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ABSTRACT
Pattern is an open source project based on Predictive Model
Markup Language, which is focused on the convergence of
predictive modeling, machine learning, cloud computing, dis-
tributed systems, Hadoop, etc. PMML as a language helps
to ease this integration. The open source Cascading API is
used as a foundation for constructing and optimizing work-
flows, which are highly parallel at scale. Pattern implements
a domain-specific language (DSL) to translate PMML model
descriptions into Cascading workflows, which can then be
deployed on cloud computing platforms such as Amazon
AWS ElasticMapReduce and Microsoft HDInsight.

Observed benefits include greatly reduced development
costs and less licensing issues at scale, while leveraging the
scalability of Apache Hadoop clusters, existing intellectual
property in predictive models, and the core competencies of
analytics staff. Analysts can train predictive models in pop-
ular analytics frameworks, such as SAS, Microstrategy, R,
Weka, SQL Server, etc., then run those models at scale on
Apache Hadoop with little or no coding required.

This paper explains the integration of PMML and Cascad-
ing, using a sample application based on the crime dataset
from the City of Chicago Open Data. The sample applica-
tion implements a predictive model for expected crime rates
based on location, hour of day, and month. Multiple mod-
els are captured as PMML, then integrated via Pattern to
implement the entire workflow as a single application.

Categories and Subject Descriptors
H.2.8 [Database Management]: Data Mining
; G.3 [ Probability and Statistics]: Statistical Comput-
ing, Statistical Software; I.5.1 [ Models]: Statistical Mod-
els, Neural Nets

General Terms
Standardization, Language
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1. INTRODUCTION
The convergence of Big Data and predictive analytics has

opened up a wide range of potential application areas. Early
work with Apache Hadoop tended to focus on ETL pro-
cesses, marketing funnel, reporting – use cases which did
not require much in terms of predictive models. Subsequent
work on recommender systems, anti-fraud classifiers, and
related needs in e-commerce and online advertising proved
the case for large-scale analytics; however, these applications
tended to be written directly in the Hadoop API, requiring
large amounts of algorithm work and expert programming
in a MapReduce[?] context. More recently, Hadoop applica-
tions in use cases such as climatology, genomics, remote sens-
ing, and Internet of Things sensor arrays are demonstrating
the demand to migrate predictive models from popular ana-
lytics platforms to run on Hadoop clusters. As a wider range
of scientific applications become used on Hadoop, there will
be even more need to find ways to migrate models and lever-
age domain expertise, without requiring a huge amount of
expert programming.

Pattern is a machine learning library which extends the
open source Cascading1 API to provide support for the Pre-
dictive Model Markup Language (PMML). Predictive mod-
els which have been created on an analytics platform, such as
SAS or R, can be exported as PMML. The Pattern library
works by translating PMML – an established XML stan-
dard for predictive model markup[?] – into data pipelines
and other functional programming constructs in the Cascad-
ing API in Java. Cascading provides a pattern language for
constructing large-scale data workflows on Apache Hadoop –
effectively describing business process in terms of functional
programming. Since PMML describes the business process
of workflows (e.g., model composition and segmentation),
there exists a natural mapping into Cascading.

The open source code repository for Pattern on GitHub2

provides its Java source code and unit tests, Gradle build
scripts, PMML examples and accompanying sample data
sets, R scripts for generating PMML examples, as well as

1http://www.cascading.org/
2http://github.com/Cascading/pattern



Python scripts for generating large-scale data sets to use in
creating and scoring predictive models. PMML models can
be run in Pattern using a pre-defined JAR file – with no
coding required.

PMML can also be combined with other Cascading com-
ponents based on ANSI SQL (Lingual), Scala (Scalding),
Clojure (Cascalog), etc. Combing such components in Cas-
cading helps to provide for seamless integration of data prepa-
ration and model scoring. It also integrates the process
moving results into production use, which mitigates the op-
erational risk of managing complex analytics applications.
Moreover, instead of having the model run as a separate pro-
cess, the compiler has visibility into the full workflow. This
allows opportunities for flow optimization, such as hoisting
code from adjoining steps into a single step, thus reducing
the resources consumed during MapReduce operations.

