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ABSTRACT 

As the de facto standard for expressing data mining models, the 
Predictive Model Markup Language (PMML) offers a way to 
decouple the activities of building a data mining model from 

actually running it on new data. This enables more flexibility for 
data scientists and application developers alike, as they now have 
a common language to express models, independent of the 
technologies and architectures of their respective environments.  

In this paper, we will look into using PMML for Text 
Categorization scenarios. Broadly speaking, Text Categorization 
is about deciding which of a predefined set of categories a piece 
of free text is most likely to belong to, typically by looking for the 

occurrences of distinctive terms in the input text and feeding them 
into a classification model. Both the choice of terms to consider 
and the coefficients of the model are derived as part of a data 
mining effort, involving the analysis of large volumes of text. 
Given that text mining technology is still not mainstream, a 
standard such as PMML for separating the building and execution 
of the model gets even more important. 

The PMML specification includes a model type for predicting an 
outcome based on text input, in the form of the “document” the 

input text is most similar to, selected from a set of documents 
defined in the model. In this paper, we will discuss examples of 
simple Text Categorization scenarios that cannot be expressed 
through the current Text Model specification in PMML version 
4.1. We will propose extensions to expand its scope to true Text 
Categorization, from the individual document similarity approach 
offered today. We will describe a generalization of the idea of 
“documents” to “categories” and refine the available options for 

calculating the similarity of text input to the categories defined in 
a model. In addition, we will describe an alternative approach for 
allowing other model types to transparently work with text input, 
emulating derived fields for weighted term frequencies. 
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1. INTRODUCTION 
Even if we completely disregard the twitters and facebooks of 
today, it’s clear the amount of digitally available textual 
information available to organizations and individuals today is 

overwhelming and growing. Electronic medical records in 
healthcare, analyst and regulatory reports in finance and claims in 
an insurance context are just three examples of textual 
information that’s becoming available at an ever increasing rate 
and meant to support better decision-making. Moreover, in all 
three of these examples, the textual information is not only useful 
for making the decision, but in many cases simply essential or 
even legally binding to be taken into account. In the first example, 
a clinician who’s ignoring parts of his patients medical history 

notes when prescribing a medication or procedure could find 
himself part of the insurance example soon after. 

Unfortunately, the availability of so much information doesn’t 
make the lives of clinicians, traders or claims adjusters any easier 
by itself. The sheer volume often makes it infeasible to read 
through all of it, or the velocity at which it arrives might make it 
hard to act upon it in an acceptable timeframe. If only computers 
could read and understand natural language, they could suggest 

which decision to take and humans should only verify and 
confirm those cases where the computer wasn’t sure or where 
legal or risk factors wouldn’t allow a computer to press the button. 

The scenario just described might not be that far away into the 
future. First, dedicated software exists today for mining 
information from free text and modeling the patterns and 
characteristics discovered in that text mining effort. Second, 
dedicated software also exists for managing electronic medical 

records, for trading on stock markets and for managing insurance 
claims. And third, an industry standard exists to express the 
results of the data mining effort into a format that could be 
consumed from the production application managing the live data: 
PMML [1] [2] [3]. 

In section 2 of this paper, we’ll describe the capabilities in PMML 
version 4.1 for using text input in predictive models. We’ll 
illustrate how the current version of the standard only covers a 

small subset of a broad array of use cases named Text 
Categorization. In the next section, we’ll look in more detail at the 
field of Text Categorization and discuss a number of well-known 
categorization techniques. For each of these, we’ll use examples 
of an extended PMML Text Model to show how the standard can 
be enriched to cover this broader area. Then, section 4 will present 
an alternative approach to using text input in PMML, which does 
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not imply a separate model type. In this section, we’ll also explain 
how dedicated text analysis technology can be used in a 
formalized preprocessing step, expanding the scope of any PMML 
model to text input. In this context, we’ll present iKnow, a 
dedicated text analysis technology distributed by InterSystems 

Corporation, as a sample tool to derive from text input those 
metrics that can make any predictive model not just text-enabled, 
but truly text-aware. Finally, in section 5 we’ll summarize this 
paper into a conclusion. 

2. CURRENT TEXT MODEL 
As a standard, PMML covers a variety of well-known and widely 
adopted data mining model types, including Naïve Bayes, Support 
Vector Machines and Neural Networks. For each of these, the 
PMML specification describes an XML element representing the 
model and all of its parameters as calculated by the model 
producer, which means a model consumer gets all there is to know 
to be able to execute the model on new data. 

Amongst these model types, the Text Model represents a 
predictive model which predicts an outcome based on text input. 
In this section, we’ll first present the specification in version 4.1 
of the PMML standard and then review its limitations.  

2.1 Current specification 
While most model types covered by PMML relate back to a 
specific algorithm, technique or functional approach in data 
mining, the Text Model1 is a little different in that it rather 
represents a specific type of input (text) and a single use case than 
anything else. Essentially, this use case comes down to, for a 
given input text, identifying which of a predefined set of 
documents it is most similar to. Obviously, based on this “most 

similar document” outcome, a decision can be made either 

explicitly within the model definition using an OutputField 

element representing a decision feature, or through custom code 
interpreting the raw outcome outside of the scope of PMML.  

