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ABSTRACT 
As the de facto standard for data mining models, the Predictive 
Model Markup Language (PMML) provides tremendous benefits 
for business, IT, and the data mining industry in general. Due to 
the cross-platform and vendor-independent nature of such an 
open-standard, it allows for predictive models to be easily moved 
between applications.  

Although PMML has offered support for common data 
transformations for quite some time now, the release of PMML 
4.0 in 2009 brought the support for data pre-processing steps to a 
new level. As a consequence, several data mining tools and model 
building platforms have been adding more and more support for 
data pre-processing into the PMML code they export. It is no 
surprise then that the same is true for R.  

R has become a popular statistical platform for all things 
analytics. The R Project allows for a myriad of specialized 
packages to be installed and utilized by its users as needed. These 
include packages and functions for predictive analytics and model 
building. A package for exporting PMML out of several model 
types is also available. Called the pmml package, it allows for a 
few data pre-processing steps to be exported together with the 
modeling technique itself. However, a package to enable data 
transformations in a generic way was still missing.  

This paper describes a package which intends to close this gap. 
The pmmlTransformations package provides R users with 
functions that greatly enhance the available data mining 
capabilities and PMML support by allowing transformations to be 
performed on the data before it is used for modeling. The 
pmmlTransformations package works in tandem with the pmml 
package so that data pre-processing can be represented together 
with the model in the resulting PMML code.  
Categories and Subject Descriptors 
H.2.8 [Database Management]: Data Mining; G.3 [Probability and 
Statistics]: Statistical Computing, Statistical Software; I.5.1 
[Models]: Statistical Models, Neural Nets. 
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1. INTRODUCTION 
PMML (Predictive Model Markup Language) is the de facto 
standard used to represent and share predictive analytic solutions 
between applications[1][2][3]. It enables data mining scientists 
and users alike to easily build, visualize, and deploy their 
solutions using different platforms and systems. PMML is the 
brainchild of the DMG (Data Mining Group), an independent, 
vendor-led consortium that develops data mining standards. Given 
that PMML is an XML-based language, the DMG is responsible 
for publishing a PMML Schema (XSD file), which is specific on 
how all language elements comprising a PMML file should be 
used. Among all these elements, one can find several that are 
specific to different modeling techniques. In addition, the 
language also offers a cadre of elements to represent data 
transformations [4]. In this way, PMML can be used to implement 
not only the model itself, but also data pre- and post-processing.  

The R Project is a platform for data mining and statistical 
analysis. It is widely used among data miners and statisticians for 
data analysis and model building. Recent surveys have shown that 
its popularity has increased significantly in recent years. A major 
attraction of R is its extensibility. Users can write their own 
functions and analysis tools, which can then be uploaded into a 
common repository, the Comprehensive R Archive Network 
(CRAN), and used by others. These are provided in the form of R 
packages which, once tested, are officially made available by the 
R maintainers for all users.  

A package for exporting predictive models built in R into PMML 
has existed since 2009 [5]. With this package, a data scientist can 
mine data and construct a model to suit her needs. She can then 
use the pmml package to output her model as a PMML file, which 
can be deployed and put to use immediately in a variety of 
platforms, independently of R. These include the Zementis 
ADAPA Scoring Engine, which is available for on-site 
deployment as well as on the Amazon and IBM cloud 
infrastructures [6] and the Zementis Universal PMML Plug-in 
(UPPI), which offers big data scoring for Hadoop and in-database 
[7]. 

Although the R pmml package offers support for a myriad of 
model objects, it offers limited functionality for data 
transformations. In order to be exported as PMML, these need to 
be part of the resulting model object. As data frequently has to be 
transformed before it can be used for modeling, a package that 
allows for generic data transformations and their expression in 
PMML was needed. The pmmlTransformations package is such a 
package. It works in tandem with the pmml package to be able to 
represent data transformations and model in a single PMML file. 
Other tools already provide similar functionality, including 
KNIME [8] and IBM SPSS Statistics [4].  

