

Extending the Naïve Bayes Model Element in PMML: Adding
Support for Continuous Input Variables

Alex Guazzelli Tridivesh Jena Wen-Ching Lin Michael Zeller

Zementis, Inc.* Zementis, Inc. Zementis, Inc. Zementis, Inc.
Alex.Guazzelli@ Tridivesh.Jena@ Wenching.Lin@ Michael.Zeller@

zementis.com zementis.com zementis.com zementis.com

ABSTRACT
The Predictive Model Markup Language (PMML) is the de facto
standard to represent data mining and predictive analytic models.
With PMML, one can easily share a predictive solution among
PMML-compliant applications and systems.

PMML as a standard has evolved significantly over the years.
PMML 4.1, the language’s latest version represents a major leap
forward in terms of its ability to represent data post-processing
and multiple models. It also provides entirely new model elements
for supporting Scorecards and K-Nearest Neighbors. The same is
no exception for PMML 4.2, currently being worked on by the
Data Mining Group (DMG), the body responsible for maintaining
and advancing the PMML standard. PMML 4.2 is bound to offer
new elements and increased capabilities. This article describes
one of such improvement. In particular, it proposes extending the
existing model element for Naïve Bayes Classifiers to support
continuous input fields.

The R Project is a popular choice for data miners to analyze and
build predictive models. Naïve Bayes is just one of a myriad of
model types supported by R. The R e1071 package provides a
naiveBayes function to build Naïve Bayes Models using
categorical as well as continuous fields. The R pmml package has
been recently extended to allow for the export of PMML code for
objects built with the naiveBayes function. For now, it includes a
PMML Extension element for continuous fields, but with the
release of PMML 4.2, the support will be standardized. This
article describes this process in view of our proposal to extend the
current model element for Naïve Bayes Models.

Categories and Subject Descriptors
H.2.8 [Database Management]: Data Mining; G.3 [Probability and
Statistics]: Statistical Computing, Statistical Software; I.5.1
[Models]: Statistical Models, Neural Nets.
General Terms
Management, Performance, Standardization, Languages
Keywords
Open Standards, Predictive Analytics, Data Mining, PMML,
Predictive Model Markup Language, Naïve Bayes Models, The R
Project.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise,
or republish, to post on servers or to redistribute to lists, requires prior
specific permission and/or a fee.
PMML’13. Aug 10, 2013, Chicago, IL, USA
Copyright 2013 ACM 978-1-4503-2336-9

* Zementis, Inc. (http://www.zementis.com) is located at 3570
Carmel Mountain Road, San Diego, CA.

1. INTRODUCTION
PMML (Predictive Model Markup Language) is the de facto
standard used to represent and share predictive analytic solutions
between applications [1][2][3]. It enables data mining scientists
and users alike to easily build, visualize, and deploy their
solutions using different platforms and systems. PMML is the
brainchild of the DMG (Data Mining Group), an independent,
vendor-led consortium that develops data mining standards. Given
that PMML is an XML-based language, the DMG is responsible
for publishing a PMML Schema (XSD file) which is specific on
how all language elements comprising a PMML file should be
used for data processing and model. For example, the schema for
a Neural Network Model specifies elements and attributes for
defining neural layers, neurons and connection weights. The same
is true for all other model elements, including the element for
Naïve Bayes Models, which specifies all the constructs necessary
for representing a classifier using categorical input fields.
Currently, however, support for continuous input fields is lacking.

PMML is a very mature and refined language; with the initial
version 0.7 released back in 1997 and the latest, version 4.1, in
December 2011. For each new version, new elements are added to
support new functionality. For example, version 4.1 added support
for K-Nearest Neighbors, Baseline Models and Scorecards [4]. At
the same time, existing elements are revised to include new use-
cases such as extending the Support Vector Machine element to
allow for multi-class classification. It is in this context that we
propose here an extension to the Naïve Bayes Model element to
support continuous input fields.

