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ABSTRACT

The identification of outliers is an intrinsic component of
knowledge discovery. However, most outlier detection tech-
niques operate in the observational space, which is often
associated with information redundancy and noise. Also,
due to the usually high dimensionality of the observational
space, the anomalies detected are difficult to comprehend.
In this paper we claim that algorithms for discovery of out-
liers in a latent space will not only lead to more accurate
results but potentially provide a natural medium to explain
and describe outliers. Specifically, we propose combining
Non-Negative Matrix Factorization (NMF) with subspace
analysis to discover and interpret outliers. We report on
preliminary work towards such an approach.

1. INTRODUCTION

It is well known that new scientific discoveries or “paradigm
shifts” are often triggered by the need to explain outliers [11].
The availability of large and ever increasing data sets, across
a wide spectrum of domains, provides an opportunity to ac-
tively identify outliers with the hope of making new discov-
eries.

The obvious dilemma in outlier detection is whether the
discovered outliers are an artifact of the measurement de-
vice or indicative of something more fundamental. Thus the
need is not only to design algorithms to identify complex
outliers but also provide a framework where they can be
described and explained. Sometimes it is easy to explain
outliers. For example, we applied the recently introduced k-
means-- algorithm [4] on the 2012 season NBA player data
set!. k-means— extends the standard kmeans algorithm to
simultaneously identify clusters and outliers. The result of
the Top-5 outliers are shown in Table 1 and matches with
the top players in the NBA “All Star” team. An NBA star is
an outlier and given the highly competitive nature of NBA,
an outlier is most likely a star. Or in other words there are

Lwww.basketball-reference.com

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.

ODD’13, August 11th, 2013, Chicago, IL, USA.

Copyright 2013 ACM 978-1-4503-2335-2 ...$15.00.

Sanjay Chawla
University of Sydney and NICTA
Sydney, Australia
sanjay.chawla@sydney.edu.au

46

Didi Surian
University of Sydney and NICTA
Sydney, Australia
didi.surian@sydney.edu.au

no bad players in the NBA but some players are very good!
However, in many other applications it is not at all clear
how to proceed to explain outliers. This can be termed as
the “Low Precision Problem (LPP)” of outlier detection.

Table 1: Given the highly competitive nature of the
NBA, not only are stars outliers, but outliers are
stars! All the top five outliers are well known leading
players of NBA.

Outlier Rank | Player Name All Star Team (Y/N)
1 Kevin Durant Y
2 Kobe Bryant Y
3 LeBron James Y
4 Kevin Love N
5 Russell Westbrook Y
PROBLEM 1. The Low Precision Problem (LPP) in out-

lier detection is that
P(genuine outlier|predicted outlier) ~ low

LPP occurs because it is hard to disambiguate genuine out-
liers from errors occurring in the measurement device.

2. THE MULTIPLE SUBSPACE VIEW

A starting point towards addressing LPP and explaining
and sifting genuine outliers from measurement errors is to
view data from multiple perspectives [12]. In the context
where data entities are described by a vector of features,
examining an entity in all possible feature subspaces can
potentially lead to isolating genuine outliers. This is espe-
cially true in high dimensional settings. For example assume
that each entity is described by a feature vector of size m.
Furthermore, assume that the probability of each feature
being recorded incorrectly is p and is independent of other
features. Then if m is large, the probability that at least one
feature value has been recorded incorrectly is 1 — (1 — p)™
and this can be close to 1 when m is large. Thus having
at least one feature value which is corrupted due to mea-
surement error is high. However if we can view the data in
multiple subspaces then a genuine outliers will consistently
stand out.

A limitation of the multiple subspace approach is that
there are exponentially many subspaces leading to intractable
algorithms. However the problem can be ameliorated if we
notice that in real data sets, the intrinsic dimensionality of
the data is much lower than the ambient dimensionality as
we now explain.



