

The R pmmlTransformations Package

Tridivesh Jena Alex Guazzelli Wen-Ching Lin Michael Zeller
Zementis, Inc.* Zementis, Inc. Zementis, Inc. Zementis, Inc.

Tridivesh.Jena@ Alex.Guazzelli@ Wenching.Lin@ Michael.Zeller@
zementis.com zementis.com zementis.com zementis.com

ABSTRACT
As the de facto standard for data mining models, the Predictive
Model Markup Language (PMML) provides tremendous benefits
for business, IT, and the data mining industry in general. Due to
the cross-platform and vendor-independent nature of such an
open-standard, it allows for predictive models to be easily moved
between applications.

Although PMML has offered support for common data
transformations for quite some time now, the release of PMML
4.0 in 2009 brought the support for data pre-processing steps to a
new level. As a consequence, several data mining tools and model
building platforms have been adding more and more support for
data pre-processing into the PMML code they export. It is no
surprise then that the same is true for R.

R has become a popular statistical platform for all things
analytics. The R Project allows for a myriad of specialized
packages to be installed and utilized by its users as needed. These
include packages and functions for predictive analytics and model
building. A package for exporting PMML out of several model
types is also available. Called the pmml package, it allows for a
few data pre-processing steps to be exported together with the
modeling technique itself. However, a package to enable data
transformations in a generic way was still missing.

This paper describes a package which intends to close this gap.
The pmmlTransformations package provides R users with
functions that greatly enhance the available data mining
capabilities and PMML support by allowing transformations to be
performed on the data before it is used for modeling. The
pmmlTransformations package works in tandem with the pmml
package so that data pre-processing can be represented together
with the model in the resulting PMML code.
Categories and Subject Descriptors
H.2.8 [Database Management]: Data Mining; G.3 [Probability and
Statistics]: Statistical Computing, Statistical Software; I.5.1
[Models]: Statistical Models, Neural Nets.
General Terms
Management, Performance, Standardization, Languages.
Keywords
Open Standards, Predictive Analytics, Data Mining, PMML,
Predictive Model Markup Language, Preprocessing, Data
Transformations, The R Project, pmmlTransformations.
Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise,
or republish, to post on servers or to redistribute to lists, requires prior
specific permission and/or a fee.
PMML’13. Aug 10, 2013, Chicago, IL, USA
Copyright 2013 ACM 978-1-4503-2336-9
* Zementis, Inc. (http://www.zementis.com) is located at 3570 Carmel
Mountain Road, San Diego, CA.

1. INTRODUCTION
PMML (Predictive Model Markup Language) is the de facto
standard used to represent and share predictive analytic solutions
between applications[1][2][3]. It enables data mining scientists
and users alike to easily build, visualize, and deploy their
solutions using different platforms and systems. PMML is the
brainchild of the DMG (Data Mining Group), an independent,
vendor-led consortium that develops data mining standards. Given
that PMML is an XML-based language, the DMG is responsible
for publishing a PMML Schema (XSD file), which is specific on
how all language elements comprising a PMML file should be
used. Among all these elements, one can find several that are
specific to different modeling techniques. In addition, the
language also offers a cadre of elements to represent data
transformations [4]. In this way, PMML can be used to implement
not only the model itself, but also data pre- and post-processing.

The R Project is a platform for data mining and statistical
analysis. It is widely used among data miners and statisticians for
data analysis and model building. Recent surveys have shown that
its popularity has increased significantly in recent years. A major
attraction of R is its extensibility. Users can write their own
functions and analysis tools, which can then be uploaded into a
common repository, the Comprehensive R Archive Network
(CRAN), and used by others. These are provided in the form of R
packages which, once tested, are officially made available by the
R maintainers for all users.

A package for exporting predictive models built in R into PMML
has existed since 2009 [5]. With this package, a data scientist can
mine data and construct a model to suit her needs. She can then
use the pmml package to output her model as a PMML file, which
can be deployed and put to use immediately in a variety of
platforms, independently of R. These include the Zementis
ADAPA Scoring Engine, which is available for on-site
deployment as well as on the Amazon and IBM cloud
infrastructures [6] and the Zementis Universal PMML Plug-in
(UPPI), which offers big data scoring for Hadoop and in-database
[7].