PMML provides the capability to specify multiple models
as a single workflow. This translates directly into Cascad-
ing workflows, which can be used to parallelize ensembles
and otherwise perform optimization of the logic specified
in PMML. The benefits of ensembles in predictive modeling
was noted by Breiman[?][?], in what was called a multiplicity
of data models. This has borne out in practice in the years
since, particularly in the context of the Netflix Prize compe-
titions. Ensemble methods[?] were leveraged by the leading
competitors for the goal of improving accuracy. For exam-
ple, the BellKor team blended over 100 individual models[?]
for their final solution in the 2007 Progress Prize. Learnings
from those competitions[?] indicate that while the process of
combining models adds complexity – in particular, making
it more difficult to anticipate or explain predictions – accu-
racy may be increased substantially. Support for ensemble
methods is not generally available in the libraries which ex-
port PMML from SAS, R, etc.; however, the Cascading API
provides a variety of features through the Pattern project
which anticipate this need growing in future work.

This paper explains the integration of PMML and Cascad-
ing, using a example application based on the crime dataset
from the City of Chicago Open Data. Section 2 introduces
the use of Cascading and the Pattern project, based on an
example with the Iris data set. It explains how a PMML
model can be exported using R, and also how it can be in-
cluded in Cascading then run on Apache Hadoop. Section
3 explains the process of data prepration for the Chicago
crime data set, using a Cascading workflow. Then it shows
an example of PMML MultipleModel and how this kind of
ensemble workflow translates into the corresponding Cas-
cading API calls.

2. CASCADING AND PATTERN
Cascading is an open source project based on Java for

developing large-scale data workflows[?]. The API was orig-
inally introduced in late 2007, as an abstraction layer atop
Apache Hadoop[?]. Experiences from many large-scale com-
mercial production deployments have informed several iter-
ations of the API over the past five years.

Moreover, several other open source projects have been
built on top of Cascading. DSLs have been written for Clo-
jure, Scala, Jython, etc. In general, JVM languages which
include functional programming features tend to be efficient
for specifying large, complex data pipelines. Cascading pro-
vides an integration layer for these – in other words, a kind
of middleware – as an abstraction for calls into Hadoop,

HBase, Cassandra, Memcached, and other distributed data
frameworks. This is valuable as DSLs cut down the de-
velopment time. Two of the most widely used Cascading
DSLs are Cascalog3 in Clojure and Scalding4 in Scala. Both
projects were developed by machine learning teams at Twit-
ter. Another more recent open source project called Lin-
gual5 provides ANSI SQL as a DSL. Applications also allow
for components in these different languages to be blended
together.

Cascading represents a pattern language, based on the
functional programming paradigm. According to the notion
of pattern languages[?] as originally articulated by Christo-
pher Alexander, et al., in the field of architectural design,
the syntax of the language is constructed such that when
its components fit together then specific best practices are
guaranteed for the resulting application. A simple case of
pattern language is encountered in the use of Lego R©toy
blocks. When the blocks snap together, some properties
of stability and intended movement can be guaranteed as a
toy building scales. This represents a means of conveying
expertise and simplifying construction for novices. In the
case of Cascading, when components of the API are fit to-
gether correctly in an application, there are some guarantees
that the JVM compiler and the underlying technologies such
as Apache Hadoop will be able to parallelize the workflow.
When the components have not been fit together correctly,
the compiler rejects the code. This occurs in a fail fast mode,
long before consuming expensive resources on a large-scale
Hadoop cluster. This is important as it enables develop-
ment of large scale applications, where expertise in Apache
Hadoop and other Big Data technologies is generally scarce.

One interesting aspect of Cascading is the use of liter-
ate programming [?] as articulated by Donald Knuth. The
API serves as an abstraction layer, separating the business
process which defines large-scale data workflows away from
the flow planners which generate jobs on Hadoop and other
distributed topologies. The flow planners generate graphi-
cal documents called flow diagrams to represent each query
plan as a directed acyclic graph (DAG). Schema, runtime
metrics, and other metadata may be used to annotate the
DAG for a given application. Within the developer com-
munity, these DAGs are used to discuss applications and
nuances of the API – oftentimes used rather than reviewing
the actual source code. This provides a holistic view and
hence is easier to debug.