While Section 2 of this article focuses on the pmml package and 
its support for different data mining algorithms in R, Section 3 



 

 

focuses on the pmmlTransformations package. We describe its 
functionality in detail through the use of examples, which include 
not only the R sequence of commands necessary to implement 
data transformations, but also the resulting PMML code. Finally, 
Section 4 offers the conclusion. 

2. Exporting PMML from R 
To export PMML from R, users have traditionally relied on a 
single package, the pmml package. This package allows for a 
variety of different modeling techniques to be exported into a 
ready to be deployed PMML file. As of the time of this article, the 
pmml package offers support for the following data mining 
algorithms: 

• ksvm (kernlab): Support Vector Machines 
• nnet: Neural Networks 
• rpart: C&RT Decision Trees 
• lm & glm (stats): Linear and Binary Logistic Regression 

Models as well as Generalized Linear Models for 
classification and regression with a wide variety of link 
functions 

• multinom (nnet) Multinomial Logistic Regression Models 
• arules: Association Rules 
• kmeans and hclust: Clustering Models 
• coxph (survival): Cox Regression Models to calculate 

survival and stratified cumulative hazards 
• randomForest: Random Forest Models for classification and 

regression 
• naiveBayes (e1071): Naïve Bayes Classifiers 
• glmnet: Linear ElasticNet Regression Models 

 
Figure 1. Diagram illustrating the data flow in R for the 

creation of a PMML file. 
 

If, for example, the user builds a Random Forest Model using the 
randomForest package, it can be exported in PMML by simply 
invoking the pmml package with the resulting model object. The 
sequence of R commands below shows such an example. 
library(randomForest); 

library(pmml); 
data(airquality); 
ozone.out <- randomForest(Ozone ~ Wind+Temp+Month,  
  data=na.omit(airquality), ntree=200); 
saveXML(pmml(ozone.out, data=airquality),    
  “airquality_rf.pmml”); 

Note that the pmml function is invoked with two parameters, the 
first being the model object ozone.out. Note also that the saveXML 
package is used to save the resulting PMML code into file 
airquality_rf.pmml.  
As depicted in Figure 1, the data is presented as is to the modeling 
package and by consequence, the resulting PMML file will only 
contain the computations specified in the resulting model object.  

For certain modeling packages, a few pre-processing steps are 
performed along with the modeling task. These steps represent 
data transformation directives performed by the model package 
itself. For example, ksvm automatically transforms categorical 
input fields into numerical fields before presenting them to the 
support vector machine. Given that such directives are part of the 
resulting model object, they are also part of the generated PMML 
file. Although data pre-processing functionality is limited to a few 
steps for certain packages, it is non-existent for others. This 
picture has changed considerably with the introduction of the 
pmmlTransformations package. 

3. The pmmlTransformations Package 
PMML defines several kinds of data transformation elements. 
These are: 

• Normalization (PMML elements NormContinuous and 
NormDiscrete): Map values to numbers, the input can be 
continuous or discrete. 

• Discretization (element Discretize): Map continuous values 
to discrete values. 

• Value Mapping (element MapValues): Map discrete values 
to discrete values. 

• Functions (invoked via element Apply): Derive a value by 
applying a function to one or more parameters. 

PMML also defines a comprehensive list of built-in functions, 
which perform text, arithmetic, and logical operations.  

The pmmlTransformations package provides the ability to 
perform a variety of data transformations prior to modeling, which 
are directly representable in PMML through the language’s 
transformation elements. The pmml package, which has been 
updated to work in tandem with the pmmlTransformations 
package, can then represent the entire modeling process; data pre-
processing as well as modeling.   
In R, this process includes three steps:  

1. With the use of the pmmlTransformations package, 
transform the raw input data as appropriate  

2. Use transformed and raw data as inputs to the modeling 
function/package  

3. Output the entire solution (data pre-processing + model) 
in PMML using the pmml package 

Figure 2 shows the diagram depicting such a process flow.  