Although the R pmml package offers support for a myriad of
model objects, it offers limited functionality for data
transformations. In order to be exported as PMML, these need to
be part of the resulting model object. As data frequently has to be
transformed before it can be used for modeling, a package that
allows for generic data transformations and their expression in
PMML was needed. The pmmlTransformations package is such a
package. It works in tandem with the pmml package to be able to
represent data transformations and model in a single PMML file.
Other tools already provide similar functionality, including
KNIME [8] and IBM SPSS Statistics [4].

While Section 2 of this article focuses on the pmml package and
its support for different data mining algorithms in R, Section 3

focuses on the pmmlTransformations package. We describe its
functionality in detail through the use of examples, which include
not only the R sequence of commands necessary to implement
data transformations, but also the resulting PMML code. Finally,
Section 4 offers the conclusion.

2. Exporting PMML from R
To export PMML from R, users have traditionally relied on a
single package, the pmml package. This package allows for a
variety of different modeling techniques to be exported into a
ready to be deployed PMML file. As of the time of this article, the
pmml package offers support for the following data mining
algorithms:

• ksvm (kernlab): Support Vector Machines
• nnet: Neural Networks
• rpart: C&RT Decision Trees
• lm & glm (stats): Linear and Binary Logistic Regression

Models as well as Generalized Linear Models for
classification and regression with a wide variety of link
functions

• multinom (nnet) Multinomial Logistic Regression Models
• arules: Association Rules
• kmeans and hclust: Clustering Models
• coxph (survival): Cox Regression Models to calculate

survival and stratified cumulative hazards
• randomForest: Random Forest Models for classification and

regression
• naiveBayes (e1071): Naïve Bayes Classifiers
• glmnet: Linear ElasticNet Regression Models

Figure 1. Diagram illustrating the data flow in R for the

creation of a PMML file.

If, for example, the user builds a Random Forest Model using the
randomForest package, it can be exported in PMML by simply
invoking the pmml package with the resulting model object. The
sequence of R commands below shows such an example.
library(randomForest);

library(pmml);
data(airquality);
ozone.out <- randomForest(Ozone ~ Wind+Temp+Month,
 data=na.omit(airquality), ntree=200);
saveXML(pmml(ozone.out, data=airquality),
 “airquality_rf.pmml”);

Note that the pmml function is invoked with two parameters, the
first being the model object ozone.out. Note also that the saveXML
package is used to save the resulting PMML code into file
airquality_rf.pmml.
As depicted in Figure 1, the data is presented as is to the modeling
package and by consequence, the resulting PMML file will only
contain the computations specified in the resulting model object.

For certain modeling packages, a few pre-processing steps are
performed along with the modeling task. These steps represent
data transformation directives performed by the model package
itself. For example, ksvm automatically transforms categorical
input fields into numerical fields before presenting them to the
support vector machine. Given that such directives are part of the
resulting model object, they are also part of the generated PMML
file. Although data pre-processing functionality is limited to a few
steps for certain packages, it is non-existent for others. This
picture has changed considerably with the introduction of the
pmmlTransformations package.

3. The pmmlTransformations Package
PMML defines several kinds of data transformation elements.
These are:

• Normalization (PMML elements NormContinuous and
NormDiscrete): Map values to numbers, the input can be
continuous or discrete.

• Discretization (element Discretize): Map continuous values
to discrete values.

• Value Mapping (element MapValues): Map discrete values
to discrete values.

• Functions (invoked via element Apply): Derive a value by
applying a function to one or more parameters.

PMML also defines a comprehensive list of built-in functions,
which perform text, arithmetic, and logical operations.