3. HIGH-DIMENSIONAL ANOMALIES

It is now part of the data mining folklore that in real data
sets, the “degrees of freedom” which actually generate the
data is small, albeit unknown. This can be illustrated using
examples from computer vision. For example, consider a
subset of the Yale Face data shown in Figure 1. Each image
is very high-dimensional (64 x 64 = 4,096), however the
set of images together live on a three dimensional manifold
where the degree of freedom are governed by the rotation of
the camera and the lighting. The bottom right hand image
(transpose of the top left image) is an outlier as it lives
outside the manifold [5].

Thus given a high-dimensional space, if we can project
data into a lower-dimension space which preserves the in-
trinsic structure of the data, then not only can we identify
outliers efficiently but potentially explain the discovered out-
liers. An example of manifold-preserving projection are the
family of random projections which preserve pairwise dis-
tances with high probability [5]. However, while random
projections can lead to improvements in efficiency, by their
very nature they make it nearly impossible to interpret the
outliers. Thus we need a set of projections to which we can
also ascribe some meaning. We next describe matrix fac-
torization methods which are projections of data into lower
dimensional space where each dimension aggregates a group
of correlated features.
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Figure 1: An example to explain the difference be-

tween intrinsic and ambient dimension. Samples
from the 698-image Yale face data. Each 64 x 64
is a point in a 4,096 dimensional space. However

the set of images live in a three dimension set. The
bottom right image is added as the transpose of the
top left image and is an outlier.

4. MATRIX FACTORIZATION

As we have noted, the challenge in outlier detection is the
difficulty to separate true outliers from those data points
that are caused because of measurement errors. We have
also noted that in high-dimensional space most of the fea-
tures tend to be correlated. Thus if a data point is a true
outlier that fact should be visible in several features. Thus
if we take a subspace approach then a genuine outlier will
show up as an outlier in more subspaces than an accidental
outlier. The challenge in pursuing a subspace approach is
that the space of subspaces is exponential in the number of
features and thus intractable to explore for most practical
problems.

One way to address the intractability is to reduce the
dimensionality of the original space. This can be carried
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Figure 2: The figure shows the impact of projections
of outliers in a lower dimensional space. Data points
1 and 2 remain outliers after projection, while data
point 3 is mixed with normal after the projection [8].

out using matrix factorization approaches. Factorization
is a principled approach of simultaneously aggregating cor-
related features into a reduced number of “meta-features”
which in turn can be imbued with semantics related to the
application domain. While Singular Value Decomposition
(SVD) and Principal Component Analysis (PCA) have been
around for a long time, the recent surge in new methods like
Non-Negative Matrix Factorization (NMF) and Bayesian fac-
torization have enhanced the reach of these methods [13].
The key advantage of NMF, say over SVD, is the enhanced
interpretation that these methods afford. For example, if
X is non-negative document-word matrix or data from a
micro-array experiment and X = UV is a non-negative fac-
torization (i.e., both U and V are also non-negative) then
the factors can be ascribed a meaning as shown in Table 2.

4.1 The impact of Projections

Outliers can potentially be impacted in different ways de-
pending upon the nature of outliers. For example, consider
the projection shown in Figure 2. The projection shown will
have no impact on data point 1, will force data point 3 into
a cluster and data point 2 will continue to remain an outlier
even though it is far away from the projection plane. Now,
which one of these points are genuine outliers is potentially
application dependent. However, if we take a subspace per-
spective, then data point 1 is more likely a genuine outlier.
This is because it preserves the correlation between its com-
ponents but each component is far removed from the main
cluster.

4.2 Sensitivity to Outliers

While techniques like NMF provide a promising way to ad-
dress the combinatorial explosion problem associated with
multiple subspace viewing, like SVD, they are highly sen-
sitive to outliers. Thus if our aim is to find outliers, then
our method of discovering outliers should not in turn be af-
fected by them. For example, it is well known that both
mean and the variance-covariance matrix are extremely sen-
sitive to the presence of even one extreme value and their use
for outlier detection will often mask the discovery of genuine
outliers. Thus we first have to modify NMF to make them
more robust against outliers. Thus we define the following
problem:



Table 2: Non-Negative Factorization provides enhanced interpretation of the meta-features. In text process-
ing, the meta-features can be interpreted as topics, while in micro-array analysis, the meta-features are group

of correlated genes.

