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ABSTRACT 
The Predictive Model Markup Language (PMML) is the de facto 
standard to represent data mining and predictive analytic models. 
With PMML, one can easily share a predictive solution among 
PMML-compliant applications and systems. 

PMML as a standard has evolved significantly over the years. 
PMML 4.1, the language’s latest version represents a major leap 
forward in terms of its ability to represent data post-processing 
and multiple models. It also provides entirely new model elements 
for supporting Scorecards and K-Nearest Neighbors. The same is 
no exception for PMML 4.2, currently being worked on by the 
Data Mining Group (DMG), the body responsible for maintaining 
and advancing the PMML standard. PMML 4.2 is bound to offer 
new elements and increased capabilities. This article describes 
one of such improvement. In particular, it proposes extending the 
existing model element for Naïve Bayes Classifiers to support 
continuous input fields. 

The R Project is a popular choice for data miners to analyze and 
build predictive models. Naïve Bayes is just one of a myriad of 
model types supported by R. The R e1071 package provides a 
naiveBayes function to build Naïve Bayes Models using 
categorical as well as continuous fields. The R pmml package has 
been recently extended to allow for the export of PMML code for 
objects built with the naiveBayes function. For now, it includes a 
PMML Extension element for continuous fields, but with the 
release of PMML 4.2, the support will be standardized. This 
article describes this process in view of our proposal to extend the 
current model element for Naïve Bayes Models.  

Categories and Subject Descriptors 
H.2.8 [Database Management]: Data Mining; G.3 [Probability and 
Statistics]: Statistical Computing, Statistical Software; I.5.1 
[Models]: Statistical Models, Neural Nets. 
General Terms 
Management, Performance, Standardization, Languages 
Keywords 
Open Standards, Predictive Analytics, Data Mining, PMML, 
Predictive Model Markup Language, Naïve Bayes Models, The R 
Project. 
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1. INTRODUCTION 
PMML (Predictive Model Markup Language) is the de facto 
standard used to represent and share predictive analytic solutions 
between applications [1][2][3]. It enables data mining scientists 
and users alike to easily build, visualize, and deploy their 
solutions using different platforms and systems. PMML is the 
brainchild of the DMG (Data Mining Group), an independent, 
vendor-led consortium that develops data mining standards. Given 
that PMML is an XML-based language, the DMG is responsible 
for publishing a PMML Schema (XSD file) which is specific on 
how all language elements comprising a PMML file should be 
used for data processing and model. For example, the schema for 
a Neural Network Model specifies elements and attributes for 
defining neural layers, neurons and connection weights. The same 
is true for all other model elements, including the element for 
Naïve Bayes Models, which specifies all the constructs necessary 
for representing a classifier using categorical input fields. 
Currently, however, support for continuous input fields is lacking. 

PMML is a very mature and refined language; with the initial 
version 0.7 released back in 1997 and the latest, version 4.1, in 
December 2011. For each new version, new elements are added to 
support new functionality. For example, version 4.1 added support 
for K-Nearest Neighbors, Baseline Models and Scorecards [4]. At 
the same time, existing elements are revised to include new use-
cases such as extending the Support Vector Machine element to 
allow for multi-class classification. It is in this context that we 
propose here an extension to the Naïve Bayes Model element to 
support continuous input fields.  

The R Project is a platform for data mining and statistical 
analysis. It is widely used among data miners and statisticians for 
data analysis and model building. A major attraction of R is its 
extensibility. Users can write their own packages containing 
functions and analysis tools, which can then be uploaded into a 
common repository, the Comprehensive R Archive Network 
(CRAN), and used by others. Available in CRAN is the pmml 
package, which is used for exporting predictive models built in R 
into PMML [5]. With this package, a data scientist can mine data 
and construct a model to suit her needs. She can then use the 
pmml package to output her model as a PMML file, which can be 
deployed and put to use immediately in a variety of platforms, 
independently of R. These include the Zementis ADAPA Scoring 
Engine, which is available for on-site deployment as well as on 
the Amazon and IBM cloud infrastructures [6] and the Zementis 
Universal PMML Plug-in (UPPI), which offers big data scoring 
for Hadoop and in-database [7]. 

Also available in CRAN is the e1071 package. It provides a 
function called naiveBayes to build Naïve Bayes Models using 
categorical as well as continuous input fields. The R pmml 
package has been recently extended to allow for the export of 



 

 

PMML code for objects built with the naiveBayes function. In this 
way, besides proposing an extension to the PMML Naïve Bayes 
Model element, this paper also describes how the R pmml package 
outputs PMML for Naïve Bayes model objects. 

