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ABSTRACT
This paper describes a new version of Augustus, a PMML
model producer and scoring engine. Among its key features
is the ability to change the implementation of and/or defini-
tion of PMML interactively. This provides a more fluid view
of the PMML language and the option to experiment with
new PMML-like forms, side-by-side and without needing to
reload test data. The paper describes other features that are
important for using PMML in a production environment,
such as management of execution state, a fast implementa-
tion, and a MapReduce-ready design. With the perspective
of having written a fresh implementation, we also comment
on the status of the PMML language.

1. INTRODUCTION
For several years, the Augustus project[1] has provided an
open-source Python[2] implementation of the Predictive Model
Markup Language (PMML)[3]. One of the advantages of
Python is its ability to dynamically redefine functions and
classes on the fly. The upcoming version 0.6 of Augustus
extends this ability to PMML.

Models are represented in Augustus as a data-binding of the
XML elements of a PMML file. For each element

<SomeModel> ... </SomeModel>

in the PMML file, there is a corresponding instance of a
“SomeModel” class in Augustus. This class contains code to
execute (“score”) the model for a given dataset as described
by the PMML specification, and Augustus has tools to build
(“produce”) PMML models from its classes. The focus of this
paper is the new ability to redefine the classes themselves or
bind new classes at runtime, either to provide an alternate
implementation with different performance characteristics or
to change or add new model types. In the latter case, these
new models are not strict PMML, but they may be candi-
dates for future inclusion in the PMML specification. Thus,
Augustus may be used as a laboratory for developing new
PMML schema.

2. REQUIREMENTS
The Augustus 0.6 upgrade was motivated by four main re-
quirements:

• Model implementations must be hot-swappable. Au-
gustus must support multiple, simultaneous “interpre-
tations” of the PMML language as mutable objects.
An “interpretation” is an XSD schema for local valida-
tion, an optional XSLT stylesheet for global validation,
and a mapping from XML elements to Python classes,
which is used to load a PMML file into memory for
execution. Since these rules are encapsulated in dis-
tinct objects, the user can experiment with multiple
model implementations for side-by-side performance
tests and multiple PMML-like languages for side-by-
side evaluation.

• The state of the PMML model’s execution must be
saved in an intermediate object, to use the state in
future Augustus invocations, transmit the state to an-
other site or across a distributed service, resume an
archived calculation, or rewind to a trusted state. In
other words, the PMML engine must be virtualized
like a virtual machine.

• The execution must be fast. Since Python is a dy-
namic, interpreted language, numerical analysis in pure
Python is orders of magnitude slower than the equiv-
alent in C or Java. However, the Numpy[4] library
provides compiled numerical algorithms to the Python
interpreter.

Augustus should take advantage of Numpy’s speed by
performing calculations in a column-wise order (one
operation at a time for all records in the dataset),
rather than row-wise (one record at a time for all op-
erations in the algorithm), so that all loops over large
datasets are performed in compiled code. Similarly,
handling of large XML files is performed in compiled
code by the lxml[5] library.

• Algorithms should be MapReduce-ready. MapReduce[6]
is a popular paradigm for distributing processes over
datasets that are too large for any one computer. Al-
gorithms designed with the assumption that the whole
dataset is contained on one machine usually need to be
refactored to be deployed in a MapReduce framework
like Hadoop[7].

To avoid a future rewrite, Augustus 0.6 algorithms
were designed in modules that can be easily split among
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mappers and reducers. Augustus also includes a frame-
work for testing MapReduce-ready algorithms on a
single machine using threads; this same framework
also automates the deployment of those algorithms in
Hadoop.

3. DETAILS OF THE IMPLEMENTATION
3.1 Hot-Swappable Model Elements
Each of Augustus’s interpretations of PMML is encoded in
an instance of a ModelLoader class. The ModelLoader’s pri-
mary responsibility is to load a PMML file into executable
Python objects. This is the step in which XML structures
are validated against the PMML schema and tags are asso-
ciated with executable code— when the interpretation mat-
ters most. ModelLoaders are used for all construction of
in-memory PMML objects, so that all models are filtered
through the same lens.