X U

V

Document-Word

Document-Topic

Topic-Word

Exp-Gene

(Exp,Functional Group)

(Functional Group, Gene)

PROBLEM 2. [NMF (k)] Given a non-negative matriz X €

RT™", fived integers k and €, find matrices U € RT”,
V € R¥*™ and a subset L C N, |L| = £, which minimizes
|X—e—UV_¢||p, where X_; is a submatriz consisting of all
columns except those from the set L.

To solve the NM F(k,¢) problem we present the R-NMF
algorithm shown in Algorithm 1. The algorithm belong to
the class of alternating minimization methods and is very
similar to the standard NMF algorithm except for a few
caveats. We begin by initializing U in Line 1. In Line 4, we
solve for V' which minimizes the Frobenius norm of || X —
U”'V||r. In Line 5, we compute the residual between X
and the current estimate of the product U*~'V. In Line 6,
we rank the residuals based on the norm of their column
values, and L is the index vector of the ranking. We then
generate new matrices X_, and V_; by removing the first ¢
values of the set X and V in Line 7 and 8. In Line 9, we
estimate U by minimizing the Frobenius norm of X_, and
UV*,. We iterate until the convergence criterion is met.

We also propose algorithm O-NMF which is simply using
classical NMF algorithm to identify anomaly. The anomalies
are calculated by taking ¢ data points which correspond to
the top ¢ residual of the final matrices X and UV that is
calculated identical to Line 5 of Algorithm 1.

The R-NMF algorithm is an analogous extension of the
recently proposed proposed k-means—- algorithm [4]. We
should note that another extension for NMF to find out-
liers has been proposed by Xiong et. al. [14] introduced
the method of Direct Robust Matrix Factorization (DMRF).
The DMRF method first assumes the existence of a small
outlier set S and then infers the low-rank factorization UV
by removing S from the data set. It then updates S by using
the inferred factorization. In the experiment section we will
compare R-NMF with DNMF.

Algorithm 1 [R-NMF Algorithm]

Input: A matrix X of size m X n, m number of features, n
number of samples
k the size of the latent space

Output: An m X k matrix U and k X n matrix V
R=UV

1: U° + random m x k matrix

2: 11

3: while (no convergence achieved) do

4:  Vi=argminy | X - U"'V|p

5 R=X-U"'V* \\R is a residual matrix

6: Let L ={1,2,...,n} be anew ordering of the columns
of R such
IR DI = RG> [RC, )

7. X 4+ X(;,L\L(1:9)

8 Ve« V(,L\L(1:¥)

9:  U'=argming || X_, — UV%,|

10: t+1+1
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The R-NMF algorithm forms the kernel of the subspace
algorithm, SR-NMF shown in Algorithm 2 which combines
subspace enumeration with R-NMF. Note we only take sub-
space of the “meta-features.” The intuition is that genuine
outliers will emerge as outliers in the latent subspaces.

Here we design algorithm that incorporate both the con-
cept of multi subspace view and matrix factorization. As we
mentioned before the shortage in [12] is that due to the high
dimensionality nature in most of the data set, one simply
can not brute force and traversal each and every subspaces.
We solve this problem by investigate the problem in a latent
space where data are confined in a much small dimensional-
ity.

Algorithm 2 [SR-NMF]

Input: A matrix X of size m X n, m number of features,
n number of samples, k the size of the latent space, ¢
number of outliers

Output: A vector R represent the ranking of anomalies
with a score in descending order

1: Using R — NMF algorithm we get U and V such that
X=UV
(U,V)=R—-NMF(k,)

2: j + 0; RANKS < empty matrix;

3: STEP1 generate ranks for each subspace

4: fori=1—k do

5:  generate all set of combinations AS from (k choose 7)

6.

