
Extending the PMML Text Model for Text Categorization

Benjamin De Boe
InterSystems Corporation

One Memorial Drive
Cambridge, MA 02142, USA

Benjamin.De.Boe@intersystems.com

Misha Bouzinier
InterSystems Corporation

One Memorial Drive
Cambridge, MA 02142, USA

Misha.Bouzinier@intersystems.com

Dirk Van Hyfte, MD, PhD
InterSystems Corporation

One Memorial Drive
Cambridge, MA 02142, USA

Dirk.VanHyfte@intersystems.com

ABSTRACT

As the de facto standard for expressing data mining models, the
Predictive Model Markup Language (PMML) offers a way to
decouple the activities of building a data mining model from

actually running it on new data. This enables more flexibility for
data scientists and application developers alike, as they now have
a common language to express models, independent of the
technologies and architectures of their respective environments.

In this paper, we will look into using PMML for Text
Categorization scenarios. Broadly speaking, Text Categorization
is about deciding which of a predefined set of categories a piece
of free text is most likely to belong to, typically by looking for the

occurrences of distinctive terms in the input text and feeding them
into a classification model. Both the choice of terms to consider
and the coefficients of the model are derived as part of a data
mining effort, involving the analysis of large volumes of text.
Given that text mining technology is still not mainstream, a
standard such as PMML for separating the building and execution
of the model gets even more important.

The PMML specification includes a model type for predicting an
outcome based on text input, in the form of the “document” the

input text is most similar to, selected from a set of documents
defined in the model. In this paper, we will discuss examples of
simple Text Categorization scenarios that cannot be expressed
through the current Text Model specification in PMML version
4.1. We will propose extensions to expand its scope to true Text
Categorization, from the individual document similarity approach
offered today. We will describe a generalization of the idea of
“documents” to “categories” and refine the available options for

calculating the similarity of text input to the categories defined in
a model. In addition, we will describe an alternative approach for
allowing other model types to transparently work with text input,
emulating derived fields for weighted term frequencies.

Categories and Subject Descriptors

H.3.1 [Information Storage and Retrieval]: Content Analysis
and Indexing - Indexing methods;

H.3.3 [Information Storage and Retrieval]: Information Search
and Retrieval - Information filtering

General Terms

Algorithms, Standardization, Languages, Theory

Keywords

Predictive Analytics, Data Mining, PMML, Predictive Model
Markup Language, Text Categorization, Text Classification,
iKnow

1. INTRODUCTION
Even if we completely disregard the twitters and facebooks of
today, it’s clear the amount of digitally available textual
information available to organizations and individuals today is

overwhelming and growing. Electronic medical records in
healthcare, analyst and regulatory reports in finance and claims in
an insurance context are just three examples of textual
information that’s becoming available at an ever increasing rate
and meant to support better decision-making. Moreover, in all
three of these examples, the textual information is not only useful
for making the decision, but in many cases simply essential or
even legally binding to be taken into account. In the first example,
a clinician who’s ignoring parts of his patients medical history

notes when prescribing a medication or procedure could find
himself part of the insurance example soon after.

Unfortunately, the availability of so much information doesn’t
make the lives of clinicians, traders or claims adjusters any easier
by itself. The sheer volume often makes it infeasible to read
through all of it, or the velocity at which it arrives might make it
hard to act upon it in an acceptable timeframe. If only computers
could read and understand natural language, they could suggest

which decision to take and humans should only verify and
confirm those cases where the computer wasn’t sure or where
legal or risk factors wouldn’t allow a computer to press the button.

The scenario just described might not be that far away into the
future. First, dedicated software exists today for mining
information from free text and modeling the patterns and
characteristics discovered in that text mining effort. Second,
dedicated software also exists for managing electronic medical

records, for trading on stock markets and for managing insurance
claims. And third, an industry standard exists to express the
results of the data mining effort into a format that could be
consumed from the production application managing the live data:
PMML [1] [2] [3].

In section 2 of this paper, we’ll describe the capabilities in PMML
version 4.1 for using text input in predictive models. We’ll
illustrate how the current version of the standard only covers a

small subset of a broad array of use cases named Text
Categorization. In the next section, we’ll look in more detail at the
field of Text Categorization and discuss a number of well-known
categorization techniques. For each of these, we’ll use examples
of an extended PMML Text Model to show how the standard can
be enriched to cover this broader area. Then, section 4 will present
an alternative approach to using text input in PMML, which does

Permission to make digital or hard copies of all or part of this work for personal or

classroom use is granted without fee provided that copies are not made or distributed

for profit or commercial advantage and that copies bear this notice and the full

citation on the first page. Copyrights for components of this work owned by others than

the author(s) must be honored. Abstracting with credit is permitted. To copy otherwise,

or republish, to post on servers or to redistribute to lists, requires prior specific

permission and/or a fee. Request permissions from permissions@acm.org.

PMML‘13, August 11 2013, Chicago, Illinois, USA

Copyright is held by the owner/author(s). Publication rights licensed to ACM.

ACM 978-1-4503-2336-9/13/08…$15.00

mailto:permissions@acm.org

not imply a separate model type. In this section, we’ll also explain
how dedicated text analysis technology can be used in a
formalized preprocessing step, expanding the scope of any PMML
model to text input. In this context, we’ll present iKnow, a
dedicated text analysis technology distributed by InterSystems

Corporation, as a sample tool to derive from text input those
metrics that can make any predictive model not just text-enabled,
but truly text-aware. Finally, in section 5 we’ll summarize this
paper into a conclusion.

