
`

Distinguishing the Unexplainable from the Merely
Unusual: Adding Explanations to Outliers to Discover and

Detect Significant Complex Rare Events

Ted E. Senator, Henry G. Goldberg, Alex Memory
SAIC

{senatort, goldberghg, memoryac}@saic.com

ABSTRACT
This paper discusses the key role of explanations for applications
that discover and detect significant complex rare events. These
events are distinguished not necessarily by outliers (i.e., unusual
or rare data values), but rather by their inexplicability in terms of
appropriate real-world behaviors. Outlier detection techniques are
typically part of such applications and may provide useful starting
points; however, they are far from sufficient for identifying events
of interest and discriminating them from similar but uninteresting
events to a degree necessary for operational utility. Other
techniques that distinguish anomalies from outliers, and then
enable anomalies to be classified as relevant or not to the
particular detection problem are also necessary. We argue that
explanations are the key to the effectiveness of such complex rare
event detection applications, and illustrate this point with
examples from several real applications.

Categories and Subject Descriptors
H.2.8 [Database Applicaitons]: Database applications – data
mining; I.5.2 [Pattern Recognition]: Design Methodlogy –
classifier design and evaluation, feature evaluation and selection.

General Terms
Security

Keywords
Complex Event Detection, Anomaly Detection, Outlier Detection,
Explanation

1. INTRODUCTION
In many real applications, the problem to be solved is the
discovery and detection of complex rare events. Examples of such
applications include detection of money laundering [9], detection
of insider trading [2], and detection of insider threats [5], [10].
These applications typically combine two functions: (1)
discovery, which means the identification of previously
unrecognized event types, and (2) detection, which means the
identification of instances of event types. Complex rare events are
characterized by contextual combinations of specific actions,
often by multiple agents. They typically occur very infrequently.
These events manifest in multiple databases, many of which may
or may not be initially – or even eventually – observable or
available. Such events may result from multiple agents executing

many different types of activities simultaneously, all of which are
interleaved in the observed data. Often the observed data are
insufficient to distinguish between legitimate actions and actions
of interest; additional data are required to make this determination
by explaining the observed patterns of activity in the available
data.

2. KEY IDEA
 The key idea of this paper is that detection and discovery of
complex rare events involves three related but distinct levels of
abstraction, and that explanations are the essential mechanism to
transform between these levels, because events of interest are
characterized not by their rarity but rather by their inexplicability.1

Figure 1: Explanations Enable Transformations Between

Outliers, Anomalies and Events of Interest
Such explanations may be provided both implicitly and explicity
by the underlying data, models and features incorporated in the
system design and by what is presented to a human analyst,
respectively.
 Explanation provides the ability to infer underlying intent and
allows the segmenting of intermingled actions to identify those
related to a particular event of interest. This can be as simple as a
large number of instances of a condition-action pair, i.e., an
anomaly consisting of a set of outliers that would be unlikely to
have occurred without intent – from which one can infer the
existence of the intent to commit the action when the specified
condition occurs. An example of such an anomaly would be
repeated personal trading by a stockbroker “ahead” (i.e., in the
time period preceding) trades for a customer. The stockbroker
would be using his foreknowledge of the customer trade and its
likely impact on the price of the security to obtain a profit for
himself. A more complex anomaly might be a partial match to a
set of observations that would result from execution of a plan to
engage in some improper activity. We refer to the behaviors
characteristic of such plans as “scenarios” and the corresponding
set of observations as “patterns.” [8] An example of such a
scenario might be an authorized user of a computer system who
searches for valuable corporate information in areas distinct from

1 This idea is related to the concept of “interestingness” in the data

mining literature. A specific set of data is “interesting” in these
applications because of the real world behavior suggested by its
explanation.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. To copy
otherwise, or republish, to post on servers or to redistribute to lists,
requires prior specific permission and/or a fee.
ODD’13 August 11, 2013 Chicago, IL USA.
Copyright 2013 ACM 978-1-4503-2335-2 $15.00.