We start by presenting the theory behind Naïve Bayes Models in 
Section 2. It shows the formulation necessary to deal with 
categorical as well as continuous input fields. Section 3 describes 
the Naïve Bayes element in PMML 4.1, the latest version of the 
standard. The proposed extensions to this element for representing 
continuous fields are described in Section 4. Section 5 shows how 
R offers support for building Naïve Bayes Models with the e1071 
package and to export them in PMML with the pmml package. 
Section 6 describes the scoring procedure once categorical and 
continuous input fields are used as predictors. Finally, Section 7 
offers a conclusion. 

2. Naïve Bayes 
The Bayes theorem gives an expression for the inversion of the 
conditional probability. In other words, it relates the probability of 
an event given certain conditions to the probability of the 
conditions given the event. This may be expressed mathematically 
as shown below. Given an event E and a set of conditions 
C1,C2,...,CN, the probability of the event taking place given a set 
of conditions is: 

P(E | C1,...,CN) = P(E) P(C1,...,CN | E) / P(C1,...,CN) 

If we “naïvely” assume that the conditions are independent of 
each other, then 

P(C1,...,CN | E) = P(C1 | E) * P(C2 | E) *...* P(CN | E) 

Therefore if an event E has possible categorical values E1,...,EM, 
the naïve Bayes theorem states that the probability of the event Ei 
taking place given that the set of conditions C1,...,CN are true is: 

P(Ei | C1,...,CN) = P(Ei) Πj=1,...,NP(Cj | Ei) / P(C1,...,CN) 

= Li / Σk=1,..., MLk 

where the likelihood Li = P(Ei) Πj=1,...,NP(Cj | Ei) 

Note that the common factor P(C1,...,CN) was cancelled out in the 
normalization. To apply this model, we must now work out how 
to calculate the probabilities required given a training data set. 
The events are a set of discrete values so that the probability of a 
particular event taking place can be calculated by the number of 
times each possible event category appears in the training dataset. 
If we denote the number of times a particular event category Ei 
takes place in the training dataset by Count[Ei], then 

P(Ei) = Count[Ei] / (Σj=1,...,MCount[Ej]) 

The second and last probability value to be calculated is the 
probability of a condition having had taken place given that an 
event occurred. If the condition is a set of discrete values as well, 
the probability may be calculated in a similar way. If the number 
of data points in the training data where both the condition Cj and 
event Ei occurred is denoted by Count[CjEi], then  

P(Cj | Ei) = Count[CjEi] /  Count[Ei] 

On the other hand, if the condition is a continuous field, we do not 
have the counts of the number of times that condition occurred in 
the training dataset; we only have a range of values. In this case, 
the probability of a condition existing given that an event has 
occurred can be represented by a continuous probability 
distribution. If this probability function is known, we can simply 
use it to calculate the desired probability for a given input value. 
While in principle many different probability functions can be 
used, the e1071 package implements the Gaussian probability 
distribution; the computation of which requires knowledge of the 
mean and variance of a particular field. We can use the training 
dataset to calculate the desired mean µ and the variance σ2. 

To summarize then, the probability of a possible event Ei 
occurring given a set of conditions Cj=1...M can be represented as 
follows: 

P(Ei) = Li / Σk=1,...,MLk 

Given A categorical and B continuous conditional fields, we have 

Li = P(Ei) Πj=1,...,AP(Cj | Ei) Πj=1,...,BP(Cj | Ei) 

For the A categorical fields, P(Cj | Ei) can be computed from the 
counts data as described earlier. For the B continuous fields, the 
probability is the probability distribution of the continuous field 
which, in case of a Gaussian distribution, is: 

P(Cj | Ei) = Exp[-(xj-µ)2 / 2σ2] / Sqrt[2πσ2] 

where xj is the value of the continuous conditional field. 

A special case to be considered is a probability value of zero. If 
certain count data for a categorical field is zero or if the mean and 
variance of a continuous field is such that the probability 
calculated is extremely small, the resulting total probability will 
be zero or very close to it. Since this may be biased due to the 
limited size of the training data, it is customary to replace all 
probability values smaller than a given value by a small constant. 
All probabilities therefore have a lower limit, which is represented 
in PMML by the threshold attribute. All values smaller than this 
threshold are replaced by the threshold value. The threshold is 
therefore a critical part of a Naïve Bayes Model and is included in 
the R as well as the PMML representation of the model. 