The formal PMML specification describes the concept of text 
similarity through these six components: 

 model attributes; 

 dictionary of terms; 

 corpus of text documents 

 document-term matrix; 

 text model normalization; 

 text model similarity. 

The first component, “model attributes”, does not encompass any 
specific new XML elements, neither are the ones referred to used 

any differently from other model types. We’ll therefore ignore this 
component for now. We’ll look at each of the other elements in 
more detail. 

2.1.1 Dictionary of terms 
The dictionary of terms is represented by the TextDictionary 

element, which consists mainly of an array of strings holding the 
terms of interest for this model. This means, the Text Model will 
only consider the occurrence of these terms when calculating the 
similarity between the input text and the existing documents.  

Optionally, a taxonomy can be defined on these terms through the 

formal Taxonomy element2, as an external source of 

information on how to group terms hierarchically. However, the 

                                                             
1 See also: http://www.dmg.org/v4-1/Text.html  
2 See also: http://www.dmg.org/v4-1/Taxonomy.html  

current specification does not detail how this taxonomy could or 
should be treated. 

2.1.2 Corpus of text documents 
The next element in the Text Model specification describes the 
corpus of documents this model will compare input text against. 

The TextCorpus element explicitly enumerates each document 

in a TextDocument element, with optional attributes for a 
description, file name and document length in bytes. 

2.1.3 Document-term matrix 
The DocumentTermMatrix then ties the dictionary terms to 

the documents by specifying a frequency matrix, with the element 
on the ith row and jth column representing the frequency of the 
term at index j in the document at index i. 

2.1.4 Text model normalization 
As to normalize the term frequencies in the document-term 

matrix, a TextModelNormalization element defines how 

the model consumer should transform this frequency matrix into 
term weights that can be used for the similarity calculation. This is 

the first element to deal with any text-specific metrics or 
functions.  

2.1.5 Text model similarity 
The TextModelSimiliarity element finally closes the loop 

and details how the input fields should be compared to the 

normalized per-document term weights. The two similarity 
measures supported by the model (cosine similarity and Euclidean 
distance) assume a Vector Space Model, which will be described 
in more detail in Section 3 of this paper. 

2.2 Current limitations 
While it’s clear the Text Model has its merits, not in the least by 
giving text the attention it deserves in the field of predictive 
analytics, we believe the current specification for the model only 

serves a rather basic use case and has a number of shortcomings 
for implementing Text Categorization scenarios. We’ll discuss 
and illustrate them one by one.  

2.2.1 No real category support 
In many cases, you might not want to compare input text to 
individual documents. Even if they’re reference documents, they 

almost certainly represent a whole category of documents and 
most literature on Text Categorization discusses this more coarse-
grained approach3.  

For example, in a customer service scenario, the goal might be to 
route an incoming service request email to the right support 
engineer by looking at its textual contents. Typically, you’d like to 
find the category of requests this new email belongs to and 
forward to the team treating that category. However, the current 
Text Model specification would require you to find the single 
previous email it was most similar to and then route to the team 
that successfully handled that issue. This will either require your 

model to contain a probably unrealistic number of documents to 
compare against, or require you to select a number of 
“representative” emails to include in the model definition, at the 

                                                             

3 There are some Text Categorization techniques that will look at 
similarity to individual documents, such as example-based 
classifiers and (to some extent) the Rocchio method [4], but 
these are still techniques to finding a category rather than a 
document and require more parameters than what’s currently 
possible through the Text Model. 

http://www.dmg.org/v4-1/Text.html
http://www.dmg.org/v4-1/Taxonomy.html


risk of selecting too many to perform quickly or too few to remain 
accurate.  

One solution to this could be to simply use the TextDocument 

elements as representations for whole categories. The problem 

then becomes what to list in the DocumentTermMatrix. The 

total frequency of a term in a category is one option, but it might 
attribute improper weights to terms that occur very frequently in 
only one or two documents out of many in a category, or terms 
that occur just once, but in every category. Other options include 
the average term frequency (yielding a centroid approach), the 
number of documents within the category in which they appear 
and other aggregations, all of which might or might not be 
compatible with the weighting options presented by 

TextModelNormalization. 

In Section 3, we’ll describe an extension to the PMML Text 

Model specification that should accommodate these categorization 
scenarios more properly.  

2.2.2 Limited classification options 
As we’ll elaborate in Section 3, there are many different 
techniques to implement Text Categorization scenarios [4]. Most 
of them are based on a representation of text that is commonly 

known as the Vector Space Model, in which every document is 
represented as vector of term weights. The current PMML Text 
Model specification relies on this model and offers two simple 
functions to measure the similarity between input vectors and the 
document vectors (as derived from the document term matrix). 
While these are popular and relatively straightforward for both 
model building and execution, they only represent a fraction of 
that broad set of available techniques. 

In Section 3, we’ll discuss the Vector Space Model in more detail 
and propose extensions to the current Text Model specification to 
cover some of the alternative classification techniques. In Section 

4, we’ll investigate an alternative approach, leveraging other 
existing PMML model types for classification. 