 

 

 
Figure 2. Diagram illustrating how several R packages can 

work together to create a single PMML file. 
The process of choosing a specific modeling package depends on 
the kind of model the analyst wishes to build. Examples include 
packages nnet for building Neural Network Models and 
randomForest for building Random Forest Models. The data pre-
processing and model are output in PMML by simply passing the 
transformations object obtained from the pmmlTransformations 
package along with the model object obtained from the modeling 
package as inputs to the pmml package.  
The sequence of R commands depicted below shows an example 
of how input data can be transformed with the use of the 
pmmlTransformations package. Note that in this example, we are 
using the Iris dataset [9] to create a linear regression model for 
which the predicted field is “Sepal.Length” (not the typically used 
field “Species” - remember, this is an example). As it can be seen, 
the information about the data transformation, in this case, a 
continuous normalization operation, is stored in an object called 
irisBox. This transformation object together with the linear 
regression object irisLR are then passed as arguments to the pmml 
package, which is ultimately responsible for generating the 
resulting PMML code. 
library(pmmlTransformations); 
library(pmml); 
data(iris); 
irisBox <- WrapData(iris); 
irisBox <- MinMaxXform(irisBox, xformInfo=”column2”); 
dataset <- irisBox$data[c(1:4,6)]; 
irisLR <- lm(Sepal.Length~., data=dataset); 
pmml(irisLr, transform=irisBox); 
 

The standard procedure to use any of the functions provided by 
the pmmlTransformations package is to read in the raw data and 
first initialize the transformations property by wrapping the data 
in a transformations object using the WrapData function. All 
subsequent transformation operations are applied to the resulting 
WrapData object (named irisBox in this particular example). This 
object contains all the information about the subsequent 
transformation operations as well as the original and transformed 
data. In this example, we showed how to access the data from the 
R object using the data attribute.  

The PMML code output by the pmml package for the R 
commands listed above is shown in Figure 3 (Header and 
DataDictionary elements are omitted). As expected, it contains 
the RegressionModel element which describes the linear 
regression model as well as the NormContinuous element which 
describes the continuous normalization operation performed on 
the second data column or input field “Sepal.Width”. This 
operation is described next. 

 
Figure 3. PMML code output by the pmml package for 

transformation and model objects. 
Note that the transformations object is an optional argument for 
the pmml function. Without it, the pmml function assumes that no 
transformations were applied to the data before modeling. 

3.1 Continuous Normalization 
Continuous normalization in PMML is represented by the element 
NormContinous. This element provides a general method for 
normalizing the input data for a continuous field from a given 
range to another designated range. For example, given that the 
data for input field Input1 ranges from 500 to 1,000, we would 
like to linearly normalize it to values from 0 to 1. This implies the 
need for two LinearNorm elements in PMML, one mapping 500 



 

 

to “0”, and the other mapping 1,000 to “1”. To generate the 
PMML code for the above transformation, we can simply utilize 
the MinMaxXform function of the pmmlTransformations package.  

Given input field “InputField”, the name of the derived field 
“OutputField”, the desired minimum value that the derived field 
may have “lowLimit”, the desired maximum value that the 
derived field may have “highLimit”, and the desired value of the 
derived field if the input field value is missing “missVal”, the 
MinMaxXform command is described using the format: 
MinMaxXform(boxdata, xformInfo, mapMissingTo=”missVal”) 

where boxData is the wrapped object and 
xformInfo = “InputField->OutputField[lowLimit, highLimit]” 

There are two ways input data fields can be referred to. The first is 
to use its column number; given the data attribute of the boxdata 
object, this would be the order in which the fields appear in the 
input data. This can be indicated in the format "column#". The 
second way is to simply refer to the desired input data field by its 
name. 

The name of the transformed field is optional; if not provided, the 
derived field is given the name:  
derived_ + {original_field_name} 

Similarly, the low and high limit values are optional; they have 
the default values of “0” and “1” respectively. The value for 
missingValue is an optional parameter as well. If provided, it is 
used as the resulting value of the derived field if the value of the 
input field is missing. 

If no input field names are provided, by default all numeric fields 
are transformed. Note that, in this case, a replacement value for 
missing input values cannot be specified; the same applies to the 
lowLimit and highLimit parameters. 

