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ABSTRACT
Clustering is a fundamental technique in data mining to
identify essential group structures in a given data matrix.
Traditional clustering methods are one-way clustering, which
has however limitations for high-dimensional matrices or
matrices with missing values. One possible solution is co-
clustering, which does clustering both columns and rows si-
multaneously. Also auxiliary information over columns or
rows is helpful to stabilize/improve the performance of clus-
tering. We propose a new co-clustering approach, which
can incorporate auxiliary information on both columns and
rows. Our approach is based on a probabilistic model, for
which we present an efficient method for estimating param-
eters, based on variational Bayesian learning. Our problem
setting can be semi-supervised, by which our approach can
be applied to various data mining applications. We eval-
uated the performance of the proposed approach by using
both synthetic and real datasets, confirming the clear ad-
vantage of incorporating auxiliary information as well as of
our method over two competing methods.

Categories and Subject Descriptors
H.2.8 [Database Management]: Database Applications—
Data mining ; I.5.3 [Pattern Recognition]: Clustering—
Algorithms

General Terms
Algorithms and Experimentation

1. INTRODUCTION
Clustering is one of the most fundamental techniques in

data mining to identify essential group structures from a
given data matrix. Typical clustering methods are k-means,
spectral clustering, and mixture model-based probabilistic
learning, all being one-way clustering, which partitions only
either of rows (examples) or columns (features) of a given
matrix into groups. One-way clustering however does not
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perform so well if a given matrix is high-dimensional (i.e.
the matrix size being biased) or very sparse (i.e. a matrix
with many missing values). One possible solution for this
problem is two-way clustering or co-clustering, which does
clustering both columns and rows of a given matrix simulta-
neously, typically by matrix factorization [3] or probabilistic
model learning [5]. In fact, co-clustering is useful for a lot
of applications, including bioinformatics, recommender sys-
tems or text mining. A typical example is gene expression
analysis, where a given data matrix has expression values
of genes (rows) under some conditions (columns) like cancer
types or normal. In this case, clustering both genes and con-
ditions (or samples) is helpful to identify genes, which are
significantly related with certain cancer types. Another ex-
ample is recommendation by using a matrix over customers
(rows) and items (columns) with purchase records, meaning
a binary matrix, in which the element with one indicates that
the corresponding customer bought the corresponding item.
In this case, many elements in the given matrix are missing,
while co-clustering captures groups of both customers and
items relatively well even under this setting, which is useful
for estimating missing values.

A data matrix is the main input, while in most cases,
we can have additional auxiliary information over columns
and/or rows, by which clustering performance can be im-
proved. For example, in gene expression analysis, we can
have group information over samples. Similarly gene simi-
larity can be measured by gene networks, such as metabolic
pathways, protein-protein interactions or gene regulatory
networks. Using gene networks or group information over
samples is useful for improving the performance of gene clus-
tering. This situation is often the case with recommenda-
tion. We can use similarity or group information on cus-
tomers and/or items. This type of information works for im-
proving clustering customers or items and estimating miss-
ing values in the matrix used by recommendation systems.
Overall, clustering with this type of auxiliary information
is useful and generally so-called semi-supervised clustering,
which is now very common, by which a variety of methods
have been developed for this setting in the past decade [2].

We propose a new co-clustering approach, which uses the
main data matrix as well as auxiliary information for both
columns and rows. Fig. 1 is a schematic picture of these
inputs of our problem setting. Our approach is based on a
probabilistic model for our co-clustering setting with three
different inputs, i.e. the main matrix and auxiliary infor-
mation for columns and rows. We then present an efficient
and robust algorithm for estimating probability parameters
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Figure 1: Problem setting: data matrix with auxil-
iary information

of our model based on variational Bayesian learning.
We have evaluated the performance of the proposed method,

by using both synthetic and real datasets, demonstrating
the advantage of our approach over two competing meth-
ods, Bayesian co-clustering and k-means.

2. METHOD

2.1 Preliminaries and Notations
Let X ∈ RM×N be a data matrix. We assume that aux-

iliary information is given by a graph (or adjacency ma-
trix) for both columns and rows. So if group labels are
given (instead of a graph), we can generate a graph by
connecting two items (nodes) in the same group by one

edge. We denote an auxiliary graph of columns by W (z)

and that of rows by W (h). Let K and L be the num-
ber of clusters for columns and rows, respectively, where
K and L are assumed to be given. Let zn be a latent vari-
able (or a cluster label) of column n and hm be that of
row m, where z = (z1, . . . , zN ) and h = (h1, . . . , hM ). We

define a Gaussian distribution as N (x|µ, σ2) := (2πσ2)−
1
2

exp
(
− (x−µ)2

2σ2

)
, a Gamma distribution as G(x|α, β) := βα

Γ(α)

xα−1e−βx, and a student’s t-distribution as T (x|µ, λ, ν) :=

Γ(ν/2+1/2)
Γ(ν/2)

(
λ
πν

) 1
2

{
1 + λ(x−µ)2

ν

}−ν/2−1/2

, where Γ(·) is the

gamma function given by Γ(x) :=
∫∞
0
tx−1e−tdt. Let ψ(·) :=

d
dx

log Γ(x) be the digamma function and δ(x, y) be the delta
function, which gives one if x = y; otherwise zero.