2.2.3 No real text-awareness 
The current specification of the Text Model does not seem to rely 
on any text-awareness of the model implementation technology. 
This is because the model requires term frequencies as inputs and, 

onwards, only works with numeric calculations that are 
independent of the text background. And while the normalization 
techniques and similarity metrics are indeed typical ones for 
dealing with text in a Vector Space Model, they are also used 
elsewhere and nothing would prevent users from deploying a 
PMML Text Model for input that has nothing to do at all with 
text. For example, a primitive market basket analysis model could 
represent customer buying behavior the same way as term 

frequencies and use a Text Model to predict which “reference 
customer” (document) a customer is most similar to by simply 
looking at the products (terms) he bought. Market basket analysis 
specialists might disagree with the accuracy of such a technique, 
but at least it illustrates the current Text Model specification 
doesn’t have a lot to do with text by itself. 

This approach, of course, can be considered an advantage, as it 
makes it easier to implement a model consumer for the Text 
Model. But at the same time it just defers the job of interpreting 
the text and providing the term frequencies to a preprocessing step 
for which PMML provides no guidance at all. We’ll look at 

solutions to increase the text-awareness of PMML as a standard in 
general in Section 4.  

2.2.4 Other remarks 
The following remarks on the current Text Model specification 
are not strictly related to Text Categorization scenarios. They are 
included nonetheless as to make this section a more 
comprehensive review of the Text Model specification in PMML 
version 4.1. 

 Input mapping: The current specification does not explicitly 

link MiningField or DerivedField elements to the 

TextDictionary elements or DocumentTermMatrix 

columns, but implicitly (without even mentioning in the 
specification) assumes they correspond based on their index. 

We think this is a gap in the specification and at least a formal 
description of how the order of plain and derived fields’ 
indices should be interpreted, as well as how to treat non-
active mining fields, is required. Preferably, a new element 
would allow the model producer to define this mapping 
explicitly as to avoid any misinterpretation. A proposal to 
accommodate this was submitted by the authors separately. 

 TextModelSimiliarity spelling: There appears to be a 

misspelling in this element name, which is upheld throughout 
the specification and examples. As the word “similiarity” to 
our knowledge is not a specific concept in the literature on 

Text Analysis, we believe “correcting” this element’s name in 
the specification should be considered.  

 Taxonomy support: The specification allows adding a 

Taxonomy element to the term dictionary, but does not 

mention how this should be used. A formal description of how 
terms can be rolled up and how these “topics” can then be 

mapped to the columns in the DocumentTermMatrix 
would be a helpful extension.  

3. TEXT CATEGORIZATION MODELS 
In this section, we’ll introduce the broader research area of Text 
Categorization and propose a number of extensions to the PMML 
standard to make the Text Model more compatible with Text 
Categorization scenarios. We’ll present examples of three 

techniques that can be easily covered by the extended 
specification and give an outlook on further extensions in the 
future. 

3.1 Introduction to Text Categorization 
Sebastiani [4] provides an excellent overview of the different 
approaches to Text Categorization. He defines Text 
Categorization (TC, also known as Text Classification) as “the 
activity of labeling natural language texts with thematic categories 

from a predefined set”. While this simple definition seems to refer 
mostly to the execution of a classification model, it’s clear there 
has to be some logic or algorithm to build or train the model that 
provides this labeling service accurately. 

Many properties of “normal” data mining classification also apply 
to TC. There is a (mostly algorithmic) difference between binary 
and multi-class classification. In binary classification, the 
classifier should only decide which of two categories a new 
document belongs to, whereas the broader multi-class 
classification can have any fixed number of categories. A 
classifier can also be used for “hard” classification, in which a 

document gets assigned a single category, or “ranking” 
classification, in which the result is a set of categories ranked by 
the likelihood the document belongs to them. Unless specified 
otherwise, we’ll talk about hard, multi-class classification 
onwards, as binary classification then is just a special case and not 
all classification methods might allow for the ranked scenario (i.e. 
decision trees typically don’t rank results). 



3.1.1 Indexing and the Vector Space Model 
The first step in building a TC model is choosing how to represent 
the unstructured text in a more structured format. By far the most 
common approach is the Vector Space Model, as presented by 
Salton et al [5]. In the Vector Space Model, each document is 
defined by a vector containing the frequency (or a weighted 
version thereof) of a specific term at each index. If documents or 
whole categories can be represented as vectors, suddenly a broad 

range of vector operations become available to express 
transformations or interpretations of what until then was purely 
unstructured text. For example, two vectors (documents) could be 
considered similar if the points in the multidimensional vector 
space they represent are close, based on the Euclidean distance. 
Alternatively, you can consider vectors to be similar if they point 
in the same direction, by using cosine similarity, as calculated 
through a dot product. 

An essential step to transform unstructured text into a vector of 
(weighted) frequencies is indexing the text. The most basic of 
indexing algorithms would just count the frequencies of all 

individual words, but most text mining technology includes more 
intelligent logic for tasks such as discarding stop words, 
standardizing terms through stemming and identifying word 
groups that belong together. Technically, the only truly text-aware 
part of the whole TC process is this indexing step, as the resulting 
vector is again just a bunch of numbers that could have come from 
a completely different source. We’ll discuss indexing in more 
detail in Section 4. 