2. CURRENT TEXT MODEL
As a standard, PMML covers a variety of well-known and widely
adopted data mining model types, including Naïve Bayes, Support
Vector Machines and Neural Networks. For each of these, the
PMML specification describes an XML element representing the
model and all of its parameters as calculated by the model
producer, which means a model consumer gets all there is to know
to be able to execute the model on new data.

Amongst these model types, the Text Model represents a
predictive model which predicts an outcome based on text input.
In this section, we’ll first present the specification in version 4.1
of the PMML standard and then review its limitations.

2.1 Current specification
While most model types covered by PMML relate back to a
specific algorithm, technique or functional approach in data
mining, the Text Model1 is a little different in that it rather
represents a specific type of input (text) and a single use case than
anything else. Essentially, this use case comes down to, for a
given input text, identifying which of a predefined set of
documents it is most similar to. Obviously, based on this “most

similar document” outcome, a decision can be made either

explicitly within the model definition using an OutputField

element representing a decision feature, or through custom code
interpreting the raw outcome outside of the scope of PMML.

The formal PMML specification describes the concept of text
similarity through these six components:

 model attributes;

 dictionary of terms;

 corpus of text documents

 document-term matrix;

 text model normalization;

 text model similarity.

The first component, “model attributes”, does not encompass any
specific new XML elements, neither are the ones referred to used

any differently from other model types. We’ll therefore ignore this
component for now. We’ll look at each of the other elements in
more detail.

2.1.1 Dictionary of terms
The dictionary of terms is represented by the TextDictionary

element, which consists mainly of an array of strings holding the
terms of interest for this model. This means, the Text Model will
only consider the occurrence of these terms when calculating the
similarity between the input text and the existing documents.

Optionally, a taxonomy can be defined on these terms through the

formal Taxonomy element2, as an external source of

information on how to group terms hierarchically. However, the

1 See also: http://www.dmg.org/v4-1/Text.html
2 See also: http://www.dmg.org/v4-1/Taxonomy.html

current specification does not detail how this taxonomy could or
should be treated.

2.1.2 Corpus of text documents
The next element in the Text Model specification describes the
corpus of documents this model will compare input text against.

The TextCorpus element explicitly enumerates each document

in a TextDocument element, with optional attributes for a
description, file name and document length in bytes.

2.1.3 Document-term matrix
The DocumentTermMatrix then ties the dictionary terms to

the documents by specifying a frequency matrix, with the element
on the ith row and jth column representing the frequency of the
term at index j in the document at index i.

2.1.4 Text model normalization
As to normalize the term frequencies in the document-term

matrix, a TextModelNormalization element defines how

the model consumer should transform this frequency matrix into
term weights that can be used for the similarity calculation. This is

the first element to deal with any text-specific metrics or
functions.

2.1.5 Text model similarity
The TextModelSimiliarity element finally closes the loop

and details how the input fields should be compared to the

normalized per-document term weights. The two similarity
measures supported by the model (cosine similarity and Euclidean
distance) assume a Vector Space Model, which will be described
in more detail in Section 3 of this paper.

2.2 Current limitations
While it’s clear the Text Model has its merits, not in the least by
giving text the attention it deserves in the field of predictive
analytics, we believe the current specification for the model only

serves a rather basic use case and has a number of shortcomings
for implementing Text Categorization scenarios. We’ll discuss
and illustrate them one by one.

2.2.1 No real category support
In many cases, you might not want to compare input text to
individual documents. Even if they’re reference documents, they

almost certainly represent a whole category of documents and
most literature on Text Categorization discusses this more coarse-
grained approach3.

For example, in a customer service scenario, the goal might be to
route an incoming service request email to the right support
engineer by looking at its textual contents. Typically, you’d like to
find the category of requests this new email belongs to and
forward to the team treating that category. However, the current
Text Model specification would require you to find the single
previous email it was most similar to and then route to the team
that successfully handled that issue. This will either require your

model to contain a probably unrealistic number of documents to
compare against, or require you to select a number of
“representative” emails to include in the model definition, at the

3 There are some Text Categorization techniques that will look at
similarity to individual documents, such as example-based
classifiers and (to some extent) the Rocchio method [4], but
these are still techniques to finding a category rather than a
document and require more parameters than what’s currently
possible through the Text Model.

http://www.dmg.org/v4-1/Text.html
http://www.dmg.org/v4-1/Taxonomy.html

risk of selecting too many to perform quickly or too few to remain
accurate.

One solution to this could be to simply use the TextDocument

elements as representations for whole categories. The problem

then becomes what to list in the DocumentTermMatrix. The

total frequency of a term in a category is one option, but it might
attribute improper weights to terms that occur very frequently in
only one or two documents out of many in a category, or terms
that occur just once, but in every category. Other options include
the average term frequency (yielding a centroid approach), the
number of documents within the category in which they appear
and other aggregations, all of which might or might not be
compatible with the weighting options presented by

TextModelNormalization.

In Section 3, we’ll describe an extension to the PMML Text

Model specification that should accommodate these categorization
scenarios more properly.

2.2.2 Limited classification options
As we’ll elaborate in Section 3, there are many different
techniques to implement Text Categorization scenarios [4]. Most
of them are based on a representation of text that is commonly

known as the Vector Space Model, in which every document is
represented as vector of term weights. The current PMML Text
Model specification relies on this model and offers two simple
functions to measure the similarity between input vectors and the
document vectors (as derived from the document term matrix).
While these are popular and relatively straightforward for both
model building and execution, they only represent a fraction of
that broad set of available techniques.