The Augustus package comes with two ModelLoader in-
stances, a strict ModelLoader that adheres to the official
specification, and a custom one that introduces new func-
tions, model elements, and capabilities, at the expense of
producing non-portable output.

3.1.1 Example 1: New PMML-like Elements
One of the new elements, <Formula>, allows for a more
succinct way to encode PMML expressions. Mathematical
formulae placed between <Formula> tags are parsed and in-
terpreted as the equivalent deeply nested PMML expression.
For instance,

<Formula>(x + y)**2 + f(y)</Formula>

is equivalent to

<Apply function="+">
<Apply function="pow">

<Apply function="+">
<FieldRef field="x"/>
<FieldRef field="y"/>

</Apply>
<Constant dataType="integer">2</Constant>

</Apply>
<Apply function="f">

<FieldRef field="y"/>
</Apply>

</Apply>

Since the <Formula> element is not defined in the current
version of the PMML specification (4.1), the strictly compli-
ant ModelLoader does not recognize it. However, the cus-
tom ModelLoader does recognize it because we have added
an association between the “Formula” tag name and a class
that knows how to parse the formula string.

New elements like this can be defined in a Python script
or interactively in the interpreter by registering a new class
with the ModelLoader. The ability to register and re-register
implementations without restarting the Python process short-
ens the development cycle for new PMML elements, par-
ticularly if they are tested against a large or slow-to-build
dataset.

3.1.2 Example 2: Reimplementing Existing Elements
Redefining model implementations on the fly is also benefi-
cial for performance tuning. This use-case does not change
the meaning of the PMML language, so it can be used in
situations where models must be strictly PMML compliant.
Two or more ModelLoaders can be loaded with different im-
plementations of the same element, and these can be run
on the same dataset in the same process, minimizing the
difference between the tests[8]. For instance,

import copy
from augustus.strict import *

# Split the modelLoader into two genetic lines.
modelLoader1 = copy.deepcopy(modelLoader)
modelLoader2 = copy.deepcopy(modelLoader)

modelLoader1.register("TreeModel",
MyTreeModelTest1)

modelLoader2.register("TreeModel",
MyTreeModelTest2)

# Load the same file two ways: <TreeModel>
# elements will be instantiated as MyTreeModelTest1s
# in model1 and MyTreeModelTest2s in model2.
model1 = modelLoader1.loadXml("file.pmml")
model2 = modelLoader2.loadXml("file.pmml")

# Run the algorithm using data from a DataTable,
# measuring the performance of each implementation.
pt1 = PerformanceTable()
pt2 = PerformanceTable()
model1.calculate(dataTable, performanceTable=pt1)
model2.calculate(dataTable, performanceTable=pt2)

# Performance results are reported at the level of
# PMML elements.
pt1.look(); pt2.look()

3.1.3 Example 3: Modifying the Behavior of PMML
As a third example, consider redefining the XSD schema of
an existing PMML element. Since XSD defines the structure
of a valid model, this would only alter which model files are
considered valid and which are not. The <Transformation-
Dictionary> element is intended for defining new functions
and derived fields, but it would be advantageous for it to
define models as well. In its class definition, we can replace

<xs:element ref="DerivedField"
minOccurs="0" maxOccurs="unbounded"/>

with

<xs:choice minOccurs="0" maxOccurs="unbounded">
<xs:element ref="DerivedField"/>
<xs:group ref="MODEL-ELEMENT"/>

</xs:choice>

and now any model element (such as<TreeModel>, <Cluster-
ingModel>, <AssociationModel>, etc.) can be used where
a <DerivedField> would ordinarily be expected. Models in-
put fields and output scores, so as long as the model provides
a name for the scoring result, it may be associated with a
new field. Removing this artificial distinction between de-
rived fields and models vastly simplifies model-chaining:



<PMML version="4.1">
<Header/>
<DataDictionary>

...
</DataDictionary>
<TransformationDictionary>

<TreeModel modelName="A">
...