To be complete, the Vector Space Model can express more than 
just (weighted) term frequencies, as is documented in [6], and 
indexing too can yield much more than raw frequencies, which 

we’ll elaborate on in Section 4. However, most TC techniques use 
plain or weighted term frequencies as their straightforward input. 

3.1.2 Dimensionality reduction 
One significant problem with the Vector Space Model, which 
extends to a number of similar approaches, is the high 
dimensionality of the vector space. Natural language does not 

restrict itself to a handful of terms and therefore the number of 
dimensions can easily stretch into the tens of thousands, even for a 
small dataset. Therefore, it’s important to reduce this 
dimensionality through term selection and, optionally, term 
extraction, which conceptually corresponds to feature selection 
and feature extraction in data mining in general. 

Term selection is about reducing the dimensionality by selecting a 
representative set of terms and disregarding all others. This 
selection of terms to be considered is one of the most crucial tasks 
when building a TC model and is usually dependent on the 
classification method chosen. Typically, a first set is selected 

based on some metric expressing the overall importance of the 
term in the corpus, such as TFIDF or more advanced alternatives 
[7] [8]. Then, after an initial model is built, the set is refined by 
adding and removing terms based on their impact on the overall 
model accuracy until a certain threshold is met and the accuracy 
no longer changes significantly. When it comes to executing a 
model, this list of terms to consider is part of the model and 
therefore only the result and not the selection process is what’s 

relevant for PMML as a specification. The TextDictionary 
element covers this for the Text Model. 

If the vocabulary used in the documents to categorize is rich, term 
selection alone might leave you with too high a dimensionality, or 
yield a low accuracy if too many terms were discarded. Term 
extraction solves this by creating new “virtual” terms that 

represent a linear combination of existing terms. Commonly, the 
whole vector space is transformed into a new vector space with 
fewer dimensions, using techniques such as Principal Component 
Analysis [9], truncated SVD [10] or other classic feature 
extraction algorithms. 

3.1.3 Other ways of representing text for TC 
A common alternative to the Vector Space Model is the 
probabilistic model described by Lewis in [11]. This approach, 
which is based on Bayes’ theorem, is often used in Information 
Retrieval problems but also serves TC scenarios well. In practice, 
it doesn’t differ much from the universal Naïve Bayes model as 

described elsewhere in the PMML specification, although in a TC 
scenario the dimensionality will typically be a lot higher.  

3.2 Proposed PMML extensions 
In this subsection, we’ll propose a number of extensions to the 
PMML specification for the Text Model in the context of Text 
Categorization. 

3.2.1 From documents to categories 
To explicitly enable the Text Model for TC, we’ll introduce a 

TextCategory element that’s similar to TextDocument, 

but now represents a number of documents, which can be 

specified through a numberOfDocuments attribute. A 

TextCorpus element can now either contain a set of categories 
or a set of documents, but not both. 

<xs:element name="TextCorpus"> 

  <xs:complexType> 

    <xs:sequence> 

      <xs:element ref="Extension" minOccurs="0" 

maxOccurs="unbounded"/> 

      <xs:choice> 

        <xs:element ref="TextDocument" 

minOccurs="0" maxOccurs="unbounded"/> 

        <xs:element ref="TextCategory" 

minOccurs="0" maxOccurs="unbounded"/> 

      </xs:choice> 

    </xs:sequence> 

  </xs:complexType> 

</xs:element> 

 

<xs:element name="TextCategory"> 

  <xs:complexType> 

    <xs:sequence> 

      <xs:element ref="Extension" minOccurs="0" 

maxOccurs="unbounded"/> 

    </xs:sequence> 

    <xs:attribute name="id" type="xs:string" 

use="required"/> 

    <xs:attribute name="name" type="xs:string" 

use="optional"/> 

    <xs:attribute name="numberOfDocuments" 

type="INT-NUMBER" use="optional"/> 

  </xs:complexType> 

</xs:element> 

Figure 1: Extended specification for TextCorpus 

Figure 1 presents the extended specification introducing category 
support, highlighting new elements and attributes in blue. 

In the TextModel element itself, we propose to deprecate the 

numberOfDocuments attribute in favor of a new one named 

numberOfCategories, which would represent both the 

number of documents and categories, as a set of TextDocument 

elements can be interpreted as a series of single-document 
categories. If the corpus is defined as a set of documents, the 
model producer can choose whether to use the deprecated 

file:///C:/Users/bdeboe/Desktop/TextModel/GeneralStructure.html%23extension
file:///C:/Users/bdeboe/Desktop/TextModel/GeneralStructure.html%23extension


numberOfDocuments or the new numberOfCategories 

(but not both). If the corpus contains a list of categories, 

numberOfCategories has to be used. 

3.2.2 Normalizing the document-term matrix 
As highlighted in the previous section, moving from documents to 
categories has an impact on the meaning of the 

DocumentTermMatrix contents. Where it used to contain 

simple term frequencies, this would no longer be sufficient 
information to apply the normalizations expressed in the 

TextModelNormalization element. For example, if a 

model defines the inverse document frequency (IDF) as the global 
term weight function and term frequency as the local term weight, 
we’d need both the number of documents in which each term 
occurs, as the frequency it has in each document (or category), 
which cannot be covered in a single matrix.  

