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ABSTRACT 
This paper discusses the key role of explanations for applications 
that discover and detect significant complex rare events. These 
events are distinguished not necessarily by outliers (i.e., unusual 
or rare data values), but rather by their inexplicability in terms of 
appropriate real-world behaviors. Outlier detection techniques are 
typically part of such applications and may provide useful starting 
points; however, they are far from sufficient for identifying events 
of interest and discriminating them from similar but uninteresting 
events to a degree necessary for operational utility. Other 
techniques that distinguish anomalies from outliers, and then 
enable anomalies to be classified as relevant or not to the 
particular detection problem are also necessary. We argue that 
explanations are the key to the effectiveness of such complex rare 
event detection applications, and illustrate this point with 
examples from several real applications. 

Categories and Subject Descriptors 
H.2.8 [Database Applicaitons]: Database applications – data 
mining; I.5.2 [Pattern Recognition]: Design Methodlogy – 
classifier design and evaluation, feature evaluation and selection. 

General Terms 
Security 

Keywords 
Complex Event Detection, Anomaly Detection, Outlier Detection, 
Explanation 

1. INTRODUCTION 
In many real applications, the problem to be solved is the 
discovery and detection of complex rare events. Examples of such 
applications include detection of money laundering [9], detection 
of insider trading [2], and detection of insider threats [5], [10]. 
These applications typically combine two functions: (1) 
discovery, which means the identification of previously 
unrecognized event types, and (2) detection, which means the 
identification of instances of event types. Complex rare events are 
characterized by contextual combinations of specific actions, 
often by multiple agents. They typically occur very infrequently. 
These events manifest in multiple databases, many of which may 
or may not be initially – or even eventually – observable or 
available. Such events may result from multiple agents executing 

many different types of activities simultaneously, all of which are 
interleaved in the observed data. Often the observed data are 
insufficient to distinguish between legitimate actions and actions 
of interest; additional data are required to make this determination 
by explaining the observed patterns of activity in the available 
data.  

2. KEY IDEA 
 The key idea of this paper is that detection and discovery of 
complex rare events involves three related but distinct levels of 
abstraction, and that explanations are the essential mechanism to 
transform between these levels, because events of interest are 
characterized not by their rarity but rather by their inexplicability.1 

 
Figure 1: Explanations Enable Transformations Between 

Outliers, Anomalies and Events of Interest 
Such explanations may be provided both implicitly and explicity 
by the underlying data, models and features incorporated in the 
system design and by what is presented to a human analyst, 
respectively. 
 Explanation provides the ability to infer underlying intent and 
allows the segmenting of intermingled actions to identify those 
related to a particular event of interest.  This can be as simple as a 
large number of instances of a condition-action pair, i.e., an 
anomaly consisting of a set of outliers that would be unlikely to 
have occurred without intent – from which one can infer the 
existence of the intent to commit the action when the specified 
condition occurs. An example of such an anomaly would be 
repeated personal trading by a stockbroker “ahead” (i.e., in the 
time period preceding) trades for a customer. The stockbroker 
would be using his foreknowledge of the customer trade and its 
likely impact on the price of the security to obtain a profit for 
himself. A more complex anomaly might be a partial match to a 
set of observations that would result from execution of a plan to 
engage in some improper activity. We refer to the behaviors 
characteristic of such plans as “scenarios” and the corresponding 
set of observations as “patterns.” [8] An example of such a 
scenario might be an authorized user of a computer system who 
searches for valuable corporate information in areas distinct from 
                                                                 