7

8

for each S €AS do
Residual = X — U(:, S)V(S,:)
: RNorm = columnNorm(Residual)
9: [-, RANK] = sort(RNorm, ‘descend’)

10: RANKS = [RANKS; RANK]
11: Jj++
12: STEP2 merge ranks into one rank

: R < vector of size n;
:fori=1—jdo

15: forp=1—ndo
16: R(RANKS(i,p)) = R(RANKS(i,p)) + 1
17: sort R in descending order

[—, R] = sort(R, ‘descend’) (Note: Matlab Notation)

5. EXPERIMENTS AND RESULTS

In this section we evalute both R-NMF and SR-NMF on
several data sets. Our ultimate objective is to verify if SR-
NMF can be used to address the LPP problem. All our
experiments were carried out on a PC with following config-
urations. Intel(R) Core(TM) i5-2400 CPU @3.1GHz 4GB
RAM running on 64-bit Microsoft Windows 7 Enterprise
Edition.

5.1 Data Sets



We used three data sets from different application domains
which we now describe.

NBA 2012

The NBA 2012 data set consists of nearly two hundred
players with each player characterized by twenty features.
Example of features include number of points scored, re-
bounds etc. The data set is freely available from basketball-
reference.com.

Spam Email

‘Spambase’ is a spam email data set [6] consisting of 4,601
emails out of which 1,813 (39%) are spam. The spam e-
mails came from their postmaster and individuals who had
filed spam and non-spam e-mails from work and personal
e-mails. Most of the features (48 out of 57) are frequency of
key words.

Research Abstracts

We took around one thousand computer science paper ti-
tles from DBLP and also a thousand physics research pa-
per abstracts. We created two data sets. In the first we
kept the thousand CS titles and merged them with one hun-
dred physics abstracts. For the second data set, we kept the
thousand physics abstracts and merged them with a random
subset of one hundred computer science titles. We call the
former CSet and the latter PSet.

5.2 Results

We report results on robustness, convergence, runtime and
accuracy on the three aforementioned data sets.

Results:Robustness of R-NMF

Here we report on results about the sensitivity of the R-
NMF against the classical NMF algorithm used for outlier
detection, the O-NMF. We applied both R-NMF and O-
NMF algorithm on the NBA 2012 data set but modified one
entry in the matrix as a multiple of the mean value. This
is shown on the x-axis of Figure 3. For each different value
on the x-axis we computed the U matrix and computed the
difference in the norm of the new U matrix and the original
U matrix. The U matrix is the base matrix and stores the
meta-features in terms of the original features.

Figure 3 shows that R-NMF is more robust against pertur-
bations while the U matrix using O-NMF increases without
bound. This clearly demonstrates that the traditional NMF
algorithm should not be used for any serious applications as
it is extremely sensitive to data perturbations.

Results:Convergence Analysis

Here we investigate the convergence properties of the R-
NMF algorithms. From Algorithm 1 we know that for each
iteration R-NMF will reconstruct U with a given number
of outliers excluded. However, each iteration the algorithm
may exclude different data points as outliers, this could po-
tentially make the algorithm unstable. Thus, it is necessary
to study whether this new algorithm will converge properly.

We conduct the experiments as follows. We use the Spam-
base data set, and set the number of outliers for R-NMF as
the number of spam emails. We vary k and present the
results for £k=9,12,15, and 18.
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Figure 3: R-NMF is substantially more robust
against the presence of outliers in the data compared
to standard O-NMF.
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Figure 4: R-NMF converges with all given settings
of k. As the dimension of the subspace (k) increases,
residual of R-NMF algorithm goes down.