At the same time, normalizing the DocumentTermMatrix is a 

transformation that only depends on the attribute values of the 

TextModelNormalization element, which in turn is only 

used to produce this transformation. This means that, from the 
model consumer perspective, it would be equivalent if the 

DocumentTermMatrix already contained the normalized 

matrix and the TextModelNormalization element was 

absent. For the model producer, it shouldn’t be any different 
either, as he’s likely to have calculated this normalized matrix at 
some point anyway, while researching the weighting scheme best 
fitting the training data.  

Thus, we propose to abandon the TextModelNormalization 

element and require the DocumentTermMatrix to contain the 

normalized term weights rather than raw frequencies. Turning the 

document-term matrix into a category weight matrix this way 
would also make it a more transparent vehicle for use with other 
similarity metrics than the vector-centric cosine similarity and 
Euclidean distance. 

3.2.3 Input normalization and similarity metrics 
In Figure 2, we propose an extension to the 

TextModelSimilarity
4 element for defining how the input 

vector (input frequencies) should be normalized and compared to 
the contents of the normalized document-term matrix. 

<xs:element name="TextModelSimiliarity"> 

  <xs:complexType> 

    <xs:sequence> 

      <xs:element ref="Extension" minOccurs="0" 

maxOccurs="unbounded"/> 

    </xs:sequence> 

    <xs:attribute name="localTermWeights" 

default="termFrequency"> 

      <xs:simpleType> 

        <xs:restriction base="xs:string"> 

          <xs:enumeration value="termFrequency"/> 

          <xs:enumeration value="binary"/> 

          <xs:enumeration value="logarithmic"/> 

          <xs:enumeration value=" 

augmentedNormalizedTermFrequency"/> 

        </xs:restriction> 

      </xs:simpleType> 

    </xs:attribute> 

 

                                                             

4 Note the corrected spelling for TextModelSimilarity 

element (was “TextModelSimiliarity”) 

    <xs:attribute name="documentNormalization" 

default="none"> 

      <xs:simpleType> 

        <xs:restriction base="xs:string"> 

          <xs:enumeration value="none"/> 

          <xs:enumeration value="cosine"/> 

        </xs:restriction> 

      </xs:simpleType> 

    </xs:attribute> 

    <xs:attribute name="similarityType"> 

      <xs:simpleType> 

        <xs:restriction base="xs:string"> 

          <xs:enumeration value="euclidean"/> 

          <xs:enumeration value="cosine"/> 

          <xs:enumeration value="linear"/> 

          <xs:enumeration value="naiveBayes"/> 

        </xs:restriction> 

      </xs:simpleType> 

    </xs:attribute> 

  </xs:complexType> 

</xs:element> 

Figure 2: Extended specification for 
TextModelSimilarity 

The normalization options for the input vector are similar to those 

in the discontinued TextModelNormalization element, 

except for the absence of a global term weighting option, which is 

typically already applied at the side of the category term weight. 
This simple addition provides an easy way to transform the term 
frequencies in the input vector into a normalized local term weight 
ready for further calculations by the model.  

As for the similarity metric options, we propose adding two new 
options to the existing cosine similarity and Euclidean distance: 

 linear: In this approach, the document-term matrix is 
considered to be a matrix of coefficients for a linear 

regression formula. Each document term vector is simply 
multiplied with the input vector and the document with the 
highest resulting score wins. 

 naiveBayes: This similarity type expects the 

DocumentTermMatrix to contain the number of 

documents containing term i (column) in category j (row), 
which can then be used to calculate Naïve Bayes probabilities. 
Scoring then proceeds in the same way as for a normal Naïve 
Bayes model5. The base probabilities of each document or 

category are calculated based on the numberOfDocuments 

attribute in each TextDocument element, which is 

mandatory in this case. The localTermWeights and 

documentNormalization attributes are expected to be 

“binary” and “none” respectively. 

For completeness: in the case of the cosine similarity and 

Euclidean distance, the numbers in the document-term matrix are 
still expected to represent vectors that can be compared to the 
input vector. 

3.2.4 Further extensions 
We believe the introduction of TextCategory elements, the 

removal of the TextModelNormalization element and the 

addition of input normalization options already offer significant 
flexibility towards supporting Text Categorization in PMML. But 
this extension is certainly not an endpoint and more similarity 
types as well as local term weighting schemes can easily be added 
to the proposed specification. 

                                                             
5 See also: http://www.dmg.org/v4-1/NaiveBayes.html  

http://www.dmg.org/v4-1/NaiveBayes.html


Independent of adding more algorithmic options, another 
interesting addition would be to extend the specification to accept 
the text itself as an input, rather than the term frequencies. Section 
4 discusses this option in more detail. 

3.2.5 Backwards compatibility  
The above changes were meant to preserve backwards 
compatibility where possible. For some elements, a more radical 
change might be preferable for clarity, at the risk of invalidating 
older model definitions (which model consumers should then treat 
based on the PMML version number). Given the limited adoption 
of the Text Model thus far [3], the impact of such changes should 
be relatively small. 

 The numberOfDocuments attribute in the TextModel 

element could be dropped altogether, with 

numberOfCategories fully taking over its role. This 

should avoid any confusion between the two attributes.  

 As an even more radical simplification, the TextDocument 

element could be abandoned completely, only accepting 

TextCategory elements onwards. Models wishing to 

predict individual document similarity can then represent 
these as single-document categories.  