PMML6 similarly represents a formal specification for work-
flows. PMML is capable of capturing the parameters for a
predictive model. It also captures metadata about input,
transforms for input and output, and moreover can be used
to specify ensembles[?] of multiple models, or model compo-
sition. This kind of workflow business process maps directly
into Cascading API calls via the Pattern interface. Cascad-
ing can parse the PMML, generate the necessary API com-
ponents to implement it, then merge those components into
the application DAG and apply optimizations. In commer-
cial practices, the data preparation required for a model is
often handled in ANSI SQL. This too can be parsed by Cas-
cading, which generates the necessary API components, then

3https://github.com/nathanmarz/cascalog/wiki
4https://github.com/twitter/scalding/wiki
5http://www.cascading.org/lingual/
6http://www.dmg.org/v4-1/GeneralStructure.html



merges those into a DAG. The resulting application from
the compiler’s perspective is one integrated DAG, which is
one consistent space for applying optimizations (e.g., mov-
ing predicates), for troubleshooting error conditions, han-
dling exceptions, instrumenting for notifications, analyzing
utilization rates, etc. In this way the business logic repre-
sented by PMML and SQL components combine seamlessly
into a single application, as a single JAR file.

2.1 Generating PMML from R
In this section, we use statistical language R to train a

Random Forest[?] model based on the popular Iris data set
and export a PMML file. An example from the Iris data
shows the Iris flow species versus a few measured attributes,
such as sepal length:

sepal_length sepal_width petal_length

petal_width species predict

5.1 3.5 1.4 0.2 setosa setosa

4.9 3.0 1.4 0.2 setosa setosa

5.6 2.5 3.9 1.1 versicolor versicolor

5.9 3.2 4.8 1.8 versicolor virginica

6.3 3.3 6.0 2.5 virginica virginica

4.9 2.5 4.5 1.7 virginica versicolor

The R script uses the measured attributes as independent
variables, to classify the species as the dependent variable:

library(pmml)

library(randomForest)

require(graphics)

# split data into test and train sets

data(iris)

iris_full <- iris

colnames(iris_full) <- c("sepal_length",

"sepal_width", "petal_length",

"petal_width", "species")

idx <- sample(150, 100)

iris_train <- iris_full[idx,]

iris_test <- iris_full[-idx,]

# train a Random Forest model

f <- as.formula("as.factor(species) ~ .")

fit <- randomForest(f, data=iris_train,

proximity=TRUE, ntree=50)

pred <- predict(fit, iris_test, type="class")

# export PMML

saveXML(pmml(fit), file="iris.rf.xml")

When run, the R script reports on the predictive power
of the Random Forest classifier:

OOB estimate of error rate: 5%

Confusion matrix:

setosa versicolor virginica class.error

setosa 32 0 0 0.00000000

versicolor 0 26 2 0.07142857

virginica 0 3 37 0.07500000

The script generates trained model as PMML using the
Rattle7 open source library.

7http://rattle.togaware.com/

2.2 Model Scoring in Cascading
Given the PMML file, one can import the model into Cas-

cading. A pre-defined application runs model scoring on
Hadoop, using the PMML file as a command line argument:

hadoop jar build/libs/pattern-examples-*.jar

data/iris.rf.tsv out/classify

--pmml data/iris.rf.xml

That command line causes the Cascading application to
parse the PMML, generate API components to implement
the required workflow, then generate an Apache Hadoop job
to run the model in parallel. A portion of the output from
running this model on Hadoop looks like:

$ head out/classify/part-00000

sepal_length sepal_width petal_length

petal_width species predict score

5.1 3.5 1.4 0.2 setosa setosa setosa

4.9 3 1.4 0.2 setosa setosa setosa

4.7 3.2 1.3 0.2 setosa setosa setosa

4.6 3.1 1.5 0.2 setosa setosa setosa

The predict column represents the scores from the model.
Source code required to implement a PMML workflow is
quite succinct:

FlowDef flowDef = FlowDef.flowDef()

.setName("classifier")

.addSource("input", inputTap)

.addSink("classify", classifyTap);

PMMLPlanner pmmlPlanner = new PMMLPlanner()

.setPMMLInput(new File(pmmlPath))

.retainOnlyActiveIncomingFields();

flowDef.addAssemblyPlanner(pmmlPlanner);

Flow classifyFlow = flowConnector.connect(flowDef);

classifyFlow.writeDOT("dot/classify.dot");

classifyFlow.complete();

Assuming that the PMML file location is given by a string
pmmlPath, and that the input and output data sets are given
by inputTap and classifyTap respectively, that Java code
will run the model scoring in parallel on Hadoop.