In Section 3, we’ll discuss the Vector Space Model in more detail
and propose extensions to the current Text Model specification to
cover some of the alternative classification techniques. In Section

4, we’ll investigate an alternative approach, leveraging other
existing PMML model types for classification.

2.2.3 No real text-awareness
The current specification of the Text Model does not seem to rely
on any text-awareness of the model implementation technology.
This is because the model requires term frequencies as inputs and,

onwards, only works with numeric calculations that are
independent of the text background. And while the normalization
techniques and similarity metrics are indeed typical ones for
dealing with text in a Vector Space Model, they are also used
elsewhere and nothing would prevent users from deploying a
PMML Text Model for input that has nothing to do at all with
text. For example, a primitive market basket analysis model could
represent customer buying behavior the same way as term

frequencies and use a Text Model to predict which “reference
customer” (document) a customer is most similar to by simply
looking at the products (terms) he bought. Market basket analysis
specialists might disagree with the accuracy of such a technique,
but at least it illustrates the current Text Model specification
doesn’t have a lot to do with text by itself.

This approach, of course, can be considered an advantage, as it
makes it easier to implement a model consumer for the Text
Model. But at the same time it just defers the job of interpreting
the text and providing the term frequencies to a preprocessing step
for which PMML provides no guidance at all. We’ll look at

solutions to increase the text-awareness of PMML as a standard in
general in Section 4.

2.2.4 Other remarks
The following remarks on the current Text Model specification
are not strictly related to Text Categorization scenarios. They are
included nonetheless as to make this section a more
comprehensive review of the Text Model specification in PMML
version 4.1.

 Input mapping: The current specification does not explicitly

link MiningField or DerivedField elements to the

TextDictionary elements or DocumentTermMatrix

columns, but implicitly (without even mentioning in the
specification) assumes they correspond based on their index.

We think this is a gap in the specification and at least a formal
description of how the order of plain and derived fields’
indices should be interpreted, as well as how to treat non-
active mining fields, is required. Preferably, a new element
would allow the model producer to define this mapping
explicitly as to avoid any misinterpretation. A proposal to
accommodate this was submitted by the authors separately.

 TextModelSimiliarity spelling: There appears to be a

misspelling in this element name, which is upheld throughout
the specification and examples. As the word “similiarity” to
our knowledge is not a specific concept in the literature on

Text Analysis, we believe “correcting” this element’s name in
the specification should be considered.

 Taxonomy support: The specification allows adding a

Taxonomy element to the term dictionary, but does not

mention how this should be used. A formal description of how
terms can be rolled up and how these “topics” can then be

mapped to the columns in the DocumentTermMatrix
would be a helpful extension.

3. TEXT CATEGORIZATION MODELS
In this section, we’ll introduce the broader research area of Text
Categorization and propose a number of extensions to the PMML
standard to make the Text Model more compatible with Text
Categorization scenarios. We’ll present examples of three

techniques that can be easily covered by the extended
specification and give an outlook on further extensions in the
future.

3.1 Introduction to Text Categorization
Sebastiani [4] provides an excellent overview of the different
approaches to Text Categorization. He defines Text
Categorization (TC, also known as Text Classification) as “the
activity of labeling natural language texts with thematic categories

from a predefined set”. While this simple definition seems to refer
mostly to the execution of a classification model, it’s clear there
has to be some logic or algorithm to build or train the model that
provides this labeling service accurately.

Many properties of “normal” data mining classification also apply
to TC. There is a (mostly algorithmic) difference between binary
and multi-class classification. In binary classification, the
classifier should only decide which of two categories a new
document belongs to, whereas the broader multi-class
classification can have any fixed number of categories. A
classifier can also be used for “hard” classification, in which a

document gets assigned a single category, or “ranking”
classification, in which the result is a set of categories ranked by
the likelihood the document belongs to them. Unless specified
otherwise, we’ll talk about hard, multi-class classification
onwards, as binary classification then is just a special case and not
all classification methods might allow for the ranked scenario (i.e.
decision trees typically don’t rank results).

3.1.1 Indexing and the Vector Space Model
The first step in building a TC model is choosing how to represent
the unstructured text in a more structured format. By far the most
common approach is the Vector Space Model, as presented by
Salton et al [5]. In the Vector Space Model, each document is
defined by a vector containing the frequency (or a weighted
version thereof) of a specific term at each index. If documents or
whole categories can be represented as vectors, suddenly a broad

range of vector operations become available to express
transformations or interpretations of what until then was purely
unstructured text. For example, two vectors (documents) could be
considered similar if the points in the multidimensional vector
space they represent are close, based on the Euclidean distance.
Alternatively, you can consider vectors to be similar if they point
in the same direction, by using cosine similarity, as calculated
through a dot product.

An essential step to transform unstructured text into a vector of
(weighted) frequencies is indexing the text. The most basic of
indexing algorithms would just count the frequencies of all

individual words, but most text mining technology includes more
intelligent logic for tasks such as discarding stop words,
standardizing terms through stemming and identifying word
groups that belong together. Technically, the only truly text-aware
part of the whole TC process is this indexing step, as the resulting
vector is again just a bunch of numbers that could have come from
a completely different source. We’ll discuss indexing in more
detail in Section 4.

To be complete, the Vector Space Model can express more than
just (weighted) term frequencies, as is documented in [6], and
indexing too can yield much more than raw frequencies, which

we’ll elaborate on in Section 4. However, most TC techniques use
plain or weighted term frequencies as their straightforward input.