40

`

his current job responsibilities, downloads such information to
removeable media, and then takes an extended vacation.
 Three levels of abstraction that we propose and have found
useful in various applications we have designed and implemented
are: (1) outliers, (2) anomalies, and (3) events of interest, as
depicted in figure 1. We define outliers as unusual (combinations
of) data points that are statistically rare but may or may not result
from the same generative processes as other data points;
anomalies as data points that have resulted from a distinct
generative process2 that may or may not appear in the data as
outliers; and events of interest as anomalies that are caused by
some type of behavior in the real world that is of concern for the
application. It is important to note that outliers are always defined
with respect to some baseline population and the distribution of
values of some (set of) features of entities comprising said
population in the database; anomalies are defined with respect to a
generative process that results in the observed data; and events of
interest are defined by the external needs of an application (e.g., a
rule or regulation that may be violated, or a phenomenon of
concern for some other reason, such as a combination of
symptoms requiring treatment).
 For example, in an application to detect insider trading, an
outlier might be an unusually large trade, for a particular trader in
the context of his or her trading history, in a particular security, on
behalf of a particular owner, by a trader compared to other traders
during the same timer period, etc. In a public health surveillance
application, outliers might be a significant increase in emergency
room admissions or in a particular complaint or symptom. In an
insider threat detection application, an outlier might be an
unusually large number of file transfers to removeable media.
 In the insider trading domain, a corresponding anomaly would
be a large trade that precedes a material news event and results in
a significant profit. It is considered an anomaly because it is
generated by a trader reacting to prohibited insider information,
not to normal market information. Such an event might be benign
– it could simply be a coincidence – or it might be improper,
depending on the explanation. An explanation of an improperly
caused anomaly could be the connections or communications
between the beneficial owner of the profitable trade and a source
of the inside information. (A legitimate explanation might be one
in which the beneficial owner had recently acquired a large sum of
cash and was conducting numerous trades, of which the one in
question happened to coincide with an opportunity to make a
large immediate profit.) A repeated pattern of such trades would
also be an anomaly, providing an analyst with the ability to infer
the existence of the unobserved communication of inside
information to the trader, such unobserved communication
serving as the explanation of the anomaly.

3. EXPLANATIONS
We consider several types of explanations and show examples of
how they transform from outliers to anomalies to events of
interest. We group explanations into two categories, depending on
whether they aid in the transformation from outliers to anomalies
or from anomalies to events of interest.

3.1 Explaining Outliers
Because outliers are defined statistically, in terms of where a
particular (set of) data points appear on a distribution of values of
particular features on a specified population, the explanations of

2 This concise description in terms of generative processes was

suggested by Andrew Emmott of Oregon State University.

such outliers must depict where the data ponts lie on these
distributions with respect to the population. This is not sufficient,
however, for several reasons. First, many users are not trained in
statistics and will not appreciate an explanation in terms of p-
values, t-tests, and the like. Second, and at least as important, the
selection of both the underlying population – and of the definition
of the entities of interest – typically involves many implicit and
explicit assumptions and choices regarding comparison baselines
that affect the recognition of outliers. Third, an explanation of the
statistical significance and location of an outlier does not tell a
user how likely such an outlier is to suggest the existence of the
event of interest. Finally, there is the multiple comparison
problem – which, while correctable with appropriate statistical
methods, can still mislead users of a detection system. We
illustrate the second and third of these points with examples, as
the first and fourth require no further explanation.
3.1.1 Comparison Baselines
Consider an application that aims to detect significant events in
financial time-series data. Such an application might look for
trades that are unusual. This can mean many things. Even if we
specify the features of interest (e.g., total dollar amount of a trade,
frequency of trading, time of day, etc.) – which is not the subject
of this paragraph or this paper – we have many other choices. For
any aggregate feature, we compare its value over some time
period to its value over preceding time periods. For any entity –
individual or aggregate – we want to compare the feature values to
those of other similar entities, for some definition of “similar.” To
analyze an individual trade, we may want to compare it to other
trades by the same person in the same security, in similar
securities, or in other securities. We may want to compare time-
based features such as average trading amount per day or week
 We have identified three time periods that must be specified for
any comparison: (1) the temporal-extent over which a feature is
computed for a particular entity; (2) the look-back period over
which the same feature is computed in order to establish the
distribution of values of that feature; and (3) the granularity of the
computations during the look-back period. For example, consider
again a financial time series application that uses the price-
volatility of a security as a feature. We might look for unusual
volatility numbers based on hours or days; we might compute the
distribution of historical volatility by looking back over one,
three, or six months; and we might use the daily or weekly prices
as the basis of this computation.
 Similarly, we need to specify the population of entities against
which a comparison occurs. We might, for example, compare an
individual to his or her
own behavior, to
people in his or her
community (i.e.,
people to whom he or
she is connected
according to some
type of network
structure), or to peers
(i.e., people with
similar job
descriptions and
functions).
 Once we have made
the above choices, we
then have to decide
whether to compare