As can be seen from Figure 4, the first thing one can
notice is that with bigger k, the residual of the algorithm
goes down. This is because with bigger k, the decomposed
matrices UV can better reconstruct the original X. Most
importantly, the algorithm converge at all given settings of
k within 20 repetitions.

Results:Runtime

We present the run time results of R-NMF algorithm for the
Spambase data sets in Figure 5 respectively. As expected,
we observe that the run time of R-NMF decreases as the
number of outliers is increased. This trend follows the in-
tuition of R-NMF algorithm that the construction of base
matrix U is based on the data X without the anomalous
points (Algorithm 1 line 5-8).

Results:Precision and Recall

We compute precision and recall on the Spambase, PSet and
the CSet data sets. The outliers are considered as positives.
The experiments are conducted as follows. We vary the two
variables: k and ¢, We compared the two proposed algo-
rithms: R-NMF and SR-NMF against the Direct Robust
Matrix Factorization (DMRF) approach proposed by [14].
The results for different values of k and different sizes of the
outliers specified are show from Table 3-8. At the moment it
is hard to draw conclusions from the results. Futher work is
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Figure 5: Average Run time R-NMF on Spambase data set: (Left) k = 1, (Middle) k = 2, (Right) k = 3. As
the number of outliers increases, the run time for R-NMF decreases. The values here are the average values
for all iterations.

Table 3: Precision on CSet: DRMF, SR-NMF and R-NMF.

Portion of data as outliers
k 35% 40% 45%
DRMF | SR-NMF | R-NMF || DRMF | SR-NMF | R-NMF || DRMF | SR-NMF | R-NMF
6 0.10 0.13 0.13 0.10 0.12 0.12 0.09 0.11 0.11
9 0.09 0.12 0.14 0.10 0.12 0.12 0.09 0.11 0.11
12 0.10 0.12 0.12 0.09 0.12 0.13 0.09 0.11 0.11
Table 4: Recall on CSet: DRMF, SR-NMF and R-NMF
Portion of data as outliers
k 35% 40% 45%
DRMF | SR-NMF | R-NMF || DRMF | SR-NMF | R-NMF || DRMF | SR-NMF | R-NMF
6 0.39 0.49 0.50 0.45 0.51 0.54 0.47 0.56 0.55
9 0.36 0.47 0.52 0.45 0.52 0.54 0.46 0.56 0.56
12 0.39 0.48 0.47 0.40 0.53 0.55 0.45 0.56 0.52
Table 5: Precision on PSet: DRMF, SR-NMF and R-NMF.
Portion of data as outliers
k 35% 40% 45%
DRMF | SR-NMF | R-NMF || DRMF | SR-NMF | R-NMF || DRMF | SR-NMF | R-NMF
6 0.13 0.15 0.15 0.16 0.15 0.16 0.15 0.15 0.14
9 0.16 0.16 0.18 0.16 0.16 0.16 0.15 0.15 0.15
12 0.17 0.16 0.18 0.16 0.16 0.16 0.15 0.15 0.15
Table 6: Recall on PSet: DRMF, SR-NMF and R-NMF.
Portion of data as outliers
k 35% 40% 45%
DRMF | SR-NMF | R-NMF || DRMF | SR-NMF | R-NMF || DRMF | SR-NMF | R-NMF
6 0.49 0.56 0.58 0.72 0.66 0.70 0.72 0.72 0.70
9 0.60 0.60 0.69 0.70 0.69 0.70 0.72 0.73 0.72
12 0.65 0.60 0.69 0.70 0.72 0.70 0.72 0.72 0.73
Table 7: Precision on Spambase: DRMF, SR-NMF and R-NMF. Best values are highlighted.
Portion of data as outliers
k % 10% 13%
DRMF | SR-NMF | R-NMF || DRMF | SR-NMF | R-NMF || DRMF | SR-NMF | R-NMF
6 0.27 0.30 0.29 0.32 0.26 0.29 0.37 0.32 0.36
9 0.26 0.26 0.30 0.28 0.31 0.28 0.31 0.35 0.35
12 0.25 0.32 0.30 0.30 0.33 0.29 0.30 0.32 0.36

required to analyse the results and determine the root cause

of the outliers.