 The DocumentTermMatrix can be renamed to 

CategoryWeightMatrix, which better represents its 

contents. 

3.3 Example 

<TextModel modelName="example" numberOfTerms="5" 

numberOfCategories="2"> 

 <MiningSchema> 

  <MiningField name="headcheFreq" />  

  <MiningField name="feverFreq" />  

  <MiningField name="nauseaFreq" />  

  <MiningField name="wellFreq" />  

  <MiningField name="bedFreq" />  

  <MiningField name="OK" usageType="predicted" />  

 </MiningSchema> 

 <TextDictionary> 

  <Array type="string">fever headache nausea well 

bed</Array> 

 </TextDictionary> 

 <TextCorpus> 

  <TextCategory id="ill" numberOfDocuments="10"/> 

  <TextCategory id="fine" numberOfDocuments="20"/> 

 </TextCorpus> 

 <DocumentTermMatrix> 

  <Matrix> 

   <Array type="real">1 .9 1 0 .5</Array> 

   <Array type="real">0 0 0 1 .3</Array> 

  </Matrix> 

 </DocumentTermMatrix> 

 <TextModelSimilarity localTermWeights="binary" 

documentNormalization="cosine" 

similarityType="linear"/> 

</TextModel> 

Figure 3: Example Text Model with extended specification 

4. UNTANGLING TEXT MODELS 
In the previous section, we presented a number of extensions to 
expand the scope of the Text Model towards true Text 
Categorization scenarios. In this section, we’ll look more closely 
at what can be done to leverage more of the PMML specification 
to support scenarios involving text. 

4.1 Is text all that different? 
It’s clear that text by itself cannot be used as an input for a typical 

data mining calculation. Basic mathematical operations make no 
sense on free text and real natural language sentences don’t make 
good categorical fields either. As we discussed in section 3, 
indexing is the sort of preprocessing step that can translate 
unstructured text into a representation more edible for classic 
algorithms. Once past that hurdle, we’re back in a scenario with 
just numeric and categorical fields, which means classic data 
mining algorithms can start crunching. And indeed, when looking 

at the algorithms often used for Text Classification, many classic 
algorithms and techniques reappear [4], such as Support Vector 
Machines, K-Nearest Neighbors, Neural Nets and the Naïve 
Bayes classifiers we already described in the previous section.  

This means the technology setting Text Mining apart from Data 
Mining is the preprocessing step identifying the terms in the free 
text and attributing importance scores (of which frequency is the 
most basic one) and context to them. Thus, if the PMML standard 
can be extended to include specifications for an indexing step that 
translates a free text input field into derived fields containing the 
relevance metric (by default a simple frequency) for a given term, 

suddenly all PMML model types become available for Text 
Categorization and other scenarios involving text. This is, as was 
hinted in Section 2, what would make the whole PMML standard 
compatible with free text input, rather than being a standard that 
includes a single model type fit for use on indexed text (rather 
than free text). Also, it would more elegantly accommodate 
combining text and its context in the same predictive model, 
which was not explicitly nor implicitly allowed in the current Text 

Model specification. For example, this would enable transparently 
combining clinician’s notes in free text with measurements such 
as blood pressure and lab results. 

In the following subsections, we’ll explore the indexing step in 
more detail and suggest an extension for the PMML vocabulary to 
specify indexing as part of a model definition. 

4.2 A specification for indexing text 
In this subsection, we’ll propose a specification for indexing text 
as part of a PMML model definition, in order to allow model 
consumer technology to implement the full prediction operation, 
starting from the free text input. First, we will present a brief 

overview of indexing technology and its properties that need 
specification. 

4.2.1 Technology overview 
Indexing or text analysis technology exists in many different 
flavors and architectures. The most basic of indexing algorithms 
would be one that just cuts free text into single-word terms and 

counts their frequencies. In most commercial or open-source text 
analysis software, the indexing engine is part of a broader package 
or application, typically offered as a search engine such as 
Apache’s Lucene, Oracle Secure Enterprise Search and the 
deployable versions of well-known web search engines such as 
Google Enterprise Search. Other text analysis software is more 
oriented towards certain use cases such as HP’s Autonomy and 
Nuance, often with a specific industry focus. Only a small subset 

of these solutions offers the indexing engine as a standalone 
feature, through APIs that allow it to be embedded as part of a 
broader, custom application. Both Lucene and Oracle (through 
Oracle Text) have APIs for indexing, but these are very much 
oriented towards a search scenario and therefore might not offer 
the raw indexing results that are needed to implement the 
preprocessing step for text input to predictive models described in 



the previous subsection. One exception is the iKnow technology 
distributed by InterSystems Corporation, which offers smart 
indexing APIs that were designed specifically for custom 
application development. 

iKnow is a bottom-up text analysis technology that identifies 
multi-word concepts and the relationships between them in natural 
language, without requiring any predefined knowledge about the 

text’s subject. On top of this indexing functionality, a number of 
analysis capabilities are built including support for matching 
against existing ontologies, intelligent browsing and text 
categorization. The technology has also been used in a number of 
research projects, both academic and with public and private 
organizations [12] [13] [14].  