3. Naïve Bayes in PMML 
A Naïve Bayes Model in PMML uses specific elements to 
represent the computations outlined in the previous section. 
Besides the threshold attribute aforementioned, it contains 
specific elements for defining predictors or the conditional input 
fields. Element BayesInputs is used as an envelope for all inputs 
which are each described by their own BayesInput element. Each 
BayesInput element may contain a sequence of PairCounts 
elements, one for each category. Figure 1 shows a fragment of the 
example used by the DMG to illustrate how all the PMML 
elements come together to represent a Naïve Bayes Model. Note 
that categorical input field “gender” is represented by its own 
BayesInput element, which contains two PairCounts elements, 
one used for discrete input value “male” and the other for  
“female”. A different BayesInput element is used to represent 
input field “domicile”. Note also that element TargetValueCounts 
within PairCounts lists, for each value of the target field, the 
count of the joint occurrences of that target value with a particular 
discrete input value. Finally, element BayesOutput is used to 



 

 

represent the counts associated with the discrete values (“100”, 
“500”, “1000”, “5000”, “10000”) of the target field “amount of 
claims”. 

 
Figure 1. PMML code fragment used to represent a typical 

Naïve Bayes Model in PMML 4.1. 

4. Adding Support for Continuous Input 
Fields in PMML 
As shown above, the current NaiveBayesModel element does not 
offer support for continuous input fields. Supported is limited to 
categorical input fields. A continuous field can be used, but only 
if it is binned or discretized first. Figure 2 shows that by using as 
an example the continuous input field “Sepal.Length”, which is 
part of the well-known Iris dataset [8]. Note that the 
transformations element Discretize is used to bin this field into 
different discrete values, “tall” and “short”, before it can actually 
be used. Also note that field “Sepal.Length” is being represented 
by its own BayesInput element.  

In PMML 4.1, the language’s current version, the BayesInput 
element may include a DerivedField element, which can be solely 
used to discretize continuous fields, and one or more PairCounts 
elements depending on the number of discrete values present in 
the particular categorical input field being represented. To be able 
to provide support for continuous input fields innately, however, it 
needs to be changed. We propose extending the BayesInput 
element in the next version of PMML to include a new element 
we call TargetValueStats. This element is described next. 

 
Figure 2. PMML code fragment showing the BayesInput 

element and the discretization of a continuous input field in 
PMML 4.1. 

4.1 Element TargetValueStats 
Figure 3 shows our proposed changes in the XSD schema for the 
BayesInput element. Note that besides elements DerivedField and 
PairCounts, it has been extended to include element 
TargetValueStats. This new element is responsible for listing the 
distributions obtained for a given continuous input field with 
respect to each of the values of the target field.  

 
Figure 3. Extended XSD Schema for the BayesInput element. 

With this change, the BayesInput element may encompass either 
one TargetValueStats element or one or 
more PairCounts elements. Element DerivedField can only be 
used in conjunction with PairCounts whenever the discretization 
of a given continuous field is desired. 

We also propose that TargetValueStats serves as the envelope for 
yet another new element called TargetValueStat. Ultimately, this 
is the element that is going to be used by a continuous input 
field Ii to define the obtained statistical measures associated with 
each value of the target field. Figure 4 shows the XSD schema for 
elements TargetValueStats and TargetValueStat.  



 

 

 
Figure 4. Proposed XSD schema for new elements 

TargetValueStats and TargetValueStat. 
Note that element TargetValueStat uses the CONTINUOUS-
DISTRIBUTION-TYPES construct from Baseline Models. This 
construct defines the different distribution types that can be used 
to represent the required statistical measures. Note that the 
GaussianDistribution element is part of these measures. This is 
the distribution used by the naiveBayes function in the R e1071 
package to build Naïve Bayes Models. Figures 5 and 6 show the 
respective XSD schemas for CONTINOUS-DISTRIBUTION-
TYPES and GaussianDistribution as depicted in the DMG website 
(dmg.org – Baseline Models). 

 
Figure 5. XSD schema for CONTINUOUS-DISTRIBUTION-

TYPES. 

 
Figure 6. XSD schema for element GaussianDistribution. 

Once the extensions proposed here are approved and incorporated 
into the PMML standard, continuous input field Sepal.Length can 
then be represented directly in PMML using element 
TargetValueStats as shown in Figure 7. 