The R Project is a platform for data mining and statistical
analysis. It is widely used among data miners and statisticians for
data analysis and model building. A major attraction of R is its
extensibility. Users can write their own packages containing
functions and analysis tools, which can then be uploaded into a
common repository, the Comprehensive R Archive Network
(CRAN), and used by others. Available in CRAN is the pmml
package, which is used for exporting predictive models built in R
into PMML [5]. With this package, a data scientist can mine data
and construct a model to suit her needs. She can then use the
pmml package to output her model as a PMML file, which can be
deployed and put to use immediately in a variety of platforms,
independently of R. These include the Zementis ADAPA Scoring
Engine, which is available for on-site deployment as well as on
the Amazon and IBM cloud infrastructures [6] and the Zementis
Universal PMML Plug-in (UPPI), which offers big data scoring
for Hadoop and in-database [7].

Also available in CRAN is the e1071 package. It provides a
function called naiveBayes to build Naïve Bayes Models using
categorical as well as continuous input fields. The R pmml
package has been recently extended to allow for the export of

PMML code for objects built with the naiveBayes function. In this
way, besides proposing an extension to the PMML Naïve Bayes
Model element, this paper also describes how the R pmml package
outputs PMML for Naïve Bayes model objects.

We start by presenting the theory behind Naïve Bayes Models in
Section 2. It shows the formulation necessary to deal with
categorical as well as continuous input fields. Section 3 describes
the Naïve Bayes element in PMML 4.1, the latest version of the
standard. The proposed extensions to this element for representing
continuous fields are described in Section 4. Section 5 shows how
R offers support for building Naïve Bayes Models with the e1071
package and to export them in PMML with the pmml package.
Section 6 describes the scoring procedure once categorical and
continuous input fields are used as predictors. Finally, Section 7
offers a conclusion.

2. Naïve Bayes
The Bayes theorem gives an expression for the inversion of the
conditional probability. In other words, it relates the probability of
an event given certain conditions to the probability of the
conditions given the event. This may be expressed mathematically
as shown below. Given an event E and a set of conditions
C1,C2,...,CN, the probability of the event taking place given a set
of conditions is:

P(E | C1,...,CN) = P(E) P(C1,...,CN | E) / P(C1,...,CN)

If we “naïvely” assume that the conditions are independent of
each other, then

P(C1,...,CN | E) = P(C1 | E) * P(C2 | E) *...* P(CN | E)

Therefore if an event E has possible categorical values E1,...,EM,
the naïve Bayes theorem states that the probability of the event Ei
taking place given that the set of conditions C1,...,CN are true is:

P(Ei | C1,...,CN) = P(Ei) Πj=1,...,NP(Cj | Ei) / P(C1,...,CN)

= Li / Σk=1,..., MLk

where the likelihood Li = P(Ei) Πj=1,...,NP(Cj | Ei)

Note that the common factor P(C1,...,CN) was cancelled out in the
normalization. To apply this model, we must now work out how
to calculate the probabilities required given a training data set.
The events are a set of discrete values so that the probability of a
particular event taking place can be calculated by the number of
times each possible event category appears in the training dataset.
If we denote the number of times a particular event category Ei
takes place in the training dataset by Count[Ei], then

P(Ei) = Count[Ei] / (Σj=1,...,MCount[Ej])

The second and last probability value to be calculated is the
probability of a condition having had taken place given that an
event occurred. If the condition is a set of discrete values as well,
the probability may be calculated in a similar way. If the number
of data points in the training data where both the condition Cj and
event Ei occurred is denoted by Count[CjEi], then

P(Cj | Ei) = Count[CjEi] / Count[Ei]

On the other hand, if the condition is a continuous field, we do not
have the counts of the number of times that condition occurred in
the training dataset; we only have a range of values. In this case,
the probability of a condition existing given that an event has
occurred can be represented by a continuous probability
distribution. If this probability function is known, we can simply
use it to calculate the desired probability for a given input value.
While in principle many different probability functions can be
used, the e1071 package implements the Gaussian probability
distribution; the computation of which requires knowledge of the
mean and variance of a particular field. We can use the training
dataset to calculate the desired mean µ and the variance σ2.