The crude word-counting algorithm presented earlier and iKnow 
find themselves at very different sides of the indexing solution 
spectrum, which makes them good candidates to consider when 
defining a specification for an indexing operation in PMML.  

Term Selection and Term Extraction, both described in the 
previous section, are two techniques to reduce the high 
dimensionality typically resulting from straight indexing 
operations when building a model involving free text. For the 

model consumer, however, only the results of these operations are 
important. Term Selection simplifies the indexing step to be 
performed by limiting the terms to look for to a fixed subset. In 
the case of the PMML Text Model, this information was present 

already in the TextDictionary element and a similar, simple 

array representation should suffice for in a specification for an 
indexing operation. The transformation achieved by Term 

Extraction translates n input fields into m output fields where n > 
m. This operation can currently be expressed through normal 

PMML DerivedField elements and therefore needs no further 
attention. 

The following aspects of an indexing operation will need to be 
addressed by this new specification: 

 How to weigh and optionally normalize the raw frequencies of 

terms identified in the input text. 

 Whether or not to perform stemming, standardizing terms that 

have the same morphological root. For example, whether 
“birds” and “bird” should be treated as the same term. 

 Whether or not to detect multi-word terms (N-grams) and how 

to count these multi-word terms found in the text that only 
partially match a term defined in the model. For example, if a 
text mentions the term “bird flu”, but only “flu” is defined as a 
term of interest in the model, how should this term be scored? 

Opinions about the benefits of stemming and N-gram detection 
for Text Categorization seem to differ [15] [16] [17], but in 
general this is considered to be a tradeoff between semantic 
accuracy and statistical applicability. N-grams and non-stemmed 
words will be more precise, but their respective frequencies will 
be lower and variance higher than when only looking at single 
words and stemmed forms. Our own research seems to indicate 

that a precise semantic analysis and highly accurate N-gram 
detection such as provided by the iKnow technology, results in 
increased overall classification accuracy. This is in part thanks to 
iKnow’s domain independence, yielding good N-gram detection 
across topics and industries. Results for clustering experiments (as 
a precursor to classification) incorporating not only the N-grams 
but also their relational context as provided by iKnow also seemed 
promising [12]. 

4.2.2 Proposed PMML extension 
First, we propose introducing a new optype value “text” for 
representing free text, which cannot be directly used as an input 
for model types. Second, we’ll introduce a new element 
representing the indexing preprocessing operation, to be nested in 
the transformation dictionary (local or global), as well as a new 

expression element for use in DerivedField elements. Figure 

4 presents the definition of these new elements.  

<xs:element name="TextIndex"> 

 <xs:complexType> 

  <xs:sequence> 

   <xs:element ref="Extension" minOccurs="0" 

maxOccurs="unbounded"/> 

   <xs:group ref="STRING-ARRAY"/> 

  </xs:sequence> 

  <xs:attribute name="name" type="FIELD-NAME" 

use="required"/> 

  <xs:attribute name="field" type="FIELD-NAME"/> 

  <xs:attribute name="description" 

type="xs:string"/> 

  <xs:attribute name="language" type="xs:string"/> 

  <xs:attribute name="applyStemming" 

type="xs:boolean" default="false"/> 

  <xs:attribute name="nGramPolicy" 

default="fullMatchOnly"/> 

   <xs:simpleType> 

    <xs:restriction base="xs:string"> 

     <xs:enumeration value="fullMatchOnly"/> 

     <xs:enumeration value="acceptPartialMatch"/> 

     <xs:enumeration value="scalePartialMatch"/> 

    </xs:restriction> 

   </xs:simpleType> 

  </xs:attribute> 

  <xs:attribute name="localTermWeights" 

default="termFrequency"> 

   <xs:simpleType> 

    <xs:restriction base="xs:string"> 

     <xs:enumeration value="termFrequency"/> 

     <xs:enumeration value="binary"/> 

     <xs:enumeration value="logarithmic"/> 

     <xs:enumeration value=" 

augmentedNormalizedTermFrequency"/> 

    </xs:restriction> 

   </xs:simpleType> 

  </xs:attribute> 

  <xs:attribute name="documentNormalization" 

default="none"> 

   <xs:simpleType> 

    <xs:restriction base="xs:string"> 

     <xs:enumeration value="none"/> 

     <xs:enumeration value="cosine"/> 

    </xs:restriction> 

   </xs:simpleType> 

  </xs:attribute> 

 </xs:complexType> 

</xs:element> 

<xs:element name="TextIndexTerm"> 

  <xs:complexType> 

    <xs:sequence> 

      <xs:element ref="Extension" minOccurs="0" 

maxOccurs="unbounded"/> 

    </xs:sequence> 

    <xs:attribute name="index" type="xs:string" 

use="required"/> 

    <xs:attribute name="term" type="xs:string" 

use="required"/> 

  </xs:complexType> 

</xs:element> 

Figure 4: TextIndex and TextIndexTerm element specification 



The new TextIndex element defines the indexing operation 

itself. It contains an Array element listing all the terms to be 

identified and has a name attribute that’s unique across the 

PMML file. The field attribute should refer to an existing field 

which has optype=”text”. The language attribute is optional 

and should either correspond to a two-letter ISO 639-1 language 
code, or be empty to indicate it’s up to the indexing engine to 

identify the language. If stemming is set to true, the stemmed 

terms found in the input text should correspond to the terms 

defined in the Array. If the model consumer does not support 
stemming, this attribute should be ignored6. 