1 This idea is related to the concept of “interestingness” in the data 

mining literature. A specific set of data is “interesting” in these 
applications because of the real world behavior suggested by its 
explanation. 
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his current job responsibilities, downloads such information to 
removeable media, and then takes an extended vacation. 
 Three levels of abstraction that we propose and have found 
useful in various applications we have designed and implemented 
are: (1) outliers, (2) anomalies, and (3) events of interest, as 
depicted in figure 1. We define outliers as unusual (combinations 
of) data points that are statistically rare but may or may not result 
from the same generative processes as other data points; 
anomalies as data points that have resulted from a distinct 
generative process2 that may or may not appear in the data as 
outliers; and events of interest as anomalies that are caused by 
some type of behavior in the real world that is of concern for the 
application. It is important to note that outliers are always defined 
with respect to some baseline population and the distribution of 
values of some (set of) features of entities comprising said 
population in the database; anomalies are defined with respect to a 
generative process that results in the observed data; and events of 
interest are defined by the external needs of an application (e.g., a 
rule or regulation that may be violated, or a phenomenon of 
concern for some other reason, such as a combination of 
symptoms requiring treatment). 
 For example, in an application to detect insider trading, an 
outlier might be an unusually large trade, for a particular trader in 
the context of his or her trading history, in a particular security, on 
behalf of a particular owner, by a trader compared to other traders 
during the same timer period, etc. In a public health surveillance 
application, outliers might be a significant increase in emergency 
room admissions or in a particular complaint or symptom. In an 
insider threat detection application, an outlier might be an 
unusually large number of file transfers to removeable media. 
 In the insider trading domain, a corresponding anomaly would 
be a large trade that precedes a material news event and results in 
a significant profit. It is considered an anomaly because it is 
generated by a trader reacting to prohibited insider information, 
not to normal market information. Such an event might be benign 
– it could simply be a coincidence – or it might be improper, 
depending on the explanation. An explanation of an improperly 
caused anomaly could be the connections or communications 
between the beneficial owner of the profitable trade and a source 
of the inside information. (A legitimate explanation might be one 
in which the beneficial owner had recently acquired a large sum of 
cash and was conducting numerous trades, of which the one in 
question happened to coincide with an opportunity to make a 
large immediate profit.) A repeated pattern of such trades would 
also be an anomaly, providing an analyst with the ability to infer 
the existence of the unobserved communication of inside 
information to the trader, such unobserved communication 
serving as the explanation of the anomaly. 

3. EXPLANATIONS 
We consider several types of explanations and show examples of 
how they transform from outliers to anomalies to events of 
interest. We group explanations into two categories, depending on 
whether they aid in the transformation from outliers to anomalies 
or from anomalies to events of interest. 

3.1 Explaining Outliers 
Because outliers are defined statistically, in terms of where a 
particular (set of) data points appear on a distribution of values of 
particular features on a specified population, the explanations of 

                                                                 
2 This concise description in terms of generative processes was 

suggested by Andrew Emmott of Oregon State University. 

such outliers must depict where the data ponts lie on these 
distributions with respect to the population. This is not sufficient, 
however, for several reasons. First, many users are not trained in 
statistics and will not appreciate an explanation in terms of p-
values, t-tests, and the like. Second, and at least as important, the 
selection of both the underlying population – and of the definition 
of the entities of interest – typically involves many implicit and 
explicit assumptions and choices regarding comparison baselines 
that affect the recognition of outliers. Third, an explanation of the 
statistical significance and location of an outlier does not tell a 
user how likely such an outlier is to suggest the existence of the 
event of interest. Finally, there is the multiple comparison 
problem – which, while correctable with appropriate statistical 
methods, can still mislead users of a detection system. We 
illustrate the second and third of these points with examples, as 
the first and fourth require no further explanation.  
3.1.1 Comparison Baselines  
Consider an application that aims to detect significant events in 
financial time-series data. Such an application might look for 
trades that are unusual. This can mean many things. Even if we 
specify the features of interest (e.g., total dollar amount of a trade, 
frequency of trading, time of day, etc.) – which is not the subject 
of this paragraph or this paper – we have many other choices. For 
any aggregate feature, we compare its value over some time 
period to its value over preceding time periods. For any entity – 
individual or aggregate – we want to compare the feature values to 
those of other similar entities, for some definition of “similar.” To 
analyze an individual trade, we may want to compare it to other 
trades by the same person in the same security, in similar 
securities, or in other securities. We may want to compare time-
based features such as average trading amount per day or week 
 We have identified three time periods that must be specified for 
any comparison: (1) the temporal-extent over which a feature is 
computed for a particular entity; (2) the look-back period over 
which the same feature is computed in order to establish the 
distribution of values of that feature; and (3) the granularity of the 
computations during the look-back period. For example, consider 
again a financial time series application that uses the price-
volatility of a security as a feature. We might look for unusual 
volatility numbers based on hours or days; we might compute the 
distribution of historical volatility by looking back over one, 
three, or six months; and we might use the daily or weekly prices 
as the basis of this computation. 
 Similarly, we need to specify the population of entities against 
which a comparison occurs. We might, for example, compare an 
individual to his or her 
own behavior, to 
people in his or her 
community (i.e., 
people to whom he or 
she is connected 
according to some 
type of network 
structure), or to peers 
(i.e., people with 
similar job 
descriptions and 
functions). 
 Once we have made 
the above choices, we 
then have to decide 
whether to compare 