</TreeModel>
<ClusteringModel modelName="B">

...
</ClusteringModel>
<AssociationModel modelName="C">

...
</AssociationModel>

</TransformationDictionary>
</PMML>

The leaf scores of the TreeModel become field “A,” the clos-
est clusters of the ClusteringModel become field“B,”and the
associated items of the AssociationModel become field “C.”
PMML 4.1 defines a mechanism for model chaining, but it
involves setting up<Segments> and matching<OutputFields>
of one model with the <MiningSchema> of the next, which
is more cumbersome.

To produce the same effect without cluttering the names-
pace of derived fields, we could perform the XSD surgery
on <LocalTransformation>, rather than <Transformation-
Dictionary>. Then the following would be considered valid:

<PMML version="4.1">
<Header/>
<DataDictionary>

...
</DataDictionary>
<AssociationModel>

<LocalTransformation>
<ClusteringModel modelName="B">

<LocalTransformation>
<TreeModel modelName="A">

...
</TreeModel>

</LocalTransformation>
...

</ClusteringModel>
</LocalTransformation>
...

</AssociationModel>
</PMML>

All but the last step of the model chain is hidden inside of
nested lexical scopes, so they would not appear as fields in
the outermost scope. Furthermore, the last step is in the
normal position for model elements, producing scores in the
ordinary way.

3.2 Explicit Model Execution State
Most PMML calculations are stateless— that is, they de-
pend only on the values in the current record, not on any pre-
vious records. However, the chiSquareIndependence, chiSquare-
Distribution, CUSUM, and scalarProduct test statistics of
the <BaselineModel> and all functions of the <Aggregate>
transformation are cumulative and not stateless. New PMML
elements may be stateful as well— for instance, plotting
tools embedded in a PMML-like language are also cumula-
tive. If a PMML scoring engine is interrupted and re-started

at another time or place, it may or may not be appropriate
to re-start the calculation where it left off.

For maximum flexibility, Augustus encapulates all state-
related information about the scoring process in a single
key-value store. This store is serializable, so it can be saved,
copied, transmitted to a remote site, or passed around a
distributed service. For example, to continue a CUSUM
(cumulative sum) analysis of a time series, one would:

import json
outputDataTable =

cusumModel.calculate(inputDataTable)
json.dump(outputDataTable.state,

open("intermediateFile.json"))

in the first session and

import json
inputDataTable.state =

json.load(open("intermediateFile.json"))
outputDataTable =

cusumModel.calculate(inputDataTable)

to continue it in the next.

Although the management of executable state is an imple-
mentation detail, outside the scope of the PMML specifi-
cation, it would be useful if stateful fields had a “stateId”
attribute to name their keys in the key-value store. With-
out explicit “stateIds,” a scoring engine must rely on the
location of an element within the file, such as a tuple of in-
dexes that selects the element, starting from the root node.
Position-based access is less reliable than an explicit name
because annotating a PMML model (via <Extension> ele-
ments or standard non-executable elements) and producing-
while-scoring both change the numbering of indexes. We
will propose the new “stateId” attributes for an upcoming
release of the PMML specification.

3.3 Column-wise Scoring
The declarative nature of PMML allows a problem to be
solved in a different order than it is stated. Most models
in the PMML specification describe operations on a record
of data, which is a set of named fields in which each field
has one numerical or categorical value. Usually, the PMML
engine is applied to a sequence or records, with each record
having the same set of field names but potentially differ-
ent values. The simplest implementation would evaluate
one record at a time, walking through the data structure of
nested operations before applying them.

If we arrange the sequence of operations as rows of a table,
this method performs each row of calculations before moving
on to the next row. An alternative order would walk through
the table the other way: perform all rows in a column before
moving on to the next column. While both methods have
the same time complexity and naively should take as much
time to compute, the column-wise order is much faster for
Numpy.

Numpy performs its operations in compiled, pre-typechecked
machine code, so it does not suffer the performance issues
of pure Python. However, it only provides a predetermined
menu of operations, such as addition, multiplication, com-
mon mathematical functions, sorting, masking, partitioning,



and boolean logic. In the column-wise order, the Python
code that interprets PMML and decides which operations
to apply is executed once for the whole dataset, while the
code that rapidly loops though the large dataset is executed
in Numpy.