The pmmlTransformations package provides the ability to
perform a variety of data transformations prior to modeling, which
are directly representable in PMML through the language’s
transformation elements. The pmml package, which has been
updated to work in tandem with the pmmlTransformations
package, can then represent the entire modeling process; data pre-
processing as well as modeling.
In R, this process includes three steps:

1. With the use of the pmmlTransformations package,
transform the raw input data as appropriate

2. Use transformed and raw data as inputs to the modeling
function/package

3. Output the entire solution (data pre-processing + model)
in PMML using the pmml package

Figure 2 shows the diagram depicting such a process flow.

Figure 2. Diagram illustrating how several R packages can

work together to create a single PMML file.
The process of choosing a specific modeling package depends on
the kind of model the analyst wishes to build. Examples include
packages nnet for building Neural Network Models and
randomForest for building Random Forest Models. The data pre-
processing and model are output in PMML by simply passing the
transformations object obtained from the pmmlTransformations
package along with the model object obtained from the modeling
package as inputs to the pmml package.
The sequence of R commands depicted below shows an example
of how input data can be transformed with the use of the
pmmlTransformations package. Note that in this example, we are
using the Iris dataset [9] to create a linear regression model for
which the predicted field is “Sepal.Length” (not the typically used
field “Species” - remember, this is an example). As it can be seen,
the information about the data transformation, in this case, a
continuous normalization operation, is stored in an object called
irisBox. This transformation object together with the linear
regression object irisLR are then passed as arguments to the pmml
package, which is ultimately responsible for generating the
resulting PMML code.
library(pmmlTransformations);
library(pmml);
data(iris);
irisBox <- WrapData(iris);
irisBox <- MinMaxXform(irisBox, xformInfo=”column2”);
dataset <- irisBox$data[c(1:4,6)];
irisLR <- lm(Sepal.Length~., data=dataset);
pmml(irisLr, transform=irisBox);

The standard procedure to use any of the functions provided by
the pmmlTransformations package is to read in the raw data and
first initialize the transformations property by wrapping the data
in a transformations object using the WrapData function. All
subsequent transformation operations are applied to the resulting
WrapData object (named irisBox in this particular example). This
object contains all the information about the subsequent
transformation operations as well as the original and transformed
data. In this example, we showed how to access the data from the
R object using the data attribute.

The PMML code output by the pmml package for the R
commands listed above is shown in Figure 3 (Header and
DataDictionary elements are omitted). As expected, it contains
the RegressionModel element which describes the linear
regression model as well as the NormContinuous element which
describes the continuous normalization operation performed on
the second data column or input field “Sepal.Width”. This
operation is described next.

Figure 3. PMML code output by the pmml package for

transformation and model objects.
Note that the transformations object is an optional argument for
the pmml function. Without it, the pmml function assumes that no
transformations were applied to the data before modeling.

3.1 Continuous Normalization
Continuous normalization in PMML is represented by the element
NormContinous. This element provides a general method for
normalizing the input data for a continuous field from a given
range to another designated range. For example, given that the
data for input field Input1 ranges from 500 to 1,000, we would
like to linearly normalize it to values from 0 to 1. This implies the
need for two LinearNorm elements in PMML, one mapping 500

to “0”, and the other mapping 1,000 to “1”. To generate the
PMML code for the above transformation, we can simply utilize
the MinMaxXform function of the pmmlTransformations package.

Given input field “InputField”, the name of the derived field
“OutputField”, the desired minimum value that the derived field
may have “lowLimit”, the desired maximum value that the
derived field may have “highLimit”, and the desired value of the
derived field if the input field value is missing “missVal”, the
MinMaxXform command is described using the format:
MinMaxXform(boxdata, xformInfo, mapMissingTo=”missVal”)

where boxData is the wrapped object and
xformInfo = “InputField->OutputField[lowLimit, highLimit]”

There are two ways input data fields can be referred to. The first is
to use its column number; given the data attribute of the boxdata
object, this would be the order in which the fields appear in the
input data. This can be indicated in the format "column#". The
second way is to simply refer to the desired input data field by its
name.

The name of the transformed field is optional; if not provided, the
derived field is given the name:
derived_ + {original_field_name}

Similarly, the low and high limit values are optional; they have
the default values of “0” and “1” respectively. The value for
missingValue is an optional parameter as well. If provided, it is
used as the resulting value of the derived field if the value of the
input field is missing.