5. R Support for PMML 
R supports PMML via two packages, the pmml package  [5] and 
the pmmlTransformations package [9]. The latter allows for a 
series of data transformations to be applied to the input data 
before it is used for modeling. The pmmlTransformations package 
works in tandem with the pmml package for the exporting of 
model as well as data transformations into a single PMML file.  
The pmml package provides PMML export functionality for a 
variety of modeling techniques. As of the time of this article, it 
offers support for the following data mining algorithms: 

• ksvm (kernlab): Support Vector Machines 
• nnet: Neural Networks 
• rpart: C&RT Decision Trees 
• lm & glm (stats): Linear and Binary Logistic Regression 

Models as well as Generalized Linear Models for 
classification and regression with a wide variety of link 
functions 

• multinom (nnet) Multinomial Logistic Regression Models 
• arules: Association Rules 
• kmeans and hclust: Clustering Models 
• coxph (survival): Cox Regression Models to calculate 

survival and stratified cumulative hazards 
• randomForest: Random Forest Models for classification and 

regression 
• naiveBayes (e1071): Naïve Bayes Classifiers 
• glmnet: Linear ElasticNet Regression Models 

If, for example, the user builds a Random Forest Model using the 
randomForest package, it can be exported in PMML by simply 
invoking the pmml package with the resulting model object. The 
sequence of R commands below shows such an example. 
library(randomForest);	
  
library(pmml);	
  
data(airquality);	
  
ozone.out	
  <-­‐	
  randomForest(Ozone	
  ~	
  Wind+Temp+Month,	
  	
  
	
  	
  data=na.omit(airquality),	
  ntree=200);	
  
saveXML(pmml(ozone.out,	
  data=airquality),	
  
	
  	
  “airquality_rf.pmml”);	
  

Note that the saveXML package is being used to save the resulting 
PMML code into file airquality_rf.pmml. 

 
  Figure 7. PMML code fragment showing the BayesInput 
element for a continuous input field in the next version of 
PMML (assuming changes are approved by the DMG). 

5.1 Exporting Naïve Bayes Models from R 
in PMML 4.1 
As mentioned above, the R e1071 package implements a function 
called naiveBayes that allows for the building of Naïve Bayes 
Models. The pmml package has recently been updated to support 
PMML export for objects created by this function. The sequence 
of R commands below shows how one can use the naiveBayes 
function to build a classification model for the Iris dataset. It also 
shows how this model can be exported in PMML with the use of 
the pmml function.   
Library(e1071);	
  
library(pmml);	
  
library(pmmlTransformations);	
  
#	
  Use	
  built	
  in	
  Iris	
  dataset	
  
irisBox	
  <-­‐	
  WrapData(iris);	
  
#	
  Discretize	
  all	
  4	
  continuous	
  input	
  fields	
  
irisBox	
  <-­‐	
  DiscretizeXform(irisBox,xformInfo="[Sepal.Length	
  -­‐>	
  	
  	
  	
  
	
  	
  dSL][double	
  -­‐>	
  string]",table="DiscretizeIrisSL.csv");	
  
irisBox	
  <-­‐	
  DiscretizeXform(irisBox,xformInfo="[Sepal.Width	
  -­‐>	
  	
  
	
  	
  dSW][double	
  -­‐>	
  string]",table="DiscretizeIrisSW.csv");	
  
irisBox	
  <-­‐	
  DiscretizeXform(irisBox,xformInfo="[Petal.Length	
  -­‐>	
  	
  
	
  	
  dPL][double	
  -­‐>	
  string]",table="DiscretizeIrisPL.csv");	
  
irisBox	
  <-­‐	
  DiscretizeXform(irisBox,xformInfo="[Petal.Width	
  -­‐>	
  	
  
	
  	
  dPW][double	
  -­‐>	
  string]",table="DiscretizeIrisPW.csv");	
  
#	
  Build	
  model	
  without	
  using	
  the	
  continuous	
  fields	
  
model	
  <-­‐	
  naiveBayes(Species~.,	
  data=irisBox$data[,c(-­‐1:-­‐4)],	
  	
  	
  



 

 

	
  	
  threshold=0.003);	
  
#	
  Export	
  PMML	
  	
  
pmml(model,dataset=irisBox$data,transforms=irisBox);	
  

Note that since PMML 4.1 does not offer support for continuous 
input fields, we use the pmmlTransformations package to 
discretize the inputs fields before modeling. For example, when 
discretized, input field “Sepal.Length” is assigned to derived field 
“dSL”. Figure 8 shows the resulting PMML code.  