3.1.2 Dimensionality reduction
One significant problem with the Vector Space Model, which
extends to a number of similar approaches, is the high
dimensionality of the vector space. Natural language does not

restrict itself to a handful of terms and therefore the number of
dimensions can easily stretch into the tens of thousands, even for a
small dataset. Therefore, it’s important to reduce this
dimensionality through term selection and, optionally, term
extraction, which conceptually corresponds to feature selection
and feature extraction in data mining in general.

Term selection is about reducing the dimensionality by selecting a
representative set of terms and disregarding all others. This
selection of terms to be considered is one of the most crucial tasks
when building a TC model and is usually dependent on the
classification method chosen. Typically, a first set is selected

based on some metric expressing the overall importance of the
term in the corpus, such as TFIDF or more advanced alternatives
[7] [8]. Then, after an initial model is built, the set is refined by
adding and removing terms based on their impact on the overall
model accuracy until a certain threshold is met and the accuracy
no longer changes significantly. When it comes to executing a
model, this list of terms to consider is part of the model and
therefore only the result and not the selection process is what’s

relevant for PMML as a specification. The TextDictionary
element covers this for the Text Model.

If the vocabulary used in the documents to categorize is rich, term
selection alone might leave you with too high a dimensionality, or
yield a low accuracy if too many terms were discarded. Term
extraction solves this by creating new “virtual” terms that

represent a linear combination of existing terms. Commonly, the
whole vector space is transformed into a new vector space with
fewer dimensions, using techniques such as Principal Component
Analysis [9], truncated SVD [10] or other classic feature
extraction algorithms.

3.1.3 Other ways of representing text for TC
A common alternative to the Vector Space Model is the
probabilistic model described by Lewis in [11]. This approach,
which is based on Bayes’ theorem, is often used in Information
Retrieval problems but also serves TC scenarios well. In practice,
it doesn’t differ much from the universal Naïve Bayes model as

described elsewhere in the PMML specification, although in a TC
scenario the dimensionality will typically be a lot higher.

3.2 Proposed PMML extensions
In this subsection, we’ll propose a number of extensions to the
PMML specification for the Text Model in the context of Text
Categorization.

3.2.1 From documents to categories
To explicitly enable the Text Model for TC, we’ll introduce a

TextCategory element that’s similar to TextDocument,

but now represents a number of documents, which can be

specified through a numberOfDocuments attribute. A

TextCorpus element can now either contain a set of categories
or a set of documents, but not both.

<xs:element name="TextCorpus">

 <xs:complexType>

 <xs:sequence>

 <xs:element ref="Extension" minOccurs="0"

maxOccurs="unbounded"/>

 <xs:choice>

 <xs:element ref="TextDocument"

minOccurs="0" maxOccurs="unbounded"/>

 <xs:element ref="TextCategory"

minOccurs="0" maxOccurs="unbounded"/>

 </xs:choice>

 </xs:sequence>

 </xs:complexType>

</xs:element>

<xs:element name="TextCategory">

 <xs:complexType>

 <xs:sequence>

 <xs:element ref="Extension" minOccurs="0"

maxOccurs="unbounded"/>

 </xs:sequence>

 <xs:attribute name="id" type="xs:string"

use="required"/>

 <xs:attribute name="name" type="xs:string"

use="optional"/>

 <xs:attribute name="numberOfDocuments"

type="INT-NUMBER" use="optional"/>

 </xs:complexType>

</xs:element>

Figure 1: Extended specification for TextCorpus

Figure 1 presents the extended specification introducing category
support, highlighting new elements and attributes in blue.

In the TextModel element itself, we propose to deprecate the

numberOfDocuments attribute in favor of a new one named

numberOfCategories, which would represent both the

number of documents and categories, as a set of TextDocument

elements can be interpreted as a series of single-document
categories. If the corpus is defined as a set of documents, the
model producer can choose whether to use the deprecated

file:///C:/Users/bdeboe/Desktop/TextModel/GeneralStructure.html%23extension
file:///C:/Users/bdeboe/Desktop/TextModel/GeneralStructure.html%23extension

numberOfDocuments or the new numberOfCategories

(but not both). If the corpus contains a list of categories,

numberOfCategories has to be used.

3.2.2 Normalizing the document-term matrix
As highlighted in the previous section, moving from documents to
categories has an impact on the meaning of the

DocumentTermMatrix contents. Where it used to contain

simple term frequencies, this would no longer be sufficient
information to apply the normalizations expressed in the

TextModelNormalization element. For example, if a

model defines the inverse document frequency (IDF) as the global
term weight function and term frequency as the local term weight,
we’d need both the number of documents in which each term
occurs, as the frequency it has in each document (or category),
which cannot be covered in a single matrix.

At the same time, normalizing the DocumentTermMatrix is a

transformation that only depends on the attribute values of the

TextModelNormalization element, which in turn is only

used to produce this transformation. This means that, from the
model consumer perspective, it would be equivalent if the

DocumentTermMatrix already contained the normalized

matrix and the TextModelNormalization element was

absent. For the model producer, it shouldn’t be any different
either, as he’s likely to have calculated this normalized matrix at
some point anyway, while researching the weighting scheme best
fitting the training data.

Thus, we propose to abandon the TextModelNormalization

element and require the DocumentTermMatrix to contain the

normalized term weights rather than raw frequencies. Turning the

document-term matrix into a category weight matrix this way
would also make it a more transparent vehicle for use with other
similarity metrics than the vector-centric cosine similarity and
Euclidean distance.

3.2.3 Input normalization and similarity metrics
In Figure 2, we propose an extension to the

TextModelSimilarity
4 element for defining how the input

vector (input frequencies) should be normalized and compared to
the contents of the normalized document-term matrix.