Table 1: Outlier Detection Data 
Structure 

ResultScore  ResultMetadata  
runID (KEY) runID 
flowID (KEY) flowID 
alfoID (KEY) algoID 
dataTypeID (KEY) dataTypeID (KEY) 
nodeID entityXtent (KEY) 
rawScore [optional] featureID [optional] 
normScore EntityTemp 
rankedScore popXtent 
Rank popSubXtent 
endDate popTemp 
analystScore scoreMean 
hasAnalystScore scoreStdev 
analystUpdateDate scoreCount 
 parameters 
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absolute values or normalized values. (We may explore a number 
of possibilities as we design a detection system, to determine 
which features are the most useful.) If we choose normalized 
values, we have to determine the basis of normalization. For 
example, do we normalize the number of communication events 
of an individual by the number of other individuals with which he 
has communicated? Do we normalize based on where someone’s 
feature value lies on a distribution based on his/her community 
and/or peers? Should we normalize based on absolute numbers, 
units of standard deviation for a particular feature, or percentiles? 
 However the above choices are made, they need to be 
communicated explicitly to a human 
analyst as part of the explanation of an 
outlier. If multiple versions of such 
choices are made, then outliers need to be 
explained in the context of all of these for 
a full understanding. 
3.1.2 How Unusual is an 
Outlier?  
An outlier must be explained not only in 
terms of its likelihood but also in terms 
an analyst can understand. Analysts are 
familiar with their underlying data, so an 
explanation in these terms has proven 
effective. It is useful to provide simple 
visualizations that show where outliers lie 
according to the distribution of all values 
of features comprising the outlier. 
Obviously, such visualizations are limited 
to two – and occasionally with advanced 
techniques three – dimensions on a 
screen, but additional dimensions can be 
illustrated using color, pattern, iconology, 
etc. The key idea is that enabling an 
analyst to see an outlier in the context of 
the distribution of values of all the 
relevant features enables the analyst to 
determine if the outlier is significant. 
Showing an analyst the number of 
instances in the data with similar feature 
values and their resulting interpretation is 
a useful technique for explaining such 

outliers. 
 Figure 2, taken from 
reference [7] contains 
an example of such a 
visualization. This 
visualization of an 
association rule, which 
consists of multiple 
conditions on both the 
left and right hand 
sides, states each 
condition using pre-
stored natural languge 
text augmented with 
specific variable 
values (in the blue 
boxes in the figure). 
The bar graphs 
appearing below the 
blue boxes depict the 

number of trades or quotes for which the rule holds or does not, 
above and below the horizontal axis, respectively, and shows all 
values of the variable associated with the particular condition 
across the horizontal axis. The arrow is labeled with the number 
of instances in the database on the left hand side for which the 
right hand side does and does not hold. Additional context is 
provided by the ability to click on the arrow and bring up a table 
of the raw data summarized in the rule. This visualization enables 
analysts to understand the context of any prediction made by the 
rule and evaluate whether the outlier is truly anomalous. 
 While visualizations are useful for explaining outliers to human 

 

Figure 2: Association Rule Display 

Figure 3: Money Flow Visualization 
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analysts, an automated system requires that detected outliers be 
stored and available for further analysis. Reference [5] describes a 
data structure that captures the results of outlier detection, as 
depicted in table 1. For each run, we allow outlier detection 
algorithms to compute a raw score, an ordered ranking of all 
entities, a normalized score, and percentile (ranked) scores. The 
raw scores may be on different scales and difficult to combine 
across algorithms. Normalized scores and ranks enable us to 
compare scores across algorithms. Distributional information such 
as mean and standard deviation allows us to determine degrees of 
anomaly. 

3.2 Explaining Anomalies 
Anomaly explanation differs from outlier explanation by referring 
to models of processes that may have given rise to the observed 
data. These models may be based on scenarios derived from 
domain knowledge or on abstract features of the domain. For 
example, in the systems described in references [3] and [5], 
scenarios of behavior are defined and translated to patterns of 
actions that would be matched in the observed data. The 
occurrence of matches to these patterns strongly suggests that the 
behavior modeled by the scenario has occurred. Such scenario-
based models may involve multiple interacting agents performing 
distinct types of actions in a particular temporal sequence or with 
particular durations. 
 Other generative models may refer less directly to specific 
actions in a domain, and capture instead relevant abstractions. For 
the money laundering detection application discussed in reference 
[9], the most relevant domain concepts involved money flows 
between people, businesses and accounts. The visualization 
depicted in figure 3 was useful to explain a particular anomaly to 
analysts. In this picture, green “house” shaped icons refer to 
addresses, yellow circles to people, beige cut-off rectangles to 
accounts, and red rectangles to businesses. This diagram depicts 
in the center, three people at three different addresses who share 
an account which is used by three businesses, which share one 