Table 1: Outlier Detection Data
Structure

ResultScore ResultMetadata
runID (KEY) runID
flowID (KEY) flowID
alfoID (KEY) algoID
dataTypeID (KEY) dataTypeID (KEY)
nodeID entityXtent (KEY)
rawScore [optional] featureID [optional]
normScore EntityTemp
rankedScore popXtent
Rank popSubXtent
endDate popTemp
analystScore scoreMean
hasAnalystScore scoreStdev
analystUpdateDate scoreCount
 parameters

41

`

absolute values or normalized values. (We may explore a number
of possibilities as we design a detection system, to determine
which features are the most useful.) If we choose normalized
values, we have to determine the basis of normalization. For
example, do we normalize the number of communication events
of an individual by the number of other individuals with which he
has communicated? Do we normalize based on where someone’s
feature value lies on a distribution based on his/her community
and/or peers? Should we normalize based on absolute numbers,
units of standard deviation for a particular feature, or percentiles?
 However the above choices are made, they need to be
communicated explicitly to a human
analyst as part of the explanation of an
outlier. If multiple versions of such
choices are made, then outliers need to be
explained in the context of all of these for
a full understanding.
3.1.2 How Unusual is an
Outlier?
An outlier must be explained not only in
terms of its likelihood but also in terms
an analyst can understand. Analysts are
familiar with their underlying data, so an
explanation in these terms has proven
effective. It is useful to provide simple
visualizations that show where outliers lie
according to the distribution of all values
of features comprising the outlier.
Obviously, such visualizations are limited
to two – and occasionally with advanced
techniques three – dimensions on a
screen, but additional dimensions can be
illustrated using color, pattern, iconology,
etc. The key idea is that enabling an
analyst to see an outlier in the context of
the distribution of values of all the
relevant features enables the analyst to
determine if the outlier is significant.
Showing an analyst the number of
instances in the data with similar feature
values and their resulting interpretation is
a useful technique for explaining such

outliers.
 Figure 2, taken from
reference [7] contains
an example of such a
visualization. This
visualization of an
association rule, which
consists of multiple
conditions on both the
left and right hand
sides, states each
condition using pre-
stored natural languge
text augmented with
specific variable
values (in the blue
boxes in the figure).
The bar graphs
appearing below the
blue boxes depict the

number of trades or quotes for which the rule holds or does not,
above and below the horizontal axis, respectively, and shows all
values of the variable associated with the particular condition
across the horizontal axis. The arrow is labeled with the number
of instances in the database on the left hand side for which the
right hand side does and does not hold. Additional context is
provided by the ability to click on the arrow and bring up a table
of the raw data summarized in the rule. This visualization enables
analysts to understand the context of any prediction made by the
rule and evaluate whether the outlier is truly anomalous.
 While visualizations are useful for explaining outliers to human

Figure 2: Association Rule Display

Figure 3: Money Flow Visualization

42

`

analysts, an automated system requires that detected outliers be
stored and available for further analysis. Reference [5] describes a
data structure that captures the results of outlier detection, as
depicted in table 1. For each run, we allow outlier detection
algorithms to compute a raw score, an ordered ranking of all
entities, a normalized score, and percentile (ranked) scores. The
raw scores may be on different scales and difficult to combine
across algorithms. Normalized scores and ranks enable us to
compare scores across algorithms. Distributional information such
as mean and standard deviation allows us to determine degrees of
anomaly.

3.2 Explaining Anomalies
Anomaly explanation differs from outlier explanation by referring
to models of processes that may have given rise to the observed
data. These models may be based on scenarios derived from
domain knowledge or on abstract features of the domain. For
example, in the systems described in references [3] and [5],
scenarios of behavior are defined and translated to patterns of
actions that would be matched in the observed data. The
occurrence of matches to these patterns strongly suggests that the
behavior modeled by the scenario has occurred. Such scenario-
based models may involve multiple interacting agents performing
distinct types of actions in a particular temporal sequence or with
particular durations.
 Other generative models may refer less directly to specific
actions in a domain, and capture instead relevant abstractions. For
the money laundering detection application discussed in reference
[9], the most relevant domain concepts involved money flows
between people, businesses and accounts. The visualization
depicted in figure 3 was useful to explain a particular anomaly to
analysts. In this picture, green “house” shaped icons refer to
addresses, yellow circles to people, beige cut-off rectangles to
accounts, and red rectangles to businesses. This diagram depicts
in the center, three people at three different addresses who share
an account which is used by three businesses, which share one