6. SUMMARY AND CONCLUSION

Outlier Detection is a core task in data mining. In fact
as the size and complexity of data sets increases the need
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Table 8: Recall on Spambase: DRMF, SR-NMF and R-NMF.

Best values are highlighted.

Portion of data as outliers
k % 10% 13%
DRMF | SR-NMF | R-NMF || DRMF | SR-NMF | R-NMF || DRMF | SR-NMF | R-NMF
6 0.05 0.06 0.05 0.08 0.07 0.07 0.12 0.10 0.12
9 0.05 0.05 0.06 0.07 0.08 0.07 0.10 0.12 0.12
12 0.04 0.06 0.05 0.08 0.08 0.07 0.10 0.10 0.12

to identify meaningful and genuine outliers will only grow.
Almost all major applications ranging from health analytic
to network data management to bio-informatics require ana-
lytical tools which can identify and explain genuine outliers.

The core challenge in outlier detection is to distinguish
between genuine and noise outliers. The former are indica-
tive of a new, previously unknown process while the latter is
often a result of error in the measurement device. The diffi-
culty to distinguish between genuine and noise outliers leads
to the Low Precision Problem (LPP). Our claim is that
LPP is the fundamental problem in outlier detection and
algorithmic approaches to solve LPP are urgently needed.

One approach to distinguish between genuine and noise
outliers is to take a multiple subspace viewpoint. A genuine
outlier will stand out in multiple subspaces while a noise
outlier will be separated from the core data in much fewer
subspaces. However the problem in subspace exploration is
that current methods are unlikely to scale to high dimen-
sions.

Matrix factorization methods provide a balanced compro-
mise between full subspace exploration in the feature space
versus exploration in the meta-feature or latent space. The
advantage of working in the latent space is that many of
the features are aggregated into a correlated meta-feature.
Often these features in the latent space can be imbued with
a semantic meaning relevant to the problem domain. For
example, in the case of text mining, the features correspond
to words while meta-features correspond to topics.

The challenge with matrix factorization methods is that
they are highly sensitive to outliers. This can be a serious
problem whenever there is a mismatch between the data and
the proposed model. One way to ameliorate the problem is
to use an alternate minimization approach to estimate both
the matrix decomposition and the outlier set. This is the
basis of the NMF(k,¢) problem and the R-NMF algorithm.
Preliminary results show that R-NMF is substantially more
robust compared to a standard NMF approach in the pres-
ence of data noise. This opens up a promising avenue for
further exploration and address the LPP.

7. RELATED WORK

The task of extracting genuine and meaningful outliers
has been extensively investigated in Data Mining, Machine
Learning, Database Management and Statistics [3, 1]. Much
of the focus, so far, has been on designing algorithms for
outlier detection. However the trend moving forward seems
to be on detection and interpretation.

While the definition of what constitutes an outlier is ap-
plication dependent, there are two methods which gained
fairly wide traction. These are distance-based outlier tech-
niques which are useful for discovering global outliers and
density-based approaches for local outliers [9, 2].

Recently there has been a growing interest in applying
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matrix factorization in many different areas, e.g. [7],[10]. To
the best of our knowledge, probably the most closest work
to ours is by Xiong et al. [14]. Xiong et al. have proposed a
method called Direct Robust Matrix Factorization (DRMF)
which is based on matrix factorization. DRMF is concep-
tually based on Singular Value Decomposition (SVD) and
error thresholding.

The main algorithm proposed in this paper extends the
work on k-means-- proposed in et al. [4] which unifies clus-
tering and outlier detection. Furthermore we have taken
inspiration from a body of work on multiple subspace out-
lier detection to distinguish between genuine and accidental
outliers [12].
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