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ABSTRACT
In this paper we describe how ensembles can be trained,
modified and applied in the open source data analysis plat-
form, KNIME. We focus on recent extensions that also allow
ensembles, represented in PMML, to be processed. This way
ensembles generated in KNIME can be deployed to PMML
scoring engines. In addition ensembles created by other tools
and represented as PMML can be applied or further pro-
cessed (modified or filtered) using intuitive KNIME work-
flows.

Categories and Subject Descriptors
D.2.6 [Software Engineering]: Programming Environ-
ments—Graphical Environments, Interactive Environments;
D.2.12 [Software Engineering]: Interoperability; H.5.2
[Information Interfaces and Presentation]: User Inter-
faces—Graphical User Interfaces; I.5.5 [Pattern Recogni-
tion]: Implementation—Interactive Systems

General Terms
Ensemble, PMML, KNIME

Keywords
PMML, Ensemble Models, KNIME

1. INTRODUCTION
KNIME is a user-friendly and comprehensive open source

data integration, processing, analysis and exploration plat-
form [1]. The tool provides a graphical user interface for
modeling and documenting complex knowledge discovery
processes from data extraction to applying predictive mod-
els. KNIME already uses the PMML (Predictive Model
Markup Language) standard in many of its nodes. A pre-
vious publication [9] introduced KNIME’s ability to include
preprocessing steps in the PMML model. Various data min-
ing models including for example decision trees, association
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analysis, clustering, neural network and regression models
can also be generated as PMML in KNIME.

PMML is an XML-based exchange format for predictive
data mining models [7] and often used to ensure compati-
bility among different data mining systems. A data mining
task defined in one tool can easily be carried out with an-
other if the PMML description of the task is shared; because
it is based on XML, it can also easily be edited outside of
these tools. 2009 saw the release of PMML 4.0, which in-
cludes support for multiple models in a single PMML doc-
ument. PMML 4.1, released in 2011, further simplifies the
representation of such models. The MiningModel can con-
tain multiple other models. These models can be of different
types and have an optional weight and a predicate, which is
an expression indicating whether the model should be used
or not.

The most prominent application of such a model collection
is ensemble learning and prediction. Ensembles are built
using models from multiple, often weak learners. The in-
dividual weak learner might not be very powerful, however
combining many of them frequently increases the quality of
the final prediction substantially. Two well known ensemble
learning methods are bagging [2] and boosting [5]. We show
how these can be realized using a number of KNIME nodes.
In bagging, models are trained in parallel on different, ran-
domly chosen samples of the data. During the prediction
phase all models are used for prediction and the individual
predictions are aggregated into a single result. The final
prediction is in most cases even more accurate than that of
a single, strong predictor. In boosting, models are trained
iteratively, this means that the result of the previously built
weak learner is included in the next iteration. The KNIME
nodes realize the AdaBoost [6] algorithm. Records misclas-
sified in a previous iteration receive a higher weight and are
more likely to be chosen in the next iteration. A consequent
weak learner will hence put more focus on these records.

Starting with version 2.8, KNIME allows ensemble models
to be generated and modified in the PMML format. Several
new nodes enable models to be collected from multiple learn-
ers and inserted into a single ensemble model to be used by
a variety of existing data processing nodes. There is now a
predictor node for PMML ensemble models in KNIME.

In the remainder of this work, first the PMML support in
KNIME is outlined. This is followed by an explanation of
the ensemble generation process in KNIME as well as details
of the new integration of PMML mining models. In the last
section we illustrate how externally created mining models
can be used and edited.
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Figure 1: An example of how KNIME includes the
preprocessing steps in an externally created PMML
document.

2. PMML IN KNIME
In KNIME, data manipulation steps are modeled as con-

nected nodes. The data flows through a workflow follow-
ing connections between nodes. Each node can have one or
more input and output ports. A port can either represent
a data table, flow variables or a model. Flow variables and
models are used to pass meta information between nodes.
The KNIME platform natively supports PMML documents,
as it uses them to document preprocessing steps and pass
predictive models between nodes. The PMML Writer and
Reader nodes in KNIME not only allow models to be stored
for later use but also enable models to be exported for fur-
ther processing with other data mining products such as the
ZEMENTIS ADAPA Decision Engine [8].