We used the MinMaxXform function as part of the sequence of R 
commands described above. In it, the well-known Iris dataset is 
used as input and a linear transformation is performed on the input 
field “Sepal.Width”. The example uses an operation where this 
field is transformed into a field named “derived_Sepal.Width”. 
Note that this is the default name for the derived field. Also note 
that it assumes the default values for high and low limits, as 
implemented in the resulting PMML code shown in Figure 4.  

Another common continuous normalization supported by the 
pmmlTransformations package is the z-score transformation. This 
is implemented by function ZScoreXform. Its follows the same 
format described here for function MinMaxXform.  

3.2 Discrete Normalization 
Discrete normalization in PMML is represented by the element 
NormDiscrete. This element is used to transform string values to 
numeric values. Many models encode string values into numeric 
values in order to perform mathematical functions, such as 
support vector machines and neural network models. For this 
operation, the pmmlTransformations package provides the 
NormDiscreteXform function. It defines a new derived field for 
each possible value of a categorical field.  

Given a categorical input field InputField, and missVal, the 
desired value of the derived field if the value of the input field is 
missing, the NormDiscreteXform command including all optional 
parameters is described using the format: 
NormDiscreteXform(boxData, “InputField”, mapMissingTo="missVal") 

where boxData is the wrapped object. 

As with other functions, the input variable can be referred to by 
name or by its column number. The output of the 
NormDiscreteXform function is a set of derived fields, one for 
each possible value of the input field. For example, given the 
values “val1”, “val2”, … for an input field named “InputField”, 
the resulting derived fields are by default named 
“InputField_val1”, “InputField_val2”, … 

The sequence of R commands below shows an example of how 
this function can be used in practice. Once again, we use the well 
known Iris dataset. In particular, we use field “Species” as input 
to the discrete normalization operation.  
library(pmmlTransformations); 
library(pmml); 
data(iris); 
irisBox <- WrapData(iris); 
irisBox <- NormDiscreteXform(irisBox,inputVar="Species"); 
dataset <- irisBox$data[,-5]; 
irisLR <- lm(Sepal.Length~., data=dataset); 
pmml(irisLr, transform=irisBox); 
 

 
Figure 4. PMML code output by the pmml package containing 

elements NormDiscrete and RegressionModel. 
As a result, three derived fields will be created based on the 
values of the “Species” field.  The new derived fields are:  

1. “Species_setosa” such that it is “1” if input field 
“Species” equals “setosa”, else “0” 



 

 

2. “Species_versicolor” such that it is “1” if input field 
“Species” equals “versicolor”, else 0 

3. “Species_virginica” such that it is “1” if input field 
“Species” equals “virginica”, else “0” 

These are appended to the original dataset when the 
transformation is completed. 

The PMML code output by the pmml function for the R 
commands listed above is shown in Figure 4 (as before, Header 
and DataDictionary elements are omitted). As expected, it 
contains the RegressionModel element, which describes the linear 
regression model as well as the NormDiscrete element, which 
describes the discrete normalization operation performed on the 
input field “Species”. 

3.3 Discretization 
Discretization or binning in PMML is represented by the element 
Discretize. For a continuous field, a set of intervals is defined and 
if the input value falls within one of the intervals, a new value is 
assigned to the resulting derived field as defined for that interval. 
This mapping from a continuous to a discrete field can be many-
to-one but not one-to-many. In other words, two intervals can be 
mapped to the same value but the same interval may not have 
more than one value. This implies that the intervals defined must 
be disjoint. There can be no overlap between two defined 
intervals. To generate the PMML code for such a transformation, 
we can simply use the DiscretizeXform function of the 
pmmlTransformations package. 

Given a continuous input field “InField”, which is to be 
discretized to various levels of a derived field “OutField”, where 
the fields have the data types “InType” and “OutType”, the 
DiscretizeXform command is described using the format: 
DiscretizeXform (boxdata, xformInfo) 

where boxData is the wrapped object and 
xformInfo="[InField->OutField][InType>OutType]", 
table="CSVFileName", 
defaultValue="defVal",mapMissingTo="missingVal" 

The data types of the input and output fields are optional. 
“CSVFileName” is the name of the CSV (Comma-Separated 
Value) file where the ranges of the continuous input field and 
resulting discrete values are defined. “defVal” and “missingVal” 
are the default and missing values respectively. The default value 
will be used if the value of “InField” does not lie in any of the 
ranges specified in the CSV file and the missing value will be 
used if the input value is missing. 