Note that the Java code is relatively independent of the
model type in PMML. Internally, there may be Random For-
est, Logistic Regression, K-Means Clustering, etc., or ensem-
bles or model chains. The portions exposed to the Cascading
application are the DataDictionary8 and MiningSchema9 el-
ements. These PMML elements correspond to tuple schema
in Cascading, defining metadata for the fields in the data
tuples which flow through assemblies of Cascading pipes.

Figure 1 shows a conceptual flow diagram for a similar
Cascading application. In this case, a data sample dataset
gets scored by a PMML model which implements a classi-
fier and outputs the classification. Additional logic can be
added to allow for optional regression testing and creating
a confusion matrix.

Note that the PMML model gets parsed on the client side,
before the application is submitted to the Hadoop scheduler.
This allows the parser to detect errors and fail fast before
consuming expensive compute resources on the cluster.
8http://www.dmg.org/v4-1/DataDictionary.html
9http://www.dmg.org/v4-1/MiningSchema.html



Figure 1: Conceptual flow diagram of a sample Cas-
cading application using PMML.

3. CHICAGO CRIME DATA
In this section, we demonstrate how the Pattern project

can be applied for use in a real problem. The City of Chicago
has released much of its municipal data10 to the public.
Their stated intent is to promote access to government data
and encourage the development of applications which engage
and benefit their community. Over 200 data sets have been
published and are available via an online portal web site.
Most of these data sets are available as comma-separated
values (CSV).

One of the data sets11 lists the reported incidents of crime
in Chicago since 2001. For each incident, the data set lists
the date, location, case number, various crime classifications
(FBI, etc.), plus an index to both a ward and a community
area. There are less than 50 wards, and less than 100 com-
munity areas. The former represent political divisions, while
the latter are used for collecting US Census data. Analysts
working on Chicago demographics have noted that the ward
numbers can be problematic given that ward boundaries
change frequently based on political motivations12. The
community areas also change; however, these are relatively
more stable and therefore more useful for aggregating the
crime data.

Other data sets are also indexed by these same commu-
nity areas. In addition to the crime reports, data sets for
census and predominant language spoken are joined based
on community area index. These help enrich the crime data
with additional signals to boost predictions.

Data preparation is performed in a Cascading application,
which results in a data cube used to train classifiers in R.
This code can be reused for data preparation in production.
An open source code repository for this applicaton is avaial-
ble on GitHub13.

First the crime data is read as CSV, with an assertion used
to remove rows with null values. Then a regular expression
is used to extract the date components: month, hour, week.

10http://www.cityofchicago.org/city/en/narr/foia/
CityData.html

11https://data.cityofchicago.org/Public-Safety/
Crimes-2001-to-present/ijzp-q8t2

12http://www.robparal.com/ChicagoCommunity
AreaData.html

13https://github.com/ceteri/ChicagoCrime

These values plus the year, crime category, and community
area index comprise the dimensions for the data cube. A
GroupBy aggregates on these dimensions, to obtain counts
for each crime category. Those results get merged with de-
faults, so that any missing crime categories have counts set
to zero. Then the census and predominant language spo-
ken get joined, using a HashJoin for a replicated join. This
provides an optimization when run in MapReduce, since the
latter two data sets are relatively smaller and can be repli-
cated in memory. The final data cube is then written to
output, for training use in R.

A conceptual flow diagram in Figure 2 illustrates the busi-
ness logic for this workflow. The actual flow diagram for the
parallelized query generated by the Cascading flow planner
is shown in Figure 3.

3.1 Ensemble Scoring
This section explains the modeling: how a complex model

of ensembles is created for the Chicago crime data set, how
multiple models are used, and the way in which it gets
mapped into Cascading as a data workflow. Currently, Pat-
tern supports Random Forest Ensemble. A inital version
of the support for Ensemble of Ensembles is in the GitHub
repo.14

First, data is prepared on Hadoop using a Cascading app
to create the Chicago crime data cube. R is then used to
build models for different crime categories based on that
data cube. There are two Random Forest Regression models
trained in R and exported as PMML files. These are com-
posed into an ensemble in PMML[?] using the selectFirst

method for segmentation. A simple predicate divides the
data into individual crime buckets and applies the RF mod-
els for each.

<Segmentation multipleModelMethod="selectFirst">

<Segment id="1">

<SimplePredicate field="crime_id"

operator="equal" value="PROSTITUTION" />

<MiningModel modelName="randomForest_Model"

functionName="regression">

. . .