If no input field names are provided, by default all numeric fields
are transformed. Note that, in this case, a replacement value for
missing input values cannot be specified; the same applies to the
lowLimit and highLimit parameters.

We used the MinMaxXform function as part of the sequence of R
commands described above. In it, the well-known Iris dataset is
used as input and a linear transformation is performed on the input
field “Sepal.Width”. The example uses an operation where this
field is transformed into a field named “derived_Sepal.Width”.
Note that this is the default name for the derived field. Also note
that it assumes the default values for high and low limits, as
implemented in the resulting PMML code shown in Figure 4.

Another common continuous normalization supported by the
pmmlTransformations package is the z-score transformation. This
is implemented by function ZScoreXform. Its follows the same
format described here for function MinMaxXform.

3.2 Discrete Normalization
Discrete normalization in PMML is represented by the element
NormDiscrete. This element is used to transform string values to
numeric values. Many models encode string values into numeric
values in order to perform mathematical functions, such as
support vector machines and neural network models. For this
operation, the pmmlTransformations package provides the
NormDiscreteXform function. It defines a new derived field for
each possible value of a categorical field.

Given a categorical input field InputField, and missVal, the
desired value of the derived field if the value of the input field is
missing, the NormDiscreteXform command including all optional
parameters is described using the format:
NormDiscreteXform(boxData, “InputField”, mapMissingTo="missVal")

where boxData is the wrapped object.

As with other functions, the input variable can be referred to by
name or by its column number. The output of the
NormDiscreteXform function is a set of derived fields, one for
each possible value of the input field. For example, given the
values “val1”, “val2”, … for an input field named “InputField”,
the resulting derived fields are by default named
“InputField_val1”, “InputField_val2”, …

The sequence of R commands below shows an example of how
this function can be used in practice. Once again, we use the well
known Iris dataset. In particular, we use field “Species” as input
to the discrete normalization operation.
library(pmmlTransformations);
library(pmml);
data(iris);
irisBox <- WrapData(iris);
irisBox <- NormDiscreteXform(irisBox,inputVar="Species");
dataset <- irisBox$data[,-5];
irisLR <- lm(Sepal.Length~., data=dataset);
pmml(irisLr, transform=irisBox);

Figure 4. PMML code output by the pmml package containing

elements NormDiscrete and RegressionModel.
As a result, three derived fields will be created based on the
values of the “Species” field. The new derived fields are:

1. “Species_setosa” such that it is “1” if input field
“Species” equals “setosa”, else “0”

2. “Species_versicolor” such that it is “1” if input field
“Species” equals “versicolor”, else 0

3. “Species_virginica” such that it is “1” if input field
“Species” equals “virginica”, else “0”

These are appended to the original dataset when the
transformation is completed.

The PMML code output by the pmml function for the R
commands listed above is shown in Figure 4 (as before, Header
and DataDictionary elements are omitted). As expected, it
contains the RegressionModel element, which describes the linear
regression model as well as the NormDiscrete element, which
describes the discrete normalization operation performed on the
input field “Species”.

3.3 Discretization
Discretization or binning in PMML is represented by the element
Discretize. For a continuous field, a set of intervals is defined and
if the input value falls within one of the intervals, a new value is
assigned to the resulting derived field as defined for that interval.
This mapping from a continuous to a discrete field can be many-
to-one but not one-to-many. In other words, two intervals can be
mapped to the same value but the same interval may not have
more than one value. This implies that the intervals defined must
be disjoint. There can be no overlap between two defined
intervals. To generate the PMML code for such a transformation,
we can simply use the DiscretizeXform function of the
pmmlTransformations package.