other account, and so on. The diagram 
was used to explain this money-
laundering case not only to the analysts 
management chain, but ultimately to a 
grand jury. While other aspects of the 
case, such as the timing and amounts of 
money flows between the people, 
accounts, and businesses, is not depicted 
in the diagram, combined with the 
accompanying text and briefing, it 
captured enough information to 
convince appropriate authorities to 
proceed. An interesting phenomena that 
we discovered when developing this 
visualization is that the explanation that 
helped an analyst understand the data 
turned out to be the same visualization 
that enabled him to explain it to his 
management chain and to external 
organizations responsible for further 
prosectution of the suspected violation. 
 In the case of the stock market 
example discussed in reference [3], [7], 
and [8], the most relevant domain 
abstractions had to do with temporal 
sequences of quotes and trades by 
different market participants. Figure 4 is 

an actual screen shot of a visualization that captures these 
abstractions. The x-axis shows the time and the y-axis the price of 
a particular security. Trades are depicted by dots; quotes by the 
market maker of interest by the blue band; and the “inside quote” 
– i.e., the best available bid and ask prices, by the green band. 
 Other relevant abstractions may be captured as well. Reference 
[1] uses typical graph structures found to be characteristics in 
many domains to indentify situations where such structures appear 
anomalous. Distributional comparisons, such Benford’s law 
(which captures the empirical distribution of the “first digit” in 
many real sources of data), may also serve as the basis for 
explaining anomalies. 
 Finally, a source of explanations for observed anomalies may 
be additional data types. In the example of insider trading cited 
earlier, we described two situations which could result in 
significant, profitable trading in advance of material news. The 
same event could have resulted from either of two generative 
processes: (1) the trader had inside information, or (2) the trader 
had money to invest or losses to cover and bought or sold the 
stock without knowledge of the insider information. Additional 
data is required to infer which is the true explanation: call logs, 
lists of company officers with inside access, names of friends and 
family, other trading patterns of the trader in questions, etc. In the 
example of the insider who copies proprietary data, we noted that 
the files copied were not related to his normal work area. This is 
an inference which must be made in order to increase our 
confidence that the event is anomalous and of interest, not just 
unusual. We can make it either by looking at his other activities in 
the recent past, or through reference to additional, supplementary 
data, such as project assignments. 

4. ANOMALY DETECTION LANGUAGE 
Specifying the functional flow of outlier and anomaly detectors 
required for a real application, and capturing the multiplicity of 
choices for baselines and extents, was facilitated by the 
development and use of a visual anomaly detection lanauge. [4] 

Figure 4: Trade and Quote Visualization 
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Traditional data flow diagrams cannot express these designs 
concisely, so we developed a visual anomaly detection language 
that enables the expression of such combinations of methods, 
data, baselines, and detection extents. While developed for insider 
threat detection, the language itself is domain-independent and 
may be applied to other domains. The language specifies the 
extent of the entities to be detected (e.g., individual users or 
groups of users) combined with the temporal extent of potential 
anomalies. Inputs to these expressions are transactional records of 
user activity, and outputs are scores on these user-temporal 
extents.  
The syntax of the language is shown in Figure 5; required 
arguments are in <angle brackets> and optional arguments in 
[square brackets]. Records are passed along horizontal lines from 
left to right. Component types are specified by symbols. Entity 
and temporal extents are super- and sub-scripts, respectively, of 
component type. 
 Components may be statistical (denoted by the symbol S) or 
temporal (T); the latter indicating detectors specialized for 
anomalies in temporal patterns. 
Group detectors (G) discover 
communities of entities, which 
can be used as baseline 
populations. Classifiers (C) place 
input records into classes, which 
may also be used as baseline 
populations, or for filtering or 
partitioning records in general. 
The classes may be hard, 
meaning that each record is put 
into exactly one class, or mixed, 
in which case a record may be a 
member of more than one class, 
possibly to varying degrees. 
Classifiers might be implemented 
using a machine-learning method 
or may be a simple filter based on 
a lookup on a record. Similarly, 
aggregators (A) group records 
with some shared characteristic 
and summarize their values, e.g., 
roll-up emails from the same 
sender to a single record having 
the count of emails as a new 
feature; aggregators derive new 
features from existing ones in this 