<xs:element name="TextModelSimiliarity">

 <xs:complexType>

 <xs:sequence>

 <xs:element ref="Extension" minOccurs="0"

maxOccurs="unbounded"/>

 </xs:sequence>

 <xs:attribute name="localTermWeights"

default="termFrequency">

 <xs:simpleType>

 <xs:restriction base="xs:string">

 <xs:enumeration value="termFrequency"/>

 <xs:enumeration value="binary"/>

 <xs:enumeration value="logarithmic"/>

 <xs:enumeration value="

augmentedNormalizedTermFrequency"/>

 </xs:restriction>

 </xs:simpleType>

 </xs:attribute>

4 Note the corrected spelling for TextModelSimilarity

element (was “TextModelSimiliarity”)

 <xs:attribute name="documentNormalization"

default="none">

 <xs:simpleType>

 <xs:restriction base="xs:string">

 <xs:enumeration value="none"/>

 <xs:enumeration value="cosine"/>

 </xs:restriction>

 </xs:simpleType>

 </xs:attribute>

 <xs:attribute name="similarityType">

 <xs:simpleType>

 <xs:restriction base="xs:string">

 <xs:enumeration value="euclidean"/>

 <xs:enumeration value="cosine"/>

 <xs:enumeration value="linear"/>

 <xs:enumeration value="naiveBayes"/>

 </xs:restriction>

 </xs:simpleType>

 </xs:attribute>

 </xs:complexType>

</xs:element>

Figure 2: Extended specification for
TextModelSimilarity

The normalization options for the input vector are similar to those

in the discontinued TextModelNormalization element,

except for the absence of a global term weighting option, which is

typically already applied at the side of the category term weight.
This simple addition provides an easy way to transform the term
frequencies in the input vector into a normalized local term weight
ready for further calculations by the model.

As for the similarity metric options, we propose adding two new
options to the existing cosine similarity and Euclidean distance:

 linear: In this approach, the document-term matrix is
considered to be a matrix of coefficients for a linear

regression formula. Each document term vector is simply
multiplied with the input vector and the document with the
highest resulting score wins.

 naiveBayes: This similarity type expects the

DocumentTermMatrix to contain the number of

documents containing term i (column) in category j (row),
which can then be used to calculate Naïve Bayes probabilities.
Scoring then proceeds in the same way as for a normal Naïve
Bayes model5. The base probabilities of each document or

category are calculated based on the numberOfDocuments

attribute in each TextDocument element, which is

mandatory in this case. The localTermWeights and

documentNormalization attributes are expected to be

“binary” and “none” respectively.

For completeness: in the case of the cosine similarity and

Euclidean distance, the numbers in the document-term matrix are
still expected to represent vectors that can be compared to the
input vector.

3.2.4 Further extensions
We believe the introduction of TextCategory elements, the

removal of the TextModelNormalization element and the

addition of input normalization options already offer significant
flexibility towards supporting Text Categorization in PMML. But
this extension is certainly not an endpoint and more similarity
types as well as local term weighting schemes can easily be added
to the proposed specification.

5 See also: http://www.dmg.org/v4-1/NaiveBayes.html

http://www.dmg.org/v4-1/NaiveBayes.html

Independent of adding more algorithmic options, another
interesting addition would be to extend the specification to accept
the text itself as an input, rather than the term frequencies. Section
4 discusses this option in more detail.

3.2.5 Backwards compatibility
The above changes were meant to preserve backwards
compatibility where possible. For some elements, a more radical
change might be preferable for clarity, at the risk of invalidating
older model definitions (which model consumers should then treat
based on the PMML version number). Given the limited adoption
of the Text Model thus far [3], the impact of such changes should
be relatively small.

 The numberOfDocuments attribute in the TextModel

element could be dropped altogether, with

numberOfCategories fully taking over its role. This

should avoid any confusion between the two attributes.

 As an even more radical simplification, the TextDocument

element could be abandoned completely, only accepting

TextCategory elements onwards. Models wishing to

predict individual document similarity can then represent
these as single-document categories.

 The DocumentTermMatrix can be renamed to

CategoryWeightMatrix, which better represents its

contents.

3.3 Example

<TextModel modelName="example" numberOfTerms="5"

numberOfCategories="2">

 <MiningSchema>

 <MiningField name="headcheFreq" />

 <MiningField name="feverFreq" />

 <MiningField name="nauseaFreq" />

 <MiningField name="wellFreq" />

 <MiningField name="bedFreq" />

 <MiningField name="OK" usageType="predicted" />

 </MiningSchema>

 <TextDictionary>

 <Array type="string">fever headache nausea well

bed</Array>

 </TextDictionary>

 <TextCorpus>

 <TextCategory id="ill" numberOfDocuments="10"/>

 <TextCategory id="fine" numberOfDocuments="20"/>

 </TextCorpus>

 <DocumentTermMatrix>

 <Matrix>

 <Array type="real">1 .9 1 0 .5</Array>

 <Array type="real">0 0 0 1 .3</Array>

 </Matrix>

 </DocumentTermMatrix>

 <TextModelSimilarity localTermWeights="binary"

documentNormalization="cosine"

similarityType="linear"/>

</TextModel>

Figure 3: Example Text Model with extended specification

4. UNTANGLING TEXT MODELS
In the previous section, we presented a number of extensions to
expand the scope of the Text Model towards true Text
Categorization scenarios. In this section, we’ll look more closely
at what can be done to leverage more of the PMML specification
to support scenarios involving text.