The CSV file containing the input table is required and should not 
contain any row and column identifiers. Intervals are given by 
their left and right limits separated by the “:” character; if one is 
missing, the limit is considered to be infinite. The intervals 
themselves may be open or closed, as indicated by brackets or 
parenthesis respectively. 

To illustrate the usage of the DiscretizeXform function, we created 
a CSV file named Intervals.csv containing the following 
information: 
5],val1 
(5:6],22 
(6,val2 
 
 
 

And use it as an argument for function DiscretizeXform in the 
following sequence of R commands: 
library(pmmlTransformations); 
library(pmml); 
data(iris); 
irisBox <- WrapData(iris); 
irisBox <- DiscretizeXform(irisBox, 
  xformInfo=”[Sepal.Length -> derived_Sepal.Length] 
  [double -> string]”,  
  table = “Intervals.csv”, missingValue=”0”); 
 
In this example, we can see that the first line of the CSV file 
establishes that if the value of the continuous input field 
“Sepal.Length” is less than or equal to 5, the derived field 
“derived_Sepal.Length” should have value “val1”. Similarly, the 
second line indicates that if the input value is greater than 5 and 
less than or equal to 6, then the derived field should have value 
“22”. Finally, the third line indicates that if the input value is 
greater than 6, then the derived field should have value “val2”. 
The PMML code output by the pmml function for the R 
commands listed above is shown in Figure 5 (as before, Header 
and DataDictionary elements are omitted). As expected, it 
contains the RegressionModel element, which describes the linear 
regression model as well as the Discretize element, which 
describes the discretization operation performed on input field 
“Sepal.Length”. 

 
Figure 5. PMML code output by the pmml package containing 

elements Discretize and RegressionModel. 
 



 

 

3.4 Value Mapping 
Value mapping in PMML is represented by the element 
MapValues. For the pmmlTransformations package, the map is 
defined in a CSV file, which serves as an argument to function 
MapXform.  

Given a map from the combination of fields “InField1”, 
“InField2”, ... to the derived field “OutField”, where the fields 
have the data types “InType1”, “InType2”, ... and “OutType”, the 
MapXform command is described using the format: 
MapXform(boxdata, xformInfo) 

where boxData is the wrapped object and 
xformInfo="[InField1, InField2, ... -> OutField][InType1, InType2, ... -> 
OutType]", table="CSVFileName",  defaultValue="defVal", 
mapMissingTo="missingVal" 

where CSVFileName is the name of the CSV file containing the 
map itself (a N to 1 map where N is greater or equal to 1) and the 
data types of the variables can be any of the ones defined in 
PMML including integer, double or string. “defVal” is the default 
value of the derived field and if any of the map input values are 
missing, “missingVal” is the resulting value assigned to the 
derived field.  

While the CSV file is required, the input data type arguments as 
well as defaultValue and mapMissingTo are optional. The CSV 
file containing the map should not have any row and column 
identifiers, and the values given must be in the same order as in 
xformInfo. If the data types of the input fields are not given, they 
are derived from the transformation object itself. If this is not 
possible, the data type of the input fields is assumed to be of type 
“string”.  
The example below shows the sequence of R commands to apply 
the MapXform transformation on the Iris dataset: 
library(pmmlTransformations); 
library(pmml); 
data(iris); 
irisBox <- WrapData(iris); 
irisBox <- MapXform(irisBox, 
  xformInfo=”[species ->  
  derived_Species][string -> integer]”,  
  table = “MapSpecies.csv”, missingValue=”0”); 
 
As aforementioned, “Species” has three possible values: “setosa”, 
“versicolor” and “virginica”. For this example, this information, 
together with the values they map to is defined in a file named 
“MapSpecies.csv”, as follows: 
setosa,2 
versicolor,4 
virginica,1 

As it indicates, we want to derive a value such that: 

• If input field “Species” equals “setosa”, then derived 
field “derived_Species” is set to “2” 

• If input field “Species” equals “versicolor”, then derived 
field “derived_Species” is set to “4” 

• If input field “Species” equals “virginica”, then derived 
field “derived_Species” is set to “1” 

• If input field “Species” is missing, then derived field 
“derived_Species” is set to “0” 

The PMML code output by the pmml function for the R 
commands listed above is shown in Figure 6 (as before, Header 
and DataDictionary elements are omitted). As expected, it 
contains the RegressionModel element, which describes the linear 
regression model as well as the MapValues element, which 

describes the mapping operation performed on input field 
“Species”. 