other account, and so on. The diagram
was used to explain this money-
laundering case not only to the analysts
management chain, but ultimately to a
grand jury. While other aspects of the
case, such as the timing and amounts of
money flows between the people,
accounts, and businesses, is not depicted
in the diagram, combined with the
accompanying text and briefing, it
captured enough information to
convince appropriate authorities to
proceed. An interesting phenomena that
we discovered when developing this
visualization is that the explanation that
helped an analyst understand the data
turned out to be the same visualization
that enabled him to explain it to his
management chain and to external
organizations responsible for further
prosectution of the suspected violation.
 In the case of the stock market
example discussed in reference [3], [7],
and [8], the most relevant domain
abstractions had to do with temporal
sequences of quotes and trades by
different market participants. Figure 4 is

an actual screen shot of a visualization that captures these
abstractions. The x-axis shows the time and the y-axis the price of
a particular security. Trades are depicted by dots; quotes by the
market maker of interest by the blue band; and the “inside quote”
– i.e., the best available bid and ask prices, by the green band.
 Other relevant abstractions may be captured as well. Reference
[1] uses typical graph structures found to be characteristics in
many domains to indentify situations where such structures appear
anomalous. Distributional comparisons, such Benford’s law
(which captures the empirical distribution of the “first digit” in
many real sources of data), may also serve as the basis for
explaining anomalies.
 Finally, a source of explanations for observed anomalies may
be additional data types. In the example of insider trading cited
earlier, we described two situations which could result in
significant, profitable trading in advance of material news. The
same event could have resulted from either of two generative
processes: (1) the trader had inside information, or (2) the trader
had money to invest or losses to cover and bought or sold the
stock without knowledge of the insider information. Additional
data is required to infer which is the true explanation: call logs,
lists of company officers with inside access, names of friends and
family, other trading patterns of the trader in questions, etc. In the
example of the insider who copies proprietary data, we noted that
the files copied were not related to his normal work area. This is
an inference which must be made in order to increase our
confidence that the event is anomalous and of interest, not just
unusual. We can make it either by looking at his other activities in
the recent past, or through reference to additional, supplementary
data, such as project assignments.

4. ANOMALY DETECTION LANGUAGE
Specifying the functional flow of outlier and anomaly detectors
required for a real application, and capturing the multiplicity of
choices for baselines and extents, was facilitated by the
development and use of a visual anomaly detection lanauge. [4]

Figure 4: Trade and Quote Visualization

43

`

Traditional data flow diagrams cannot express these designs
concisely, so we developed a visual anomaly detection language
that enables the expression of such combinations of methods,
data, baselines, and detection extents. While developed for insider
threat detection, the language itself is domain-independent and
may be applied to other domains. The language specifies the
extent of the entities to be detected (e.g., individual users or
groups of users) combined with the temporal extent of potential
anomalies. Inputs to these expressions are transactional records of
user activity, and outputs are scores on these user-temporal
extents.
The syntax of the language is shown in Figure 5; required
arguments are in <angle brackets> and optional arguments in
[square brackets]. Records are passed along horizontal lines from
left to right. Component types are specified by symbols. Entity
and temporal extents are super- and sub-scripts, respectively, of
component type.
 Components may be statistical (denoted by the symbol S) or
temporal (T); the latter indicating detectors specialized for
anomalies in temporal patterns.
Group detectors (G) discover
communities of entities, which
can be used as baseline
populations. Classifiers (C) place
input records into classes, which
may also be used as baseline
populations, or for filtering or
partitioning records in general.
The classes may be hard,
meaning that each record is put
into exactly one class, or mixed,
in which case a record may be a
member of more than one class,
possibly to varying degrees.
Classifiers might be implemented
using a machine-learning method
or may be a simple filter based on
a lookup on a record. Similarly,
aggregators (A) group records
with some shared characteristic
and summarize their values, e.g.,
roll-up emails from the same
sender to a single record having
the count of emails as a new
feature; aggregators derive new
features from existing ones in this