4.1 Is text all that different?
It’s clear that text by itself cannot be used as an input for a typical

data mining calculation. Basic mathematical operations make no
sense on free text and real natural language sentences don’t make
good categorical fields either. As we discussed in section 3,
indexing is the sort of preprocessing step that can translate
unstructured text into a representation more edible for classic
algorithms. Once past that hurdle, we’re back in a scenario with
just numeric and categorical fields, which means classic data
mining algorithms can start crunching. And indeed, when looking

at the algorithms often used for Text Classification, many classic
algorithms and techniques reappear [4], such as Support Vector
Machines, K-Nearest Neighbors, Neural Nets and the Naïve
Bayes classifiers we already described in the previous section.

This means the technology setting Text Mining apart from Data
Mining is the preprocessing step identifying the terms in the free
text and attributing importance scores (of which frequency is the
most basic one) and context to them. Thus, if the PMML standard
can be extended to include specifications for an indexing step that
translates a free text input field into derived fields containing the
relevance metric (by default a simple frequency) for a given term,

suddenly all PMML model types become available for Text
Categorization and other scenarios involving text. This is, as was
hinted in Section 2, what would make the whole PMML standard
compatible with free text input, rather than being a standard that
includes a single model type fit for use on indexed text (rather
than free text). Also, it would more elegantly accommodate
combining text and its context in the same predictive model,
which was not explicitly nor implicitly allowed in the current Text

Model specification. For example, this would enable transparently
combining clinician’s notes in free text with measurements such
as blood pressure and lab results.

In the following subsections, we’ll explore the indexing step in
more detail and suggest an extension for the PMML vocabulary to
specify indexing as part of a model definition.

4.2 A specification for indexing text
In this subsection, we’ll propose a specification for indexing text
as part of a PMML model definition, in order to allow model
consumer technology to implement the full prediction operation,
starting from the free text input. First, we will present a brief

overview of indexing technology and its properties that need
specification.

4.2.1 Technology overview
Indexing or text analysis technology exists in many different
flavors and architectures. The most basic of indexing algorithms
would be one that just cuts free text into single-word terms and

counts their frequencies. In most commercial or open-source text
analysis software, the indexing engine is part of a broader package
or application, typically offered as a search engine such as
Apache’s Lucene, Oracle Secure Enterprise Search and the
deployable versions of well-known web search engines such as
Google Enterprise Search. Other text analysis software is more
oriented towards certain use cases such as HP’s Autonomy and
Nuance, often with a specific industry focus. Only a small subset

of these solutions offers the indexing engine as a standalone
feature, through APIs that allow it to be embedded as part of a
broader, custom application. Both Lucene and Oracle (through
Oracle Text) have APIs for indexing, but these are very much
oriented towards a search scenario and therefore might not offer
the raw indexing results that are needed to implement the
preprocessing step for text input to predictive models described in

the previous subsection. One exception is the iKnow technology
distributed by InterSystems Corporation, which offers smart
indexing APIs that were designed specifically for custom
application development.

iKnow is a bottom-up text analysis technology that identifies
multi-word concepts and the relationships between them in natural
language, without requiring any predefined knowledge about the

text’s subject. On top of this indexing functionality, a number of
analysis capabilities are built including support for matching
against existing ontologies, intelligent browsing and text
categorization. The technology has also been used in a number of
research projects, both academic and with public and private
organizations [12] [13] [14].

The crude word-counting algorithm presented earlier and iKnow
find themselves at very different sides of the indexing solution
spectrum, which makes them good candidates to consider when
defining a specification for an indexing operation in PMML.

Term Selection and Term Extraction, both described in the
previous section, are two techniques to reduce the high
dimensionality typically resulting from straight indexing
operations when building a model involving free text. For the

model consumer, however, only the results of these operations are
important. Term Selection simplifies the indexing step to be
performed by limiting the terms to look for to a fixed subset. In
the case of the PMML Text Model, this information was present

already in the TextDictionary element and a similar, simple

array representation should suffice for in a specification for an
indexing operation. The transformation achieved by Term

Extraction translates n input fields into m output fields where n >
m. This operation can currently be expressed through normal

PMML DerivedField elements and therefore needs no further
attention.

The following aspects of an indexing operation will need to be
addressed by this new specification:

 How to weigh and optionally normalize the raw frequencies of

terms identified in the input text.

 Whether or not to perform stemming, standardizing terms that

have the same morphological root. For example, whether
“birds” and “bird” should be treated as the same term.

 Whether or not to detect multi-word terms (N-grams) and how

to count these multi-word terms found in the text that only
partially match a term defined in the model. For example, if a
text mentions the term “bird flu”, but only “flu” is defined as a
term of interest in the model, how should this term be scored?

Opinions about the benefits of stemming and N-gram detection
for Text Categorization seem to differ [15] [16] [17], but in
general this is considered to be a tradeoff between semantic
accuracy and statistical applicability. N-grams and non-stemmed
words will be more precise, but their respective frequencies will
be lower and variance higher than when only looking at single
words and stemmed forms. Our own research seems to indicate

that a precise semantic analysis and highly accurate N-gram
detection such as provided by the iKnow technology, results in
increased overall classification accuracy. This is in part thanks to
iKnow’s domain independence, yielding good N-gram detection
across topics and industries. Results for clustering experiments (as
a precursor to classification) incorporating not only the N-grams
but also their relational context as provided by iKnow also seemed
promising [12].

4.2.2 Proposed PMML extension
First, we propose introducing a new optype value “text” for
representing free text, which cannot be directly used as an input
for model types. Second, we’ll introduce a new element
representing the indexing preprocessing operation, to be nested in
the transformation dictionary (local or global), as well as a new

expression element for use in DerivedField elements. Figure

4 presents the definition of these new elements.