Starting with KNIME 2.6 the data preprocessing nodes
provide an additional optional input and output port, de-
noted by blue rectangles. In this PMML port a PMML doc-
ument can be passed to the node. The passed PMML docu-
ment is enriched with the preproccessing steps as generated
from the node. All preprocessing steps that take place in the
node are documented in the passed document. If no docu-
ment is passed, the node generates an empty document and
includes only information from the node. Figure 1 shows
an example preprocessing workflow. Here the data set is
read and then preprocessed. During preprocessing normal-
ization, binning and transformation from a numerical to a
categorical value is applied. The output PMML of the Num-
ber to String node contains the information of these three
steps. Next an externally generated model is read using the
PMML Reader and combined to the previously generated
preprocessing PMML. In the last step the PMML Writer is
used to export the new PMML document.

3. GENERATION OF ENSEMBLES
In this section we will show how ensembles can be gener-

ated in KNIME. First of all, we outline generation, without
the new PMML, support for bagging, boosting and dele-
gating. Afterwards the PMML support is explained using
bagging as an exemplary ensemble learning situation.

3.1 Bagging
Bagging is an ensemble learning technique that creates

multiple weak predictors and combines them to a single ag-
gregated predictor that may lead to better predictions than
each of the original ones. Each predictor is created by train-
ing a model on a different, representative part of the data.
Even though each of the predictors might make a bad pre-
diction on its own, as a collective they are often able to
model the data’s underlying concept better. To create a
strong predictor, the weak predictions are aggregated using
one of many different methods such as taking the mean of a
numeric prediction or using the class that was predicted by
the majority of predictors for a classification problem.

Ensemble generation in KNIME was already supported in
versions earlier than 2.8. It involves splitting the data into
chunks, collecting the models in a table, iterating the table
in another loop and applying the model on the input data.
Afterwards the prediction results need to be collected and a
voting loop calculates the final prediction. Figure 2 shows a
workflow that can be used for learning and prediction, which
creates an ensemble this way. The data are shuffled and then
split into chunks, which are processed in a loop. For each
chunk a learner learns a model which is then passed to a
Model Loop End node. This node collects the models from
all iterations and outputs a table with all the models once
the last iteration has finished. In the second loop, another
specialized node, the Model Loop Start, iterates the table
with models and passes each model into a predictor node,
which also has access to the data to be predicted. A Voting
Loop End node finally produces an output by collecting the
predictions from the predictor node and, for each record,
selects the prediction that was made by most of the models.

3.2 Boosting
Another ensemble learning strategy that can be realized

with KNIME nodes is boosting: the AdaBoost algorithm [6].
As briefly outlined in the introduction, the AdaBoost algo-
rithm assigns a higher weight to records that were misclas-
sified in the previous iteration. In the subsequent iteration
the sample is chosen based on this weight: therefore records
with a higher weight are more likely to be chosen. Conse-
quently the next base learner focuses on patterns incorrectly
classified by the previous base learner.

For boosting KNIME offers preconfigured meta nodes,
which turn setting up a boosting workflow into fairly straight
forward process. Two special meta nodes, namely the Boost-
ing Learner and the Boosting Predictor node support such
workflow. The content of a Boosting Learner for multilayer
perceptrons is shown in Figure 3. The input to the Boosting
Learner Loop Start is a data table containing the training
data. In the loop, the RProp MLP Learner first trains a
model on the data and then passes it to the PMML Predic-
tor, which forms a prediction on the training data using the
model. In the Boosting Learner Loop End the performance
of the model is evaluated and another iteration is triggered
until the model is considered good enough. Then a data
table with multiple models is sent to the output port.