To summarize then, the probability of a possible event Ei
occurring given a set of conditions Cj=1...M can be represented as
follows:

P(Ei) = Li / Σk=1,...,MLk

Given A categorical and B continuous conditional fields, we have

Li = P(Ei) Πj=1,...,AP(Cj | Ei) Πj=1,...,BP(Cj | Ei)

For the A categorical fields, P(Cj | Ei) can be computed from the
counts data as described earlier. For the B continuous fields, the
probability is the probability distribution of the continuous field
which, in case of a Gaussian distribution, is:

P(Cj | Ei) = Exp[-(xj-µ)2 / 2σ2] / Sqrt[2πσ2]

where xj is the value of the continuous conditional field.

A special case to be considered is a probability value of zero. If
certain count data for a categorical field is zero or if the mean and
variance of a continuous field is such that the probability
calculated is extremely small, the resulting total probability will
be zero or very close to it. Since this may be biased due to the
limited size of the training data, it is customary to replace all
probability values smaller than a given value by a small constant.
All probabilities therefore have a lower limit, which is represented
in PMML by the threshold attribute. All values smaller than this
threshold are replaced by the threshold value. The threshold is
therefore a critical part of a Naïve Bayes Model and is included in
the R as well as the PMML representation of the model.

3. Naïve Bayes in PMML
A Naïve Bayes Model in PMML uses specific elements to
represent the computations outlined in the previous section.
Besides the threshold attribute aforementioned, it contains
specific elements for defining predictors or the conditional input
fields. Element BayesInputs is used as an envelope for all inputs
which are each described by their own BayesInput element. Each
BayesInput element may contain a sequence of PairCounts
elements, one for each category. Figure 1 shows a fragment of the
example used by the DMG to illustrate how all the PMML
elements come together to represent a Naïve Bayes Model. Note
that categorical input field “gender” is represented by its own
BayesInput element, which contains two PairCounts elements,
one used for discrete input value “male” and the other for
“female”. A different BayesInput element is used to represent
input field “domicile”. Note also that element TargetValueCounts
within PairCounts lists, for each value of the target field, the
count of the joint occurrences of that target value with a particular
discrete input value. Finally, element BayesOutput is used to

represent the counts associated with the discrete values (“100”,
“500”, “1000”, “5000”, “10000”) of the target field “amount of
claims”.

Figure 1. PMML code fragment used to represent a typical

Naïve Bayes Model in PMML 4.1.

4. Adding Support for Continuous Input
Fields in PMML
As shown above, the current NaiveBayesModel element does not
offer support for continuous input fields. Supported is limited to
categorical input fields. A continuous field can be used, but only
if it is binned or discretized first. Figure 2 shows that by using as
an example the continuous input field “Sepal.Length”, which is
part of the well-known Iris dataset [8]. Note that the
transformations element Discretize is used to bin this field into
different discrete values, “tall” and “short”, before it can actually
be used. Also note that field “Sepal.Length” is being represented
by its own BayesInput element.

In PMML 4.1, the language’s current version, the BayesInput
element may include a DerivedField element, which can be solely
used to discretize continuous fields, and one or more PairCounts
elements depending on the number of discrete values present in
the particular categorical input field being represented. To be able
to provide support for continuous input fields innately, however, it
needs to be changed. We propose extending the BayesInput
element in the next version of PMML to include a new element
we call TargetValueStats. This element is described next.

Figure 2. PMML code fragment showing the BayesInput

element and the discretization of a continuous input field in
PMML 4.1.

4.1 Element TargetValueStats
Figure 3 shows our proposed changes in the XSD schema for the
BayesInput element. Note that besides elements DerivedField and
PairCounts, it has been extended to include element
TargetValueStats. This new element is responsible for listing the
distributions obtained for a given continuous input field with
respect to each of the values of the target field.

Figure 3. Extended XSD Schema for the BayesInput element.