</MiningModel>

</Segment>

<Segment id="2">

<SimplePredicate field="crime_id"

operator="equal" value="THEFT" />

<MiningModel modelName="randomForest_Model"

functionName="regression">

. . .

</MiningModel>

</Segment>

</Segmentation>

As shown in Figure 4, the sample app for Pattern reads the
ensemble PMML file and creates a SubAssembly in Cascad-
ing. A branch in the workflow is created for each predicate,
using the Filter operation in Cascading. The first branch
has a simple predicate comparing crime id and ’PROSTI-
TUTION’, and the second branch compares crime id and
’THEFT’. Cascading applies the corresponding RF models
in the ensemble for each branch. The resulting scored data

14https://github.com/girish-a1/pattern-2/tree/
wip-1.0-multi



Figure 2: Conceptual flow diagram of the data preparation.

Figure 3: Flow diagram generated by the Cascading flow planner.



from each branch gets combined using a Merge or GroupBy

with and aggregation function in Cascading to produce the
final output. The selection depends on the value specified
by multipleModelMethod in PMML. This approach shows
how MultipleModel and Ensemble can be interpreted by the
Cascading API.

4. CONCLUSIONS AND FUTURE WORK
PMML makes the process of exporting and migration pre-

dictive models onto other platforms quite simple and cost-
effective. Without any coding required, the PMML exported
from R may be run on Apache Hadoop clusters at scale via
Cascading. Moreover, there are significant cost benefits for
commercial deployments as a result of using open source.

There are also interesting points of overlap between PMML
and Cascading, since both provide a means for formal spec-
ification of data workflows. PMML is specific to predictive
models; however, many industry use cases for Cascading in-
volve predictive models at scale. Cascading tends to differ-
entiate from other ”Big Data” technologies in that it is of-
ten used for integrating Hadoop with legacy environments.
Therefore PMML provides a vector for migrating workloads
off of SAS, SPSS, etc., onto Hadoop clusters for more cost-
effective scaling.

In terms of work with ensembles, there are many cases
where this approach can be used for improving predictive
models in industry. Customer segmentation in e-commerce
is one clear example. PMML provides excellent features for
representing ensembles. With the addition of the Pattern li-
brary, the Cascading API can readily translate PMML into
parallelized, scalable apps running on Hadoop. The project
described in this paper shows that Cascading can integrate
new types of PMML workflows, even if there are not many
ways to generate ensembles in PMML currently. Other than
Random Forest, which is by definition an ensemble, there
are not many analytics platforms which support creating
ensembles of different models. In this project, it was neces-
sary to compose the MultipleModel15 in PMML manually.
It is hoped that analytics platforms such as SAS, R, etc.,
will begin to provide support for creating ensembles, as well
as their export as PMML.

One platform which is experiencing much growth in adop-
tion for analytics is Python, and the related packages such as
NumPy, SciPy, and Pandas16. Given the ease and flexibil-
ity of working with XML in Python, it may become a good
means of experimenting with support for creating ensembles
and their PMML export.

One of the driving motivations for the Cascading devel-
opers to incorporate PMML was to collect user data about
machine learning use cases in industry, to try to learn ways in
which the Cascading API could be extended or modified to
support this area of application development better. Clearly
these initial attempts with ensemble models in Pattern have
opened up new kinds of workflows which could become useful
in industry, and expand the range of use cases for Cascad-
ing. It may be the case that ensemble model creation in
PMML would be handled most directly within extensions
to the Pattern project.

4.1 Future Work
15http://www.dmg.org/v4-1/MultipleModels.html
16http://pandas.pydata.org/

There are several organizations collaborating on the Pat-
tern project, extending it in a few directions. Support for
scoring models based on additional algorithms is currently
being developed. In particular, the library is being extended
to handle support vector machine (SVM) and neural net-
works (NN). Along with the addition of other algorithms,
the project is also being extended to support model cre-
ation at scale, based on Hadoop. For example, there are
many use cases for training regression models based on very
large scale data, and this becomes cost-effective on Hadoop.

Cascading has another kind of flow planner for local mode,
which allows for workflows planned without the Hadoop
APIs underneath. In other words, the workflow can run
in local memory on a single server. This allows for integra-
tion into near real-time services, such as web services. There
are projects in progress to utilize Cascading, Pattern, and
PMML to deploy the same predictive models for use cases
at scale in batch (Hadoop) as well as real-time web services.
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