Figure 4 shows the content of the associated prediction
meta node. Here the models in the table that were generated
by the learner are used to make a prediction for the incoming
data. The Boosting Predictor Loop End then selects the
best prediction. The Scorer node at the end can be used for
debugging purposes, for example with a confusion matrix.
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Figure 2: Bagging in KNIME. As described in Section 3.1 the basic bagging methodology is shown here.
First multiple decision trees are learned on subsets of the data and collected in one table using the Model
Loop End node. This table is used for predicting the test data, as read from the CSV Reader. The prediction
and final aggregation of the multiple predicted values is performed in the second loop.
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Figure 3: The boosting learner meta node in
KNIME. Here a multi layer perceptron is trained
in each loop iteration. The final algorithm is per-
formed with a loop construct.
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Figure 4: The boosting predictor meta node in
KNIME. The general PMML predictor here means
that no additional configuration is necessary. For
every boosting table the predictor will produce the
prediction based on the results of the base learners.

3.3 Delegating
The last ensemble technique implemented in KNIME is

a simple version of delegating [4]. For delegating, patterns
wrongly predicted from the precedent base learner are for-
warded to the next one. Delegating is also implemented in
a loop. The Delegating Loop Start outputs all the patterns
that were either incorrect classified or that had received a
classification with a low probability in a previous iteration.
In the content of the loop a new model is learned and passed
to the first port of the Delegating Loop End. The second port
receives the insufficient classified data points from this run
and sends them back to the Delegating Loop Start node. The
loop finishes when either no more data points are classified
as incorrect or after a fixed number of iterations. In Figure 5
a delegating regression in KNIME is shown.

3.4 PMML MiningModels
The PMML standard has a special model type for ensem-

ble models, which is called a MiningModel. It serves as a con-
tainer for multiple data mining models that are part of an en-
semble and also defines the aggregation method that should
be used when making a prediction. The PMML Mining-
Model consists of multiple segments. Each segment can be
weighted optionally. Each segment contains a model and a
predicate which tells the consuming node when it should use
the model and when to ignore it. The model types that can
be included in such an ensemble include TreeModel, Neu-
ralNetwork, ClusteringModel, RegressionModel, GeneralRe-
gressionModel and SupportVectorMachineModel. While it is
possible to have models of different types in one Mining-
Model, these models must all fit to the MiningModel ’s min-
ing function, which can either be regression, classification or
clustering. Another important attribute of a MiningModel
is the aggregation method that is used to create a single
prediction based on the results of the individual models.
The PMML standard currently defines ten different aggre-
gation methods of which nine are currently supported by
KNIME. These methods include majority vote, sum, aver-
age and weighted average. Model chaining is not supported
since it is currently not possible to generate nested Mining-
Models from flat tables.
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Figure 5: A delegating regression is shown in this Figure. Well predicted data points are filtered, by calcu-
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3.5 Creating PMML MiningModels
Where possible (that is: supported in PMML), KNIME’s

mining nodes use PMML as the format for their models.
Using special ports learner nodes output their models as
PMML. A corresponding predictor consumes the PMML
model together with the dataset to be predicted. As of
version 2.7 KNIME also contains nodes that natively sup-
port consuming or producing PMML MiningModels. The
newly introduced nodes allow the integration of several mod-
els from one or many learners into a single ensemble model,
a so-called MiningModel as defined by [3].

There are two different approaches in KNIME to create
a PMML MiningModel. An ensemble model can be created
from a data table using the new Table to PMML Ensem-
ble node. In order to generate the model the table must
contain one column with PMMLCells and can optionally in-
clude a second numerical column used to assign a weight
to each model in the PMML column. E.g. the Boosting
Learner Loop End in Figure 3 and the Model Loop End
in Figure 2 produce such a data table. The second ap-
proach feeds the models into the new PMML Ensemble Loop
End node directly, where they are collected and output to
the PMML MiningModel in the final iteration of the loop.
Model weights can be assigned to the Loop End node by
using a flow variable. These variables are passed from node
to node together with the main data but have an extra port,
denoted by a red circle as the input port.