With this change, the BayesInput element may encompass either
one TargetValueStats element or one or
more PairCounts elements. Element DerivedField can only be
used in conjunction with PairCounts whenever the discretization
of a given continuous field is desired.

We also propose that TargetValueStats serves as the envelope for
yet another new element called TargetValueStat. Ultimately, this
is the element that is going to be used by a continuous input
field Ii to define the obtained statistical measures associated with
each value of the target field. Figure 4 shows the XSD schema for
elements TargetValueStats and TargetValueStat.

Figure 4. Proposed XSD schema for new elements

TargetValueStats and TargetValueStat.
Note that element TargetValueStat uses the CONTINUOUS-
DISTRIBUTION-TYPES construct from Baseline Models. This
construct defines the different distribution types that can be used
to represent the required statistical measures. Note that the
GaussianDistribution element is part of these measures. This is
the distribution used by the naiveBayes function in the R e1071
package to build Naïve Bayes Models. Figures 5 and 6 show the
respective XSD schemas for CONTINOUS-DISTRIBUTION-
TYPES and GaussianDistribution as depicted in the DMG website
(dmg.org – Baseline Models).

Figure 5. XSD schema for CONTINUOUS-DISTRIBUTION-

TYPES.

Figure 6. XSD schema for element GaussianDistribution.

Once the extensions proposed here are approved and incorporated
into the PMML standard, continuous input field Sepal.Length can
then be represented directly in PMML using element
TargetValueStats as shown in Figure 7.

5. R Support for PMML
R supports PMML via two packages, the pmml package [5] and
the pmmlTransformations package [9]. The latter allows for a
series of data transformations to be applied to the input data
before it is used for modeling. The pmmlTransformations package
works in tandem with the pmml package for the exporting of
model as well as data transformations into a single PMML file.
The pmml package provides PMML export functionality for a
variety of modeling techniques. As of the time of this article, it
offers support for the following data mining algorithms:

• ksvm (kernlab): Support Vector Machines
• nnet: Neural Networks
• rpart: C&RT Decision Trees
• lm & glm (stats): Linear and Binary Logistic Regression

Models as well as Generalized Linear Models for
classification and regression with a wide variety of link
functions

• multinom (nnet) Multinomial Logistic Regression Models
• arules: Association Rules
• kmeans and hclust: Clustering Models
• coxph (survival): Cox Regression Models to calculate

survival and stratified cumulative hazards
• randomForest: Random Forest Models for classification and

regression
• naiveBayes (e1071): Naïve Bayes Classifiers
• glmnet: Linear ElasticNet Regression Models

If, for example, the user builds a Random Forest Model using the
randomForest package, it can be exported in PMML by simply
invoking the pmml package with the resulting model object. The
sequence of R commands below shows such an example.
library(randomForest);	

library(pmml);	

data(airquality);	

ozone.out	
 <-­‐	
 randomForest(Ozone	
 ~	
 Wind+Temp+Month,	
 	

	
 	
 data=na.omit(airquality),	
 ntree=200);	

saveXML(pmml(ozone.out,	
 data=airquality),	

	
 	
 “airquality_rf.pmml”);	

Note that the saveXML package is being used to save the resulting
PMML code into file airquality_rf.pmml.

 Figure 7. PMML code fragment showing the BayesInput
element for a continuous input field in the next version of
PMML (assuming changes are approved by the DMG).

5.1 Exporting Naïve Bayes Models from R
in PMML 4.1
As mentioned above, the R e1071 package implements a function
called naiveBayes that allows for the building of Naïve Bayes
Models. The pmml package has recently been updated to support
PMML export for objects created by this function. The sequence
of R commands below shows how one can use the naiveBayes
function to build a classification model for the Iris dataset. It also
shows how this model can be exported in PMML with the use of
the pmml function.
Library(e1071);	

library(pmml);	

library(pmmlTransformations);	

#	
 Use	
 built	
 in	
 Iris	
 dataset	

irisBox	
 <-­‐	
 WrapData(iris);	