<xs:element name="TextIndex">

 <xs:complexType>

 <xs:sequence>

 <xs:element ref="Extension" minOccurs="0"

maxOccurs="unbounded"/>

 <xs:group ref="STRING-ARRAY"/>

 </xs:sequence>

 <xs:attribute name="name" type="FIELD-NAME"

use="required"/>

 <xs:attribute name="field" type="FIELD-NAME"/>

 <xs:attribute name="description"

type="xs:string"/>

 <xs:attribute name="language" type="xs:string"/>

 <xs:attribute name="applyStemming"

type="xs:boolean" default="false"/>

 <xs:attribute name="nGramPolicy"

default="fullMatchOnly"/>

 <xs:simpleType>

 <xs:restriction base="xs:string">

 <xs:enumeration value="fullMatchOnly"/>

 <xs:enumeration value="acceptPartialMatch"/>

 <xs:enumeration value="scalePartialMatch"/>

 </xs:restriction>

 </xs:simpleType>

 </xs:attribute>

 <xs:attribute name="localTermWeights"

default="termFrequency">

 <xs:simpleType>

 <xs:restriction base="xs:string">

 <xs:enumeration value="termFrequency"/>

 <xs:enumeration value="binary"/>

 <xs:enumeration value="logarithmic"/>

 <xs:enumeration value="

augmentedNormalizedTermFrequency"/>

 </xs:restriction>

 </xs:simpleType>

 </xs:attribute>

 <xs:attribute name="documentNormalization"

default="none">

 <xs:simpleType>

 <xs:restriction base="xs:string">

 <xs:enumeration value="none"/>

 <xs:enumeration value="cosine"/>

 </xs:restriction>

 </xs:simpleType>

 </xs:attribute>

 </xs:complexType>

</xs:element>

<xs:element name="TextIndexTerm">

 <xs:complexType>

 <xs:sequence>

 <xs:element ref="Extension" minOccurs="0"

maxOccurs="unbounded"/>

 </xs:sequence>

 <xs:attribute name="index" type="xs:string"

use="required"/>

 <xs:attribute name="term" type="xs:string"

use="required"/>

 </xs:complexType>

</xs:element>

Figure 4: TextIndex and TextIndexTerm element specification

The new TextIndex element defines the indexing operation

itself. It contains an Array element listing all the terms to be

identified and has a name attribute that’s unique across the

PMML file. The field attribute should refer to an existing field

which has optype=”text”. The language attribute is optional

and should either correspond to a two-letter ISO 639-1 language
code, or be empty to indicate it’s up to the indexing engine to

identify the language. If stemming is set to true, the stemmed

terms found in the input text should correspond to the terms

defined in the Array. If the model consumer does not support
stemming, this attribute should be ignored6.

The values of nGramPolicy define how to treat partial matches

if the indexing technology used by the model consumer supports
N-gram detection. If it does not support N-grams, behavior

defaults to “fullMatchOnly”6. A partial match is defined as the
occurrence of an N-gram in the text that is longer than a term in

Array, but contains all the words of that term, irrespective of

word order. For example if the N-gram “diet coke” occurs in the
text, it is a partial match for “coke”, but not for “cheap diet coke”.

 fullMatchOnly: only exact matches of the terms in Array

are accepted and counted as a single occurrence, contributing
1 to the term frequency.

 acceptPartialMatch: both partial and exact matches are

accepted and counted as a single occurrence of that term,
contributing 1 to the term frequency.

 scalePartialMatch: both partial and exact matches are

accepted, but contribute to the term frequency proportionally
to the number of words matching. For example, if “diet coke”

is a term in Array, an N-gram “diet coke” will contribute 1

and “cheap diet coke” will contribute 0.666.

As for term weighting and normalization options, the same
options as described in section 3.2.3 are offered. Normalization

happens based on the contents of the array of terms in the

TextIndex element, regardless of whether all of these terms

were referred through DerivedField elements.

For the TextIndexTerm elements, as nested in

DerivedField elements, their index attribute should

correspond to the name of a TextIndex in the same model’s

LocalTransformations or the Transformation-

Dictionary and the term attribute should correspond to one

of the terms in that TextIndex’ Array of terms.

Note: the extensions proposed in this section are independent of
the ones presented in Section 3.

4.2.3 Example

<PMML>

 <DataDictionary numberOfFields="2">

 <DataField name="weatherReport" optype="text"

dataType="string"/>

 <DataField name="temperature" dataType="double"

optype="continuous" />

 </DataDictionary>

 <TransformationDictionary>

 <TextIndex name="index" text="weatherReport"

localTermWeights="binary">

 <Array type=”string”>sunny rainy</Array>

6 It is recommended the model consumer technology throws a
warning if it is presented a PMML definition containing
unsupported indexing features.

 </TextIndex>

 <DerivedField name="isSunny" >

 <TextIndexTerm index="index" term="sunny"/>

 </DerivedField>

 <DerivedField name="isRainy" >

 <TextIndexTerm index="index" term="rainy"/>

 </DerivedField>

 </TransformationDictionary>

 <NaiveBayesModel ... />

</PMML>

Figure 5: Example use of TextIndex and TextIndexTerm

4.2.4 Further extensions
The extensions presented in this section are meant to offer a
flexible way of using text as an input for all PMML model types.
While this already opens up a number of interesting possibilities
and use cases, here are a number of additions that could further
enhance PMML’s capabilities for tackling text.