way. Another way to transform features is with a normalizer (N), 
e.g., rescale real-valued features to the unit interval. Finally, if 
given a baseline, records are classified and normalized with 
respect to that baseline. 
 When sets of records are joined and contain different values for 
the same feature, and and or (/\, \/) can combine those values, 
e.g., implement with a t-norm and t-conorm to combine unit-
interval values. Evidence combiners (E) also combine values but 
are more general than /\ and \/. And, when no combinations are 
necessary, union  and intersection ( ) perform the expected 
operations on input records.  
If a baseline is provided, a baseline type specifies how the 
baseline is used by the component and is indicated by a symbol 
inside a small circle to the left of the component to which the 
baseline input connects. With a cross-sectional baseline (C), entity 
extents are compared to others within the same temporal extent. In 
contrast, with a longitudinal baseline (L) each entity will be 
handled individually, and different temporal extents for that entity 
are compared to one another. A simultaneous baseline (S) 
combines the first two and compares each input extent to all 
baseline extents. If a baseline or input time period is not specified, 
this means that the two cover all available time periods. 
Whenever a component may output more than one output class of 
records, e.g., a binary classifier has (+) and (−) output classes, 
they should be placed to the right of the component inside circles 
connected to output lines, unless only one class of output is 
needed and that class is clear from context, in which case the 
output class can be omitted. 
Weights are scalars in the unit interval used to transform features 
– usually scores – and are drawn as the letter w inside a rectangle. 
The type of weighting should be put in a description above the 
rectangle. Finally, the output of the system is drawn as the letter 
“O” inside a circle.  
 Figure 6 uses the anomaly detection language to specify a 
system for targeting an Intellectual Property (IP) Thief Ambitious 

 
Figure 6: IP Thief – Ambitious Leader Scenario Diagram 

 
Figure 5: Anomaly Detection Language Syntax 
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Leader scenario in the insider threat detection domain, in which 
we find a leader of a group of insiders who each steal a few files 
to be inconspicuous. To counter their strategy, we combine the 
file activity from the neighbors surrounding each user – known as 
an egonet – in the IM communication graph, making the leader 
more anomalous. 
We start by filtering user-days to those with sufficient file activity 

, then join those records with the IM user-neighbor 
adjacency list and sum up the features for each “neighbor” 

. We next add that total for each user to the user’s own 

features and convert the feature totals into ratios 1 that 
can be compared across egonets of different sizes, e.g. number of 
unique files to number of all files.  
To limit the baseline population to users fitting the profile of a 
leader, we keep the users  with a high fraction of file 
accesses  fitting the manager role according to file 
extension  and use this set as a simultaneous baseline 

to score  each user-day.  

As an additional indicator, we count 2  phrases seen in 
IMs between users that fit the scenario  and finally 

combine  with the anomaly scores. 
 

5. COMPLEX EVENT DETECTION 
SYSTEMS WITH EXPLANATIONS 
Real complex event detection systems are multi-layered, 
consisting of a series of classifiers, each of which is more 
accurate, primarily because of the availability of additional data to 
explain outliers or anomalies detected at an earlier stage, and 
which are biased towards minimizing false negatives at the early 
stages and minimizing false positives at the later stages [6]. At 
present, explanations must be provided by humans, sometimes at 
great cost in terms of investigating false positives or collecting 
additional data, and requiring significant human analyst 
involvement and judgement. Adding automated explanation 
capabilities will enable systems to more accurately distinguish 
events of interest from other anomalies and enable human analysts 
to focus their efforts on follow-up investigations and actions for 
those situations most demanding and worthy of their attention. 
 Our vision for applications that can be effective at detecting 
significant complex rare events involves the development of 
automated explanation techiques to reduce false positive ratios by 
enabling the transformation of outliers to anomalies and then to 
events of interest. Techniques that appear promising for such 
automated explanations might include plan generation, providing 
the ability to generate plans to accomplish a high-level goal 
specified in domain terms and translate such plans into an 
appropriate set of features and baselines that may be present in the 
data, as well as techniques that could infer potential plans as 
possible explanations of observed data. Development of 

ontologies of anomaly types in terms of domain characteristics 
will be another necessary development to enable this vision. 
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