The values of nGramPolicy define how to treat partial matches 

if the indexing technology used by the model consumer supports 
N-gram detection. If it does not support N-grams, behavior 

defaults to “fullMatchOnly”6. A partial match is defined as the 
occurrence of an N-gram in the text that is longer than a term in 

Array, but contains all the words of that term, irrespective of 

word order. For example if the N-gram “diet coke” occurs in the 
text, it is a partial match for “coke”, but not for “cheap diet coke”. 

 fullMatchOnly: only exact matches of the terms in Array 

are accepted and counted as a single occurrence, contributing 
1 to the term frequency. 

 acceptPartialMatch: both partial and exact matches are 

accepted and counted as a single occurrence of that term, 
contributing 1 to the term frequency. 

 scalePartialMatch: both partial and exact matches are 

accepted, but contribute to the term frequency proportionally 
to the number of words matching. For example, if “diet coke” 

is a term in Array, an N-gram “diet coke” will contribute 1 

and “cheap diet coke” will contribute 0.666. 

As for term weighting and normalization options, the same 
options as described in section 3.2.3 are offered. Normalization 

happens based on the contents of the array of terms in the 

TextIndex element, regardless of whether all of these terms 

were referred through DerivedField elements. 

For the TextIndexTerm elements, as nested in 

DerivedField elements, their index attribute should 

correspond to the name of a TextIndex in the same model’s 

LocalTransformations or the Transformation-

Dictionary and the term attribute should correspond to one 

of the terms in that TextIndex’ Array of terms. 

Note: the extensions proposed in this section are independent of 
the ones presented in Section 3. 

4.2.3 Example 

<PMML> 

 <DataDictionary numberOfFields="2"> 

  <DataField name="weatherReport" optype="text" 

dataType="string"/> 

  <DataField name="temperature" dataType="double" 

optype="continuous" /> 

 </DataDictionary> 

 <TransformationDictionary> 

  <TextIndex name="index" text="weatherReport" 

localTermWeights="binary"> 

   <Array type=”string”>sunny rainy</Array> 
 

                                                             

6 It is recommended the model consumer technology throws a 
warning if it is presented a PMML definition containing 
unsupported indexing features. 

  </TextIndex> 

  <DerivedField name="isSunny" > 

   <TextIndexTerm index="index" term="sunny"/> 

  </DerivedField> 

  <DerivedField name="isRainy" > 

   <TextIndexTerm index="index" term="rainy"/> 

  </DerivedField> 

 </TransformationDictionary> 

 <NaiveBayesModel ... /> 

</PMML> 

Figure 5: Example use of TextIndex and TextIndexTerm 

4.2.4 Further extensions 
The extensions presented in this section are meant to offer a 
flexible way of using text as an input for all PMML model types. 
While this already opens up a number of interesting possibilities 
and use cases, here are a number of additions that could further 
enhance PMML’s capabilities for tackling text. 

 Similar to the (currently unspecified) use of a Taxonomy 

element in the Text Models TextDicationary, it could be 

introduced at the level of a TextIndex to aggregate 

synonyms and related terms into a topic hierarchy. Using the 
higher-level terms would then simplify models using text by 
further reducing dimensionality in a transparent way. One 
example of using external taxonomies or ontologies we have 
found to be particularly useful when categorizing text in a 
clinical domain is mapping text input to High Level Concepts 

of the Unified Medical Language System® (UMLS) 7. 

 Some text analysis solutions, such as the iKnow technology 

described earlier, support negation detection. An appropriate 
weighting of terms that appear in a negated context (such as 
“pain” in “the patient felt no pain”) could further enhance the 
accuracy of text-aware models. 

 Support for regular expressions as an alternative to literal term 

matching (partial and exact) could also increase the flexibility 
of this new capability. However, attention needs to be paid to 
appropriately identifying and weighting regular expression 
matches. 

5. CONCLUSION 
In this paper, we have introduced Text Categorization as a 
practical example of predictive analytics. We have presented the 
current specification of the Text Model as it appears in PMML 
version 4.1 and reviewed its applicability for expressing Text 
Categorization scenarios. This revealed a number of issues we 
believe limit its chances for a broader adoption in the market, 

despite the growing importance of text as an input for predictive 
models. To accommodate these challenges, we proposed an 
extension to the PMML Text Model that should make it a flexible 
standard for expressing Text Categorization models. Finally, we 
have discussed text indexing in more detail and proposed a 
separate set of extensions to implement text indexing as a 
dedicated transformation of free text input into normal, numeric 
input fields. This proposed specification assumes a text indexing 
engine is available to the model consumer, which could range 

from a simple word-counting algorithm to feature-rich text 
analysis software such as the iKnow technology presented in this 
paper. This second extension allows broadening the scope of 
every PMML model type to accept text input and implement Text 
Categorization and other scenarios involving free text alongside 
classic categorical and numerical fields.  

                                                             
7 See also: http://www.nlm.nih.gov/research/umls/  

http://www.nlm.nih.gov/research/umls/
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