way. Another way to transform features is with a normalizer (N),
e.g., rescale real-valued features to the unit interval. Finally, if
given a baseline, records are classified and normalized with
respect to that baseline.
 When sets of records are joined and contain different values for
the same feature, and and or (/\, \/) can combine those values,
e.g., implement with a t-norm and t-conorm to combine unit-
interval values. Evidence combiners (E) also combine values but
are more general than /\ and \/. And, when no combinations are
necessary, union and intersection () perform the expected
operations on input records.
If a baseline is provided, a baseline type specifies how the
baseline is used by the component and is indicated by a symbol
inside a small circle to the left of the component to which the
baseline input connects. With a cross-sectional baseline (C), entity
extents are compared to others within the same temporal extent. In
contrast, with a longitudinal baseline (L) each entity will be
handled individually, and different temporal extents for that entity
are compared to one another. A simultaneous baseline (S)
combines the first two and compares each input extent to all
baseline extents. If a baseline or input time period is not specified,
this means that the two cover all available time periods.
Whenever a component may output more than one output class of
records, e.g., a binary classifier has (+) and (−) output classes,
they should be placed to the right of the component inside circles
connected to output lines, unless only one class of output is
needed and that class is clear from context, in which case the
output class can be omitted.
Weights are scalars in the unit interval used to transform features
– usually scores – and are drawn as the letter w inside a rectangle.
The type of weighting should be put in a description above the
rectangle. Finally, the output of the system is drawn as the letter
“O” inside a circle.
 Figure 6 uses the anomaly detection language to specify a
system for targeting an Intellectual Property (IP) Thief Ambitious

Figure 6: IP Thief – Ambitious Leader Scenario Diagram

Figure 5: Anomaly Detection Language Syntax

44

`

Leader scenario in the insider threat detection domain, in which
we find a leader of a group of insiders who each steal a few files
to be inconspicuous. To counter their strategy, we combine the
file activity from the neighbors surrounding each user – known as
an egonet – in the IM communication graph, making the leader
more anomalous.
We start by filtering user-days to those with sufficient file activity

, then join those records with the IM user-neighbor
adjacency list and sum up the features for each “neighbor”

. We next add that total for each user to the user’s own

features and convert the feature totals into ratios 1 that
can be compared across egonets of different sizes, e.g. number of
unique files to number of all files.
To limit the baseline population to users fitting the profile of a
leader, we keep the users with a high fraction of file
accesses fitting the manager role according to file
extension and use this set as a simultaneous baseline

to score each user-day.

As an additional indicator, we count 2 phrases seen in
IMs between users that fit the scenario and finally

combine with the anomaly scores.

5. COMPLEX EVENT DETECTION
SYSTEMS WITH EXPLANATIONS
Real complex event detection systems are multi-layered,
consisting of a series of classifiers, each of which is more
accurate, primarily because of the availability of additional data to
explain outliers or anomalies detected at an earlier stage, and
which are biased towards minimizing false negatives at the early
stages and minimizing false positives at the later stages [6]. At
present, explanations must be provided by humans, sometimes at
great cost in terms of investigating false positives or collecting
additional data, and requiring significant human analyst
involvement and judgement. Adding automated explanation
capabilities will enable systems to more accurately distinguish
events of interest from other anomalies and enable human analysts
to focus their efforts on follow-up investigations and actions for
those situations most demanding and worthy of their attention.
 Our vision for applications that can be effective at detecting
significant complex rare events involves the development of
automated explanation techiques to reduce false positive ratios by
enabling the transformation of outliers to anomalies and then to
events of interest. Techniques that appear promising for such
automated explanations might include plan generation, providing
the ability to generate plans to accomplish a high-level goal
specified in domain terms and translate such plans into an
appropriate set of features and baselines that may be present in the
data, as well as techniques that could infer potential plans as
possible explanations of observed data. Development of

ontologies of anomaly types in terms of domain characteristics
will be another necessary development to enable this vision.

6. ACKNOWLEDGMENTS
This work contains ideas developed over the course of many years
by the authors while employed by several different organizations.
It has benefitted from discussions with colleagues in all these
organizations. The content of the information in this document
does not necessarily reflect the position or the policy of any of
these organizations, including the US Government, and no official
endorsement by any of these organizations should be inferred.

7. REFERENCES
[1] Chau, D. H., Kittur, A., Hong, J. I. and Faloutsos, C. 2011.

Apolo: making sense of large network data by combining
rich user interaction and machine learning. In CHI 2011.

[2] Goldberg, Henry G., J. Dale Kirkland, Dennis Lee, Ping
Shyr, Dipak Thakker: The NASD Securities Observation,
New Analysis and Regulation System (SONAR). IAAI 2003:
11-18

[3] Kirkland, J. Dale, Ted E. Senator, James J. Hayden, Tomasz
Dybala, Henry G. Goldberg, Ping Shyr: The NASD
Regulation Advanced-Detection System (ADS). AI
Magazine 20(1): 55-67 (1999)

[4] Memory, A. et al. 2013. Context-Aware Insider Threat
Detection. Proceedings of the Workshop on Activity Context
System Architectures. Bellevue, WA.