 Similar to the (currently unspecified) use of a Taxonomy

element in the Text Models TextDicationary, it could be

introduced at the level of a TextIndex to aggregate

synonyms and related terms into a topic hierarchy. Using the
higher-level terms would then simplify models using text by
further reducing dimensionality in a transparent way. One
example of using external taxonomies or ontologies we have
found to be particularly useful when categorizing text in a
clinical domain is mapping text input to High Level Concepts

of the Unified Medical Language System® (UMLS) 7.

 Some text analysis solutions, such as the iKnow technology

described earlier, support negation detection. An appropriate
weighting of terms that appear in a negated context (such as
“pain” in “the patient felt no pain”) could further enhance the
accuracy of text-aware models.

 Support for regular expressions as an alternative to literal term

matching (partial and exact) could also increase the flexibility
of this new capability. However, attention needs to be paid to
appropriately identifying and weighting regular expression
matches.

5. CONCLUSION
In this paper, we have introduced Text Categorization as a
practical example of predictive analytics. We have presented the
current specification of the Text Model as it appears in PMML
version 4.1 and reviewed its applicability for expressing Text
Categorization scenarios. This revealed a number of issues we
believe limit its chances for a broader adoption in the market,

despite the growing importance of text as an input for predictive
models. To accommodate these challenges, we proposed an
extension to the PMML Text Model that should make it a flexible
standard for expressing Text Categorization models. Finally, we
have discussed text indexing in more detail and proposed a
separate set of extensions to implement text indexing as a
dedicated transformation of free text input into normal, numeric
input fields. This proposed specification assumes a text indexing
engine is available to the model consumer, which could range

from a simple word-counting algorithm to feature-rich text
analysis software such as the iKnow technology presented in this
paper. This second extension allows broadening the scope of
every PMML model type to accept text input and implement Text
Categorization and other scenarios involving free text alongside
classic categorical and numerical fields.

7 See also: http://www.nlm.nih.gov/research/umls/

http://www.nlm.nih.gov/research/umls/

6. REFERENCES
[1] A. Guazzelli, M. Zeller, W. Lin, G. Williams. 2009. PMML:

An Open Standard for Sharing Models. The R Journal,
Volume 1/1, May 2009

[2] A. Guazzelli, W. Lin, T. Jena. 2010. PMML in Action:
Unleashing the Power of Open Standards for Data Mining
and Predictive Analytics. CreativeSpace

[3] R. Pechter. 2011. PMML Conformance Progress Report –
Five years later. KDD 2011, Proceedings of the 2011
workshop on Predictive markup language modeling.
DOI= http://dx.doi.org/10.1145/2023598.2023599

[4] F. Sebastiani. 2002. Machine Learning in Automated Text
Categorization. ACM Computing Surveys, Vol. 34, No. 1,
March 2002
DOI= http://dx.doi.org/10.1145/505282.505283

[5] G. Salton, A. Wong, and C. S. Yang. 1975. A Vector Space
Model for Automatic Indexing. Communications of the
ACM, Vol. 18, nr. 11, pages 613–620.

[6] P. D. Turney, P. Pantel. 2010. From Frequency to Meaning:
Vector Space Models of Semantics. Journal of Artificial
Intelligence research. Vol 37, pages 141-188

[7] E. Chisholm, T. G. Kolda. 1999. New Term Weighting
Formulas for the Vector Space Method in Information
Retrieval. Computer Science and Mathematics Division, Oak
Ridge National Laboratory.

[8] P. Soucy, G. W. Mineau. 2005. Beyond TFIDF weighting for
text categorization in the vector space model. International
Joint Conference on Artificial Intelligence. Vol. 19.

[9] J. P. Benzécri. 1992. Correspondence analysis handbook.
Marcel Dekker Inc.

[10] S. Deerwester, S. T. Dumais, G. W. Furnas, T. K. Landauer,
R. Harshman. 1990. Indexing by Latent Semantic Analysis.

Journal of the American Society for Information Science. Vol
41. Pages 391-407

[11] D. D. Lewis. 1998. Naive (Bayes) at forty: The independence
assumption in information retrieval. Proceedings of ECML-
98, 10th European Conference on Machine Learning. Pages
4–15.

[12] A. Bronselaer, S. Debergh, D. Van Hyfte, G. De Tré. 2010.
Text clustering based on concept‐relational decomposition.
ICL 2010 Proceedings. Pages 357–359

[13] D. Van Hyfte, M. Bouzinier, M. Tsatulin, S. Richards, K.
Lee, C. Almond. 2013. Mining medical texts for cancer
intelligence using iKnow. Cancer Outcomes Conference
2013.

[14] M.C. Hazewinkel, E. Hoencamp, R.F.P. de Winter, D.
Wijnschenk, D. van Hyfte. 2013. Voorspellers van separatie
door tekstanalyse van de verslaglegging in het elektronisch
patiëntendossier (in Dutch). Voorjaarsconferentie,

Nederlandse Vereniging voor Psychiatrie. Page 33 (Poster
presentation)

[15] D. D. Lewis. 1992. An evaluation of phrasal and clustered

representations on a text categorization task. Proceedings of
SIGIR-92, 15th ACM International Conference on Research
and Development in Information Retrieval. Pages 37–50.

[16] M. F. Caropreso, S. Matwin, F. Sebastiani. 2001. A learner-
independent evaluation of the usefulness of statistical phrases
for automated text categorization. Text Databases and
Document Management: Theory and Practice. Pages 78–102

[17] D. Mladenic, M. Grobelnik. 1998. Word sequences as
features in text-learning. Proceedings of ERK-98, the Seventh
Electrotechnical and Computer Science Conference. Pages
145–148.

http://dx.doi.org/10.1145/2023598.2023599
http://dx.doi.org/10.1145/505282.505283