In a scaling test that compared Augustus 0.5 (which has
row-wise order) and Augustus 0.6 (which has column-wise
order), Augustus 0.5 took 97 µs per record in the asymp-
totic limit while Augustus 0.6 took 0.016 µs per record, a
speed-up of roughly 6000. The column-wise implementation
required about a million records for the numerical part of
the calculation to become significant; for smaller datasets,
the time is dominated by initialization (0.9 ms).

For similar reasons, we moved all XML processing to lxml,
which uses pre-compiled routines for serialization, deseri-
alization, recursive searching, and XSD- and XSLT-based
validation. Comparing Augustus 0.5 (pure-Python XML
handling) with Augustus 0.6 (lxml), reading-with-validation
improved by a factor of 22, reading-without-validation by a
factor of 59, and writing improved by a factor of 20. Augus-
tus 0.6 also serializes models to and from JSON, with seri-
alization speeds comparable to XML only if pre-compiled,
third-party JSON serializers are used.

3.4 MapReduce-Ready Algorithms
As a Python module, Augustus can be used anywhere Python
is used, including Hadoop Streaming[9]. However, the Map-
Reduce paradigm puts some constraints on algorithms: a
process running on a mapper has no access to data on other
mappers, and a process running on a reducer has no guaran-
teed access to data associated with other keys. Algorithms
that do not need a broad view of the dataset (“embarrass-
ingly parallel”) are easy to integrate into MapReduce, and all
stateless PMML models are in this category. Stateful mod-
els can be integrated into MapReduce by passing a state
object between processes.

This issue is more significant for algorithms that produce
models. A linear regression, for instance, derives fit param-
eters from all points in the dataset. If the points are too
numerous to fit in the memory of a single computer, then
the algorithm must be split into a function that can summa-
rize a part of the dataset (the mapper) and a part that can
combine the summarized parts into a result (the reducer).
In the case of a linear fit, the calculation can be decomposed
into partial sums: each mapper computes a partial sum from
its subset of the data and the reducer combines partial sums
and derives fit parameters.

To facilitate the development of algorithms that can be run
in MapReduce, Augustus has a framework that simulates
a MapReduce environment. This framework hides parts of
the dataset that would not be available in a MapReduce job
and can optionally run them in separate threads, taking ad-
vantage of multiple CPUs if available. This framework can
also submit the same algorithms, without modification, to
Hadoop by marshaling their execution state as Python byte-
code, serializing the data as SequenceFiles, and launching it
as a Hadoop Streaming job.

Implementing an algorithm in this framework allows it to

be distributed when necessary but not suffer a performance
penalty when executed on a single machine. Currently, all
Augustus model-producer algorithms are implemented in
the MapReduce-ready framework. Segmentation is the most
natural fit to this paradigm, since the mappers simply as-
sociate segment predicates with keys and the reducers build
the independent models for each key in isolation. However,
non-trivial examples like distributed k-means clustering have
also been implemented.

4. LESSONS LEARNED ABOUT PMML
Reimplementing a PMML engine from the ground up gave
us new perspective on PMML as a language. In most cases,
the ease of implementation depended on the unity of its con-
cepts. Aspects that are well-unified across all model types,
such as lexical field scopes, transformations, functions, and
model verification, were easy to implement. Other aspects
are not as well unified, which we present below.

4.1 PMML’s Type System
Perhaps the most significant issue is PMML’s system of data
types. PMML is strongly typed, specified by dataType (e.g.
“integer” or “string”) and optype (e.g. “continuous” or “cat-
egorical”). However, some constructs yield types that are
not expressible in this way. For instance, the <Aggregate>
transformation can produce structured data with

<Aggregate field="x" function="multiset"/>

and

<Aggregate field="x" function="count"
groupField="y"/>

The first of these could be represented by a sequence type
and the latter by a mapping, but these are not valid types
in PMML. Furthermore, expressions must be wrapped in a
<DerivedField> to be used, and <DerivedFields> require
the user to give the field a dataType:

<DerivedField name="z" dataType="???" optype="???">
<Aggregate field="x" function="count"

groupField="y"/>
</DerivedField>

It is not clear how multiset or groupField aggregations could
ever be used in a valid PMML document. If we allow model
elements to produce new derived fields as described above,
the same could be said of segmentation with a multipleMod-
elMethod of “selectAll.”