[5] Senator, Ted E., Detecting Insider Threats in a Real
Corporate Database of Computer Usage Activity, KDD 2013,
to appear.

[6] Senator, T. E. 2005. Multi-stage Classification. In ICDM ’05
Proceedings of the Fifth IEEE International Conference on
Data Mining Pages 386-393. IEEE Computer Society
Washington, DC.

[7] Senator, Ted E. et. al., The NASD Regulation Advanced
Detection System: Integrating Data Mining and Visualization
for Break Detection in the NASDAQ Stock Market. In
Information Visualization in Data Mining and Knowledge
Discovery, Usama Fayyad, Georges G. Grinstein, and
Andreas Weirse, eds., Academic Press (2002)

[8] Senator, Ted E. Ongoing management and application of
discovered knowledge in a large regulatory organization: a
case study of the use and impact of NASD Regulation's
Advanced Detection System (ADS). KDD 2000: 44-53

[9] Senator, Ted E., Henry G. Goldberg, Jerry Wooton, Matthew
A. Cottini, A. F. Umar Khan, Christina D. Klinger, Winston
M. Llamas, Michael P. Marrone, Raphael W. H. Wong: The
Financial Crimes Enforcement Network AI System (FAIS)
Identifying Potential Money Laundering from Reports of
Large Cash Transactions. AI Magazine 16(4): 21-39 (1995)

[10] Young, W. T et al. 2013. Use of Domain Knowledge to
Detect Insider Threats in Computer Activities. Workshop on
Research for Insider Threat, IEEE CS Security and Privacy
Workshops, San Francisco, May 24, 2013.

45

http://www.informatik.uni-trier.de/~ley/pers/hd/k/Kirkland:J=_Dale.html
http://www.informatik.uni-trier.de/~ley/pers/hd/l/Lee:Dennis.html
http://www.informatik.uni-trier.de/~ley/pers/hd/s/Shyr:Ping.html
http://www.informatik.uni-trier.de/~ley/pers/hd/s/Shyr:Ping.html
http://www.informatik.uni-trier.de/~ley/pers/hd/t/Thakker:Dipak.html
http://www.informatik.uni-trier.de/~ley/db/conf/iaai/iaai2003.html#GoldbergKLST03
http://www.informatik.uni-trier.de/~ley/pers/hd/k/Kirkland:J=_Dale.html
http://www.informatik.uni-trier.de/~ley/pers/hd/s/Senator:Ted_E=.html
http://www.informatik.uni-trier.de/~ley/pers/hd/h/Hayden:James_J=.html
http://www.informatik.uni-trier.de/~ley/pers/hd/d/Dybala:Tomasz.html
http://www.informatik.uni-trier.de/~ley/pers/hd/d/Dybala:Tomasz.html
http://www.informatik.uni-trier.de/~ley/pers/hd/s/Shyr:Ping.html
http://www.informatik.uni-trier.de/~ley/db/journals/aim/aim20.html#KirklandSHDGS99
http://www.informatik.uni-trier.de/~ley/db/journals/aim/aim20.html#KirklandSHDGS99
http://www.informatik.uni-trier.de/~ley/db/conf/kdd/kdd2000.html#Senator00
http://www.informatik.uni-trier.de/~ley/pers/hd/s/Senator:Ted_E=.html
http://www.informatik.uni-trier.de/~ley/pers/hd/w/Wooton:Jerry.html
http://www.informatik.uni-trier.de/~ley/pers/hd/c/Cottini:Matthew_A=.html
http://www.informatik.uni-trier.de/~ley/pers/hd/c/Cottini:Matthew_A=.html
http://www.informatik.uni-trier.de/~ley/pers/hd/k/Khan:A=_F=_Umar.html
http://www.informatik.uni-trier.de/~ley/pers/hd/k/Klinger:Christina_D=.html
http://www.informatik.uni-trier.de/~ley/pers/hd/l/Llamas:Winston_M=.html
http://www.informatik.uni-trier.de/~ley/pers/hd/l/Llamas:Winston_M=.html
http://www.informatik.uni-trier.de/~ley/pers/hd/m/Marrone:Michael_P=.html
http://www.informatik.uni-trier.de/~ley/pers/hd/w/Wong:Raphael_W=_H=.html
http://www.informatik.uni-trier.de/~ley/db/journals/aim/aim16.html#SenatorGWCKKLMW95

