but reaches an optimum at L = 8000 (cf. Fig-
ure 6a). After this point, the quality of the contexts gets
worse. This is because for low values of L, the supporting
community is too small and does not provide enough infor-
mation to form good contexts. The quality of the contexts is
best when L = 8000 because these edges provide sufficient
information to form the best contexts. When L > 8000,
the contexts become poor again because the algorithm is se-
lecting unnecessary edges (i.e., edges showing influence for
very few topics) to associate with each context. These extra
edges are not useful and only contribute noise, resulting in a
higher value of Q' (C). This trend is reflected in the clarity
of the contexts.
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Figure 6: Characteristics of learned contexts when using subspace clustering (Algorithm 2)

As seen in Figure 7, the contexts learned for K = 10, L =
400 by Algorithm 2 are comparable to the contexts learned
by Algorithm 1.® However, Figure 7 shows that context L4.1
grows larger, covering a variety of topics as L increases. The
contexts stabilizes between L = 8000 and L = 16500 but
then shrinks again as L approaches 33159 and becomes more
similar to the contexts learned by the full-space clustering
algorithm (cf. Figure 5).

According to Figure 6a, the best quality subspace cluster-
ing of the topics is for L = 8000 but we see in Figure 7 that
context LL8.1 has poor clarity. It is large and includes topics
from many different categories. A reason for this finding is
because the actions in the Digg network are “cheap”. That
is, it does not take much risk or commitment to “digg” a
news story. Consequently, users are more liberal with the
stories they “digg” and tend to perform actions on many
stories from a range of topics, resulting in a highly diverse
context of topics such as context L8.1.

Ideally, by restricting each community to a subset of the
most influential edges, we can get higher quality contexts
with better clarity. However, if we refer to Figure 6c¢, the
number of users per context remains relatively constant for
all values of L with ~1000 users per context on average,
suggesting nearly the entire network is participating in each
context. We also see from Figure 6b that the number of
edges per context is always more than L. Even for the case
of K =6,L = 8000, which is enough to cover all edges, the
algorithm produced contexts with 11,000 edges on average;
much more than expected. This implies that many of the
same edges were selected for multiple contexts during the
findedges routine in Algorithm 2. Thus, ~18,000 edges
still need to be covered by one of the 6 contexts using the
findcommunity routine.

This observation suggests that it is the same 25-35% of
neighbors (~12,000 edges) that are actively interacting with
each other across all/most contexts; providing the most use-
ful information to form the best contexts. Furthermore,
it explains why the quality of the contexts are poor when
L > 16500. This hypothesis is further confirmed in Fig-
ure 6d which shows that the edge similarity between con-
texts increases as L increases because contexts are selecting
the same edges. Yet, the similarity is small because the ma-
jority of the edges are the leftover edges that are divided
among the contexts. Moreover, the overlap increases as K
increases because the same edges are needed by each con-

3Since the algorithm consistently produced the highest quality
clustering for K = 10 (cf. Figure 6a), we only present these
contexts in this paper.

text. This agrees with the empirical evidence presented in
Figure 4a and 4c as only 35% of all users are highly active;
having performed greater than the average of 930 actions.

Given the small size of the Digg network, it makes sense
to conclude that the entire network of 1244 users form one
single community. Thus, by only selecting certain edges for
each context, we lose useful information for forming the con-
texts. These results tell us that to successfully find contexts
of influence and the corresponding communities, a large net-
work of users is required and most users of the network need
to be actively interacting with each other. It is not suffi-
cient to only having a select group of users perform all the
actions. Furthermore, to get contexts with better clarity,
actions need to have a higher cost to encourage users to be
more conservative when performing actions on items.

6. CONCLUSION

Online social networks have rapidly become a regular part
of our everyday lives as a portal to receive and share a variety
of media. Several works have proven and quantified the exis-
tence of social influence as a factor in guiding users’ actions
in these networks. However, the work so far in regards to on-
line social influence has been done in a context-independent
setting. In this paper, we introduce the novel problem of
finding contexts of similar social influence, where the social
influence is uniform across all items in a context. We present
a full-space clustering method to find the contexts of social
influence and extend this method to only consider certain
subsets of edges to find the contexts and the corresponding
communities. We test our methods on the Digg data set and
show that the full-space method is capable of learning mean-
ingful contexts based on social influence weights. However,
due to the small size of the data set, the disproportionate
distribution of interactions among users, and the inherent
“cheap” actions of the Digg network, the subspace method
was not able to find high quality contexts with high clarity.
As a direction for future work, we can improve the subspace
algorithm to automatically detect the optimal number of
edges for each community. In this way, the parameter L
does not need to be specified. We also assume that the net-
work is static in this paper, but it would be interesting to
investigate how these contexts evolve over time.
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