Given a continuous input field “InField”, which is to be
discretized to various levels of a derived field “OutField”, where
the fields have the data types “InType” and “OutType”, the
DiscretizeXform command is described using the format:
DiscretizeXform (boxdata, xformInfo)

where boxData is the wrapped object and
xformInfo="[InField->OutField][InType>OutType]",
table="CSVFileName",
defaultValue="defVal",mapMissingTo="missingVal"

The data types of the input and output fields are optional.
“CSVFileName” is the name of the CSV (Comma-Separated
Value) file where the ranges of the continuous input field and
resulting discrete values are defined. “defVal” and “missingVal”
are the default and missing values respectively. The default value
will be used if the value of “InField” does not lie in any of the
ranges specified in the CSV file and the missing value will be
used if the input value is missing.

The CSV file containing the input table is required and should not
contain any row and column identifiers. Intervals are given by
their left and right limits separated by the “:” character; if one is
missing, the limit is considered to be infinite. The intervals
themselves may be open or closed, as indicated by brackets or
parenthesis respectively.

To illustrate the usage of the DiscretizeXform function, we created
a CSV file named Intervals.csv containing the following
information:
5],val1
(5:6],22
(6,val2

And use it as an argument for function DiscretizeXform in the
following sequence of R commands:
library(pmmlTransformations);
library(pmml);
data(iris);
irisBox <- WrapData(iris);
irisBox <- DiscretizeXform(irisBox,
 xformInfo=”[Sepal.Length -> derived_Sepal.Length]
 [double -> string]”,
 table = “Intervals.csv”, missingValue=”0”);

In this example, we can see that the first line of the CSV file
establishes that if the value of the continuous input field
“Sepal.Length” is less than or equal to 5, the derived field
“derived_Sepal.Length” should have value “val1”. Similarly, the
second line indicates that if the input value is greater than 5 and
less than or equal to 6, then the derived field should have value
“22”. Finally, the third line indicates that if the input value is
greater than 6, then the derived field should have value “val2”.
The PMML code output by the pmml function for the R
commands listed above is shown in Figure 5 (as before, Header
and DataDictionary elements are omitted). As expected, it
contains the RegressionModel element, which describes the linear
regression model as well as the Discretize element, which
describes the discretization operation performed on input field
“Sepal.Length”.

Figure 5. PMML code output by the pmml package containing

elements Discretize and RegressionModel.

3.4 Value Mapping
Value mapping in PMML is represented by the element
MapValues. For the pmmlTransformations package, the map is
defined in a CSV file, which serves as an argument to function
MapXform.

Given a map from the combination of fields “InField1”,
“InField2”, ... to the derived field “OutField”, where the fields
have the data types “InType1”, “InType2”, ... and “OutType”, the
MapXform command is described using the format:
MapXform(boxdata, xformInfo)

where boxData is the wrapped object and
xformInfo="[InField1, InField2, ... -> OutField][InType1, InType2, ... ->
OutType]", table="CSVFileName", defaultValue="defVal",
mapMissingTo="missingVal"

where CSVFileName is the name of the CSV file containing the
map itself (a N to 1 map where N is greater or equal to 1) and the
data types of the variables can be any of the ones defined in
PMML including integer, double or string. “defVal” is the default
value of the derived field and if any of the map input values are
missing, “missingVal” is the resulting value assigned to the
derived field.

While the CSV file is required, the input data type arguments as
well as defaultValue and mapMissingTo are optional. The CSV
file containing the map should not have any row and column
identifiers, and the values given must be in the same order as in
xformInfo. If the data types of the input fields are not given, they
are derived from the transformation object itself. If this is not
possible, the data type of the input fields is assumed to be of type
“string”.
The example below shows the sequence of R commands to apply
the MapXform transformation on the Iris dataset:
library(pmmlTransformations);
library(pmml);
data(iris);
irisBox <- WrapData(iris);
irisBox <- MapXform(irisBox,
 xformInfo=”[species ->
 derived_Species][string -> integer]”,
 table = “MapSpecies.csv”, missingValue=”0”);

As aforementioned, “Species” has three possible values: “setosa”,
“versicolor” and “virginica”. For this example, this information,
together with the values they map to is defined in a file named
“MapSpecies.csv”, as follows:
setosa,2
versicolor,4
virginica,1

As it indicates, we want to derive a value such that:

• If input field “Species” equals “setosa”, then derived
field “derived_Species” is set to “2”

• If input field “Species” equals “versicolor”, then derived
field “derived_Species” is set to “4”

• If input field “Species” equals “virginica”, then derived
field “derived_Species” is set to “1”

• If input field “Species” is missing, then derived field
“derived_Species” is set to “0”

The PMML code output by the pmml function for the R
commands listed above is shown in Figure 6 (as before, Header
and DataDictionary elements are omitted). As expected, it
contains the RegressionModel element, which describes the linear
regression model as well as the MapValues element, which

describes the mapping operation performed on input field
“Species”.

Figure 6. PMML code output by the pmml package containing

elements MapValues and RegressionModel.
It should be noted that the transformations performed via the
pmmlTransformations package are independent of the pmml
package. That is, the transformed data can be accessed by any
other function using the “data” attribute of the wrapped R object.

4. CONCLUSION
R is a popular and powerful tool for statistical data analysis and
model building. Part of its power comes from the fact that users
can contribute data mining capabilities to it in the form of external
libraries or packages, which can then be used by anyone. Its vast
number of community developers resulted in a myriad of
packages capable of handling a wide variety of data mining
techniques. The pmml package transforms obtained R model
objects into dynamic assets that can deployed and put to use in
any platform by representing them in PMML, de facto standard to
represent data mining models.

This article describes another R package that supports PMML, the
pmmlTransformations package. Statistical analysis of raw data
frequently requires pre-processing of input fields before these can
be used for the building of a predictive model. Given that data

transformations are not part of most modeling packages. The
pmmlTransformations package fills this void by offering a variety
of functions, which provide the user the capability to manipulate
data in different ways prior to modeling.

The pmmlTransformations package works in tandem with the
pmml package to provide a PMML representation of the model
describing not just the modeling technique itself but also the data
pre-processing steps. This adds to the power of R as a
development tool since it makes the entire predictive solution
available for deployment and execution in different production
platforms, independently of R.

5. ACKNOWLEDGMENTS
We would like to thank our colleagues at Zementis for the support
and feedback. We also would like to thank all the other DMG
members for their commitment to making PMML a great
language and standard. Finally, we would like to thank Graham
Williams at Togaware for his invaluable support and feedback
during the development of the pmmlTransformations package and
consequently, all the required changes in the pmml package.

6. REFERENCES
[1] A. Guazzelli, W. Lin, T. Jena (2010). PMML in Action:

Unleashing the Power of Open Standards for Data Mining
and Predictive Analytics. CreateSpace (available on
Amazon.com).

[2] A. Guazzelli (2010). What is PMML? Explore the power of
predictive analytics and open standards. IBM
developerWorks website.

[3] A. Guazzelli (2012). Predicting the Future, Part 4: Put a
Predictive Solution to Work. IBM developerWorks website.

[4] A. Guazzelli (2010). Representing predictive solutions in
PMML: From raw data to predictions. IBM developerWorks
website.

[5] A. Guazzelli, M. Zeller, W. Lin, G. Williams (2009).
PMML: An Open Standard for Sharing Models. The R
Journal, Volume 1/1.

[6] A. Guazzelli, K. Stathatos, M. Zeller (2009). Efficient
Deployment of Predictive Analytics through Open Standards
and Cloud Computing. ACM SIGKDD Explorations
Newsletter.

[7] K. K. Das, E. Fratkin, A. Gorajek, K. Stathatos, M. Gajjar
(2011). Massively Parallel In-Database Predictions using
PMML. In Proceedings of the 17th ACM SIGKDD
Conference on Knowledge Discovery and Data Mining.

[8] D. Morent, K. Stathatos, W. Lin, M. Berthold (2011).
Comprehensive PMML Preprocessing in KNIME. In
Proceedings of the 17th ACM SIGKDD Conference on
Knowledge Discovery and Data Mining.

[9] K. Bache & M. Lichman (2013). UCI Machine Learning
Repository. Irvine, CA: University of California, School of
Information and Computer Science