#	
 Discretize	
 all	
 4	
 continuous	
 input	
 fields	

irisBox	
 <-­‐	
 DiscretizeXform(irisBox,xformInfo="[Sepal.Length	
 -­‐>	
 	
 	
 	

	
 	
 dSL][double	
 -­‐>	
 string]",table="DiscretizeIrisSL.csv");	

irisBox	
 <-­‐	
 DiscretizeXform(irisBox,xformInfo="[Sepal.Width	
 -­‐>	
 	

	
 	
 dSW][double	
 -­‐>	
 string]",table="DiscretizeIrisSW.csv");	

irisBox	
 <-­‐	
 DiscretizeXform(irisBox,xformInfo="[Petal.Length	
 -­‐>	
 	

	
 	
 dPL][double	
 -­‐>	
 string]",table="DiscretizeIrisPL.csv");	

irisBox	
 <-­‐	
 DiscretizeXform(irisBox,xformInfo="[Petal.Width	
 -­‐>	
 	

	
 	
 dPW][double	
 -­‐>	
 string]",table="DiscretizeIrisPW.csv");	

#	
 Build	
 model	
 without	
 using	
 the	
 continuous	
 fields	

model	
 <-­‐	
 naiveBayes(Species~.,	
 data=irisBox$data[,c(-­‐1:-­‐4)],	
 	
 	

	
 	
 threshold=0.003);	

#	
 Export	
 PMML	
 	

pmml(model,dataset=irisBox$data,transforms=irisBox);	

Note that since PMML 4.1 does not offer support for continuous
input fields, we use the pmmlTransformations package to
discretize the inputs fields before modeling. For example, when
discretized, input field “Sepal.Length” is assigned to derived field
“dSL”. Figure 8 shows the resulting PMML code.

Figure 8. PMML code fragment for the Naïve Bayes Model

trained with the discretized Iris dataset.
Note that the pmml function exported the discretization step as
part of the LocalTransformations element. This representation is
equivalent to having the Discretize element inside a DerivedFied
in element BayesInput as shown in Figure 2.

5.2 Exporting Naïve Bayes Models from R
with Element TargetValueStats
As aforementioned, the naiveBayes function is able to build a
Naïve Bayes Model with categorical and/or continuous input
fields. The sequence of R commands below shows how a Naïve

Bayes Model for the Iris dataset can be built and exported in
PMML.
library(e1071);	

library(pmml);	

#	
 Use	
 built-­‐in	
 Iris	
 dataset	

#	
 Build	
 model	
 defining	
 a	
 threshold	
 value	
 of	
 0.001	

model<-­‐naiveBayes(Species~.,data=iris,threshold=0.001);	

#	
 Output	
 the	
 PMML	
 representation	
 in	
 the	
 console	

pmml(model,dataset=iris);

Note that no pre-processing was required for any of the Iris
continuous input fields. As a consequence, the pmml function is
called without the transformations object. Figure 9 shows the
resulting PMML code.

Figure 9. PMML code fragment featuring the

TargetValueStats element.
In a typical situation, element BayesInputs servers as an envelope
for one or more BayesInput elements. Note, however, that given
that the Iris dataset is composed solely of continuous input fields
and that these are not being discretized in advance of model
building, the pmml package adds an Extension element around
every single BayesInput element so that the resulting code is still
compatible with PMML 4.1. This Extension element is temporary
and will be used until the proposed changes to the
NaiveBayesModel element are incorporated into the standard itself
with the release of PMML version 4.2. In that case, element
TargetValueStats will be used directly, without the surrounding
Extension element.