 
Figure 8. PMML code fragment for the Naïve Bayes Model 

trained with the discretized Iris dataset. 
Note that the pmml function exported the discretization step as 
part of the LocalTransformations element. This representation is 
equivalent to having the Discretize element inside a DerivedFied 
in element BayesInput as shown in Figure 2. 

5.2 Exporting Naïve Bayes Models from R 
with Element TargetValueStats 
As aforementioned, the naiveBayes function is able to build a 
Naïve Bayes Model with categorical and/or continuous input 
fields. The sequence of R commands below shows how a Naïve 

Bayes Model for the Iris dataset can be built and exported in 
PMML.  
library(e1071);	
  
library(pmml);	
  
#	
  Use	
  built-­‐in	
  Iris	
  dataset	
  
#	
  Build	
  model	
  defining	
  a	
  threshold	
  value	
  of	
  0.001	
  
model<-­‐naiveBayes(Species~.,data=iris,threshold=0.001);	
  
#	
  Output	
  the	
  PMML	
  representation	
  in	
  the	
  console	
  
pmml(model,dataset=iris); 

Note that no pre-processing was required for any of the Iris 
continuous input fields. As a consequence, the pmml function is 
called without the transformations object. Figure 9 shows the 
resulting PMML code. 

 
Figure 9. PMML code fragment featuring the 

TargetValueStats element. 
In a typical situation, element BayesInputs servers as an envelope 
for one or more BayesInput elements. Note, however, that given 
that the Iris dataset is composed solely of continuous input fields 
and that these are not being discretized in advance of model 
building, the pmml package adds an Extension element around 
every single BayesInput element so that the resulting code is still 
compatible with PMML 4.1. This Extension element is temporary 
and will be used until the proposed changes to the 
NaiveBayesModel element are incorporated into the standard itself 
with the release of PMML version 4.2. In that case, element 
TargetValueStats will be used directly, without the surrounding 
Extension element. 



 

 

6. Scoring Procedure 
The scoring procedure for Naïve Bayes Models can be 
summarized as follows. Given an input vector such as (i12,i23,i3), 
where i12,i23 are discrete input values (for categorical fields i1 and 
i2) and i3 is a continuous input field, the probability for class t1 is 
computed as 
P(t1 | i12,i23,i31) = L1 / (L1 + L2 + L3) 
where 
L1 = count[t1] * count[i12,t1]/count[t1] * count[i23,t1]/count[t1] * 
exp(-(i3 - mean[1,3])2 / 2*variance[1,3]) / sqrt(2π*variance[1,3]) 
L2 = count[t2] * count[i12,t2]/count[t2] * count[i23,t2]/count[t2] * 
exp(-(i3 - mean[2,3])2 / 2*variance[2,3]) / sqrt(2π*variance[2,3]) 
L3 = count[t3] * count[i12,t3]/count[t3] * count[i23,t3]/count[t3] * 
exp(-(i3 - mean[3,3])2 / 2*variance[3,3]) / sqrt(2π*variance[3,3]) 
When comparing the formulation shown above with the original 
scoring procedure described in the DMG website for Naïve Bayes 
Models in PMML 4.1, we can see that the only difference is the 
ability to score continuous input fields, as represented by field i3. 

7. CONCLUSION 
PMML has evolved throughout the years into a robust and refined 
language. Its power comes from being able to continue to evolve 
so that it is at par with the techniques being used today for data 
processing and model building. The current version of the Naïve 
Bayes Model element in PMML only allows for categorical input 
fields. Continuous input fields need to be discretized before they 
can be represented in PMML. As proposed in here, we extended 
this element to allow for continuous input fields to be innately 
represented as well. This is accomplished by a series of new 
elements including TargetValueStats, which is responsible for 
listing the distributions obtained for a given continuous input field 
with respect to each of the values of the target field.  

The R Project allows for a myriad of specialized packages to be 
installed and utilized by its users as needed. These include 
packages and functions for predictive analytics and model 
building. A package for exporting PMML out of several model 
types is also available. The pmml package has been recently 
modified to allow for the export of Naïve Bayes Models built by 
the naiveBayes function of package e1071. This function allows 
for categorical and continuous input fields to be used for model 
building. As a consequence, the pmml package incorporates the 
changes to the Naïve Bayes Model element described here so that 
models built in R can be fully expressed in PMML. For now the 
new elements are represented inside an Extension element, but 
this will be dropped as soon as the proposed changes are approved 
and the next version of PMML is released. 

We are excited to be part of the DMG and in the shaping of 
PMML, the de facto standard to represent data mining and 
predictive analytic models. 
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