Another problem with PMML’s type system is that new
types are defined as part of the declaration of a variable.
For instance, consider the following two fields:

<DataField name="x" dataType="string"
optype="ordinal">

<Value value="first"/>
<Value value="second"/>
<Value value="third"/>

</DataField>
<DataField name="y" dataType="string"

optype="ordinal">
<Value value="first"/>
<Value value="second"/>
<Value value="third"/>

</DataField>



It would seem that “x” and “y” belong to the same type—
a 3-element space in which “first” preceeds “second,” which
preceeds “third.” However, unless a special rule were in-
troduced concerning ordinal strings with identical enumer-
ations, there would be no way to infer that. This makes it
difficult to say whether comparisons like

<Apply function="lessThan">
<FieldRef field="x"/>
<FieldRef field="y"/>

</Apply>

are legal without introducing many new rules. To make this
example more acute, should this comparison be allowed if
“y” didn’t have a “first?” The same could be said of types
involving intervals of validity. In most programming lan-
guages, types are defined separately from variables, which
would resolve problems like the above: “x” and “y” would
either be declared as instances of the same type or as two
different types with the same display values.

Data type annotations are required for <DataFields> and
<DerivedFields>, but not <DefineFunction>. Constants
require a dataType but not an optype, which makes it diffi-
cult to say if

<Apply function="lessThan">
<FieldRef field="x"/>
<Constant dataType="string">fourth</Constant>

</Apply>

should be allowed (using “x” from the example above).

In most expressions, types can be inferred to allow a static
type check of the PMML document. However, there are
a few exceptions that make a static type check impossible
in general. <MapValues>, for example, introduces strings
from an XML table. The validity of an expression like

<Apply function="lessThan">
<FieldRef field="x"/>
<MapValues> ... </MapValues>

</Apply>

depends on the assumed dataType and optype of the values
in the table.

Ideally, PMML’s type system should be clarified in two ways:

1. types must be defined separately from fields;

2. all expressions and models should have type signatures
that indicate the output type for a given combination
of input types.

The latter would allow for a systematic, static type check,
greatly enhancing PMML’s safety for production use. Since
all types could be inferred from input fields and constants,
it would not be necessary to declare types on derived fields
and user-defined functions. These type annotations could in-
stead serve as type assertions whose failure could be caught
before deploying the PMML document. We understand,
however, that assigning type signatures to every computable
function in PMML would be a large task.

4.2 Other issues
The other issues are relatively minor:

(a) It is difficult to tell, in general, which elements and at-
tributes affect a model’s score and which are for infor-
mation only.

(b) While <MiningSchemae> are useful for describing how
a model is produced (e.g. which fields are dependent and
which are independent), they do not affect a model’s
score, other than mapping MISSING and INVALID val-
ues and outliers. Those functions would be more useful
if they became independent transformations.

(c) The <Segment> element has been re-used for purposes
well beyond its semantic meaning, e.g. random forests
and model chaining. This makes it more difficult to use
them in a partitioned space (the original meaning of a
<Segment>).

(d) There are many different ways for results to exit a model:
derived fields in the top-most lexical scope, model scores
(and auxiliary scores like“entity affinity”), and as<Output-
Fields>. Moreover, the rules that map quantities onto
<OutputFields> are very complex.

5. SUMMARY
This paper describes a new version of Augustus that im-
plements PMML in a hot-swappable way. This feature can
be helpful for defining new PMML elements or performing
side-by-side comparisons of PMML implementations. It also
consolidates the execution state of the scoring engine into a
single object that can be serialized and arranges the com-
putation in a column-wise way to take advantage of Numpy
optimizations. Algorithms to produce PMML models were
designed with MapReduce in mind.

Developing a new PMML implementation gave us new per-
spective on PMML as a language. Many features of the
language work well together, but its system of describing
data types is hard to implement and use consistently.
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