3.6 Bagging realization with PMML
For bagging with PMML ensemble models, the data first

has to be split into chunks using the Chunk Loop Start node.
The number of chunks the data is divided into is equal to
the number of models the ensemble will contain. Shuffling
the data beforehand is recommended in order to give each
individual learner a representative chunk of data. In the
loop initiated by the Chunk Loop Start the learner is ap-
plied to each chunk of data and passes the trained model
to a PMML Ensemble Loop End node, which collects the
models and outputs the ensemble once the loop terminates.
The aggregation method for the ensemble can be set in the
configuration of the PMML Ensemble Loop End. Addition-
ally it is possible to assign each model a weight by passing
a flow variable. This is a specialty only available with the

new MiningModel based realization. Although the Model
Loop End collects models as well it does not take weight
into account. When a flow variable for weight is given, the
Loop End checks the variables value in each iteration and
assigns it as the currently trained models weight. While a
minimal bagging workflow previously needed two loops and
seven nodes, it can now be constructed with only one loop
and five nodes. Figure 6 shows a bagging workflow that uses
the new PMML Ensemble Loop End node. In Figure 7 the
weight is read from a table and assigned via the optional flow
variable port. The dialog contains configuration possibilities
for the weight and the aggregation method.

4. WORKING WITH PMML ENSEMBLES
In this section we show how ensembles, which are built us-

ing the PMML Ensemble Loop End or the Table to PMML
Ensemble nodes can be modified and how ensemble predic-
tion in KNIME works.

4.1 Modifying PMML MiningModels
Apart from creating models, KNIME also supports the

modification of ensembles and the retrieval of a subset of
models from an ensemble. This makes it possible for exam-
ple to load an externally generated mining model, add and
remove models or modify a model’s weight. To do so, an en-
semble can be transformed into a data table with a PMML
column for the models and a double column containing the
weights of the models whereupon all of the data manipu-
lation nodes available in KNIME can be used. The new
node that is available for this task is the PMML Ensemble
to Table node. KNIME provides several nodes to modify
the resulting table, such as the Row Filter, Math Expression
or Cell to PMML node. One could even imagine using the
XML nodes to directly modify the PMML of each model.

Figure 8 shows a workflow that loads a PMML Mining
model from a file. It then splits the ensemble into a table
structure, which contains the individual PMML models and
the weights. The table is sorted by the model weight and
only the top five models are retained. Finally a new ensem-
ble mining model using only those five models is created and
stored.

Due to the fact that PMML is a XML dialect, KNIME’s
XML processing capabilities can be drawn upon when mod-
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Figure 6: Bagging using the PMML MiningModels. The prediction and aggregation of the predicted values
is performed by the PMML Ensemble Predictor.

ifying various parts of PMML Mining Models, with the ex-
ception of from adding and removing models. XML nodes
can be used to modify data dictionaries, predicates or model
parameters.

4.2 Prediction with PMML MiningModels
The generated ensemble models can also, of course, be

used for prediction in KNIME. To make a prediction, each of
the models in the ensemble is applied to the data to produce
an individual prediction and these are then combined for the
final output. We can, of course, do this within KNIME by
splitting the ensemble and then applying individual predic-
tors. However, in addition to to the new PMML ensemble
creation nodes, there is also a new KNIME node, which can
utilize these models to make direct predictions. The PMML
Ensemble Predictor(as used in Figure 6 or 7) node has two
inputs: a PMML Mining model input and a table input for
the data to be predicted.

For the prediction the node internally creates a predictor
for each model in the ensemble and executes it on the input
data. The result is a number of predictions from multiple
models. These results are aggregated into a single value.
Depending on the mining function of the ensemble, different
aggregations, such as Majority Vote or Weighted Average
for example, can be applied. For classification, only ma-
jority vote, weighted majority vote, select first and select
all are applicable since the results from the predictions are
not numeric. Results from applying regression models can
only be aggregated using average, weighted average, media,
max, sum, select first and select all. Clustering models can
be used with (weighted) majority vote, select first and se-
lect all. The mining function of an ensemble is determined
by an XML attribute in the PMML document and the pre-
dictor always checks if the selected aggregation is valid and
displays an error otherwise.

5. CONCLUSIONS
The new nodes in KNIME provide native support for

PMML Mining Models which are either generated inter-
nally from KNIME learners or by using the already existing
means of loading PMML into KNIME from other sources.
Compared to the prior style of storing multiple models in
data tables this new approach is easier to use and allows
the sharing of other ensemble based mining models with
other tools. Ensemble models that are created by the Ta-

ble to PMML Ensemble or the PMML Ensemble Loop End
nodes are fully compatible with existing KNIME nodes that
process PMML. They can be read and written into the file
system and stored in table cells.
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