6. Scoring Procedure
The scoring procedure for Naïve Bayes Models can be
summarized as follows. Given an input vector such as (i12,i23,i3),
where i12,i23 are discrete input values (for categorical fields i1 and
i2) and i3 is a continuous input field, the probability for class t1 is
computed as
P(t1 | i12,i23,i31) = L1 / (L1 + L2 + L3)
where
L1 = count[t1] * count[i12,t1]/count[t1] * count[i23,t1]/count[t1] *
exp(-(i3 - mean[1,3])2 / 2*variance[1,3]) / sqrt(2π*variance[1,3])
L2 = count[t2] * count[i12,t2]/count[t2] * count[i23,t2]/count[t2] *
exp(-(i3 - mean[2,3])2 / 2*variance[2,3]) / sqrt(2π*variance[2,3])
L3 = count[t3] * count[i12,t3]/count[t3] * count[i23,t3]/count[t3] *
exp(-(i3 - mean[3,3])2 / 2*variance[3,3]) / sqrt(2π*variance[3,3])
When comparing the formulation shown above with the original
scoring procedure described in the DMG website for Naïve Bayes
Models in PMML 4.1, we can see that the only difference is the
ability to score continuous input fields, as represented by field i3.

7. CONCLUSION
PMML has evolved throughout the years into a robust and refined
language. Its power comes from being able to continue to evolve
so that it is at par with the techniques being used today for data
processing and model building. The current version of the Naïve
Bayes Model element in PMML only allows for categorical input
fields. Continuous input fields need to be discretized before they
can be represented in PMML. As proposed in here, we extended
this element to allow for continuous input fields to be innately
represented as well. This is accomplished by a series of new
elements including TargetValueStats, which is responsible for
listing the distributions obtained for a given continuous input field
with respect to each of the values of the target field.

The R Project allows for a myriad of specialized packages to be
installed and utilized by its users as needed. These include
packages and functions for predictive analytics and model
building. A package for exporting PMML out of several model
types is also available. The pmml package has been recently
modified to allow for the export of Naïve Bayes Models built by
the naiveBayes function of package e1071. This function allows
for categorical and continuous input fields to be used for model
building. As a consequence, the pmml package incorporates the
changes to the Naïve Bayes Model element described here so that
models built in R can be fully expressed in PMML. For now the
new elements are represented inside an Extension element, but
this will be dropped as soon as the proposed changes are approved
and the next version of PMML is released.

We are excited to be part of the DMG and in the shaping of
PMML, the de facto standard to represent data mining and
predictive analytic models.

8. ACKNOWLEDGMENTS
We would like to thank our colleagues at Zementis for their
support and feedback. We also would like to thank all the other
DMG members for their commitment to making PMML a great
language and standard.

9. REFERENCES
[1] J. M. Bernardo & A. F. Smith (1993). Bayesian theory. John

Wiley & Sons.

[2] A. Guazzelli, W. Lin, T. Jena (2010). PMML in Action:
Unleashing the Power of Open Standards for Data Mining
and Predictive Analytics. CreateSpace (available on
Amazon.com).

[3] A. Guazzelli (2010). What is PMML? Explore the power of
predictive analytics and open standards. IBM
developerWorks website.

[4] A. Flint & A. Guazzelli (2011). Scorecard Element in PMML
4.1 Provides Rich, Accurate Exchange of Predictive Models
for Improved Business Decisions. In Proceedings of the 17th
ACM SIGKDD Conference on Knowledge Discovery and
Data Mining.

[5] A. Guazzelli, M. Zeller, W. Lin, G. Williams (2009).
PMML: An Open Standard for Sharing Models. The R
Journal, Volume 1/1.

[6] A. Guazzelli, K. Stathatos, M. Zeller (2009). Efficient
Deployment of Predictive Analytics through Open Standards
and Cloud Computing. ACM SIGKDD Explorations
Newsletter.

[7] K. K. Das, E. Fratkin, A. Gorajek, K. Stathatos, M. Gajjar
(2011). Massively Parallel In-Database Predictions using
PMML. In Proceedings of the 17th ACM SIGKDD
Conference on Knowledge Discovery and Data Mining.

[8] K. Bache & M. Lichman (2013). UCI Machine Learning
Repository. Irvine, CA: University of California, School of
Information and Computer Science.

[9] T. Jena, A. Guazzelli, W. Lin, M. Zeller (2013). The R
pmmlTransformations Package. To appear in Proceedings of
the 19th ACM SIGKDD Conference on Knowledge Discovery
and Data Mining.