 
Figure 6. PMML code output by the pmml package containing 

elements MapValues and RegressionModel. 
It should be noted that the transformations performed via the 
pmmlTransformations package are independent of the pmml 
package. That is, the transformed data can be accessed by any 
other function using the “data” attribute of the wrapped R object.  

4. CONCLUSION 
R is a popular and powerful tool for statistical data analysis and 
model building. Part of its power comes from the fact that users 
can contribute data mining capabilities to it in the form of external 
libraries or packages, which can then be used by anyone. Its vast 
number of community developers resulted in a myriad of 
packages capable of handling a wide variety of data mining 
techniques. The pmml package transforms obtained R model 
objects into dynamic assets that can deployed and put to use in 
any platform by representing them in PMML, de facto standard to 
represent data mining models.  

This article describes another R package that supports PMML, the 
pmmlTransformations package. Statistical analysis of raw data 
frequently requires pre-processing of input fields before these can 
be used for the building of a predictive model. Given that data 



 

 

transformations are not part of most modeling packages. The 
pmmlTransformations package fills this void by offering a variety 
of functions, which provide the user the capability to manipulate 
data in different ways prior to modeling.  

The pmmlTransformations package works in tandem with the 
pmml package to provide a PMML representation of the model 
describing not just the modeling technique itself but also the data 
pre-processing steps. This adds to the power of R as a 
development tool since it makes the entire predictive solution 
available for deployment and execution in different production 
platforms, independently of R. 

5. ACKNOWLEDGMENTS 
We would like to thank our colleagues at Zementis for the support 
and feedback. We also would like to thank all the other DMG 
members for their commitment to making PMML a great 
language and standard. Finally, we would like to thank Graham 
Williams at Togaware for his invaluable support and feedback 
during the development of the pmmlTransformations package and 
consequently, all the required changes in the pmml package. 

6. REFERENCES 
[1] A. Guazzelli, W. Lin, T. Jena (2010). PMML in Action: 

Unleashing the Power of Open Standards for Data Mining 
and Predictive Analytics. CreateSpace (available on 
Amazon.com). 

[2] A. Guazzelli (2010). What is PMML? Explore the power of 
predictive analytics and open standards. IBM 
developerWorks website. 

[3] A. Guazzelli (2012). Predicting the Future, Part 4: Put a 
Predictive Solution to Work. IBM developerWorks website. 

[4] A. Guazzelli (2010). Representing predictive solutions in 
PMML: From raw data to predictions. IBM developerWorks 
website.  

[5] A. Guazzelli, M. Zeller, W. Lin, G. Williams (2009). 
PMML: An Open Standard for Sharing Models. The R 
Journal, Volume 1/1. 

[6] A. Guazzelli, K. Stathatos, M. Zeller (2009). Efficient 
Deployment of Predictive Analytics through Open Standards 
and Cloud Computing. ACM SIGKDD Explorations 
Newsletter. 

[7] K. K. Das, E. Fratkin, A. Gorajek, K. Stathatos, M. Gajjar 
(2011). Massively Parallel In-Database Predictions using 
PMML. In Proceedings of the 17th ACM SIGKDD 
Conference on Knowledge Discovery and Data Mining. 

[8] D.  Morent, K. Stathatos, W. Lin, M. Berthold (2011). 
Comprehensive PMML Preprocessing in KNIME. In 
Proceedings of the 17th ACM SIGKDD Conference on 
Knowledge Discovery and Data Mining. 

[9] K. Bache & M. Lichman (2013). UCI Machine Learning 
Repository. Irvine, CA: University of California, School of 
Information and Computer Science 

 