2.2 Probabilistic Model for Data Matrix with
Auxiliary Information

We first assume that the joint probability of data matrix
X, latent variables z and h, and parameter θ, can be written
as follows:

p(X,z,h,θ|θ0)

:= p(X|θ,z,h) p(z|w(z)) p(h|w(h)) p(θ|θ0),

where θ0 is a vector of hyper-parameters. We assume that
the conditional probability of data matrix X, given param-
eter θ, latent values z and h is given as a Gaussian distri-

bution, as follows:

p(X|θ, z,h) :=
M∏

m=1

N∏
n=1

p
(
Xmn|θhmzn

)
p
(
X|θlk

)
:= N

(
X
∣∣∣µlk,

(
slk

)−1
)

where θ(l,k) := (µlk, slk). The idea behind this model is to
make items in a co-cluster have the same value.

We further assume that the prior distributions of latent
variables for columns and rows are given, with auxiliary in-
formation, as follows:

p(z|w(z)) :=
1

Cz
exp

{
N∑
i=1

N∑
j=1

w
(z)
A ·W (z)

ij δ(zi, zj)

+
K∑

k=1

w
(z)
k

N∑
n=1

δ(zn, k)

}

p(h|w(h)) :=
1

Ch
exp

{
M∑
i=1

M∑
j=1

w
(h)
A ·W (h)

ij δ(hi, hj)

+

L∑
l=1

w
(h)
l

M∑
m=1

δ(hm, l)

}
where Cz and Ch are coefficients to normalize so that the
value of the integral is one, and w(z) and w(h) are hyper-
parameters. The p(z|w(z)) and p(h|w(h)) are introduced
by Markov random fields or Boltzmann machine. That is,
these probabilities represent graph structures. These prob-
abilities can be larger if latent labels z or h are shared by
connected neighborhoods more in auxiliary graphs W (z) or
W (h), respectively. This means that auxiliary information
are incorporated into co-clustering through these probabilis-
tic distributions. The weights of auxiliary graphs can be

adjusted by hyperparameters w
(z)
A and w

(h)
A .

We assume the prior distribution of parameter θ as con-
jugate prior distributions, as follows:

p
(
θ
∣∣θ0

)
:=

L∏
l=1

K∏
k=1

p
(
θlk

∣∣∣θ0

)
p
(
θlk

∣∣θ0

)
:= N

(
µlk|µ0, (ξ0slk)

−1
)
G(slk|α0, β0)

2.3 Co-clustering based on Variational Bayes
Learning

The true posterior distribution of parameters p(z, h, θ|X,θ0)
is computationally intractable by Bayesian learning in our
setting. We thus apply a variational Bayesian (VB) ap-
proach [1], i.e. an approximation of Bayesian learning. In
the VB approach, we first assume that the posterior dis-
tributions of parameters are independent of each other as
follows:

q(θ, z,h) :=

{
L∏

l=1

K∏
k=1

q(θlk)

}{
N∏

n=1

q(zn)

}{
M∏

m=1

q(hm)

}
where q(·) means a VB posterior distribution. The VB pos-
terior distribution is then optimized from given data by
minimizing Kullback-Leibler (KL) divergence between the
true posterior distribution and the VB posterior distribu-
tion. This minimization is equivalent to minimizing the up-
per bound of the Bayesian free energy given by Jensen’s



inequality as follows:

Ft(X|θ0) := − log
∑
z

∑
h

∫
θ

p(X,z,h,θ|,θ0) dθ

≤ −
∑
z

∑
h

∫
θ

q(θ,z,h) log
p(X, z,h,θ|θ0)

q(θ, z,h)
dθ

:= F [q]

F [q] is called variational Bayes free energy.
Here, for simplicity, we denote the expectations over latent

variables z and h by: zkn := q(zn = k), hl
m := q(hm = l),

Hl :=
∑

m hl
m, Zk :=

∑
n z

k
n, Xlk :=

∑
m

∑
n h

l
mzknXmn,

and X2
lk :=

∑
m

∑
n h

l
mzknX

2
mn. We can then derive the VB

posterior distribution of µlk and slk with the variation of
F [q] with respect to q(µlk, slk), as follows:

q
(
µlk

)
= T

(
µlk

∣∣∣µ̄lk,
αlk

βlk
ξlk, αlk

)
q
(
slk

)
= G

(
slk

∣∣∣αlk, βlk
)
,

where

αlk = α0 +
1

2
HlZk

βlk = β0 +
1

2

{
ξ0µ

2
0 +X2

lk − ξlkµ̄
2
lk

}
µ̄lk =

ξ0µ0 +Xlk

ξlk

ξlk = ξ0 +HlZk

On the other hand, the posterior distribution of zn can be
given by using the variation of F [q] with respect to q(zn),
as follows:

q
(
zn = k

)
=

exp
(
γnk

)∑K
k=1 exp (γnk)

,

where

γnk =

N∑
j=1

w
(z)
A W

(z)
nj z

k
j + w

(z)
k − 1

2

L∑
l=1

Hl
αlk

ξlk(αlk − 1)

−1

2

L∑
l=1

αlk

βlk

M∑
m=1

hl
m

(
µ̄lk −Xmn

)2
+
1

2

L∑
l=1

Hl

{
ψ(αlk)− log βlk

}
.

Similarly, the posterior distribution of hm is given by

q
(
hm = l

)
=

exp
(
ηml

)∑L
k=1 exp (ηml)

,

where

ηml =

M∑
j=1

w
(h)
A W

(h)
mj h

l
j + w

(h)
l − 1

2

K∑
k=1

Zk
αlk

ξlk(αlk − 1)

−1

2

K∑
k=1

αlk

βlk

N∑
n=1

zkn
(
µ̄lk −Xmn

)2
+
1

2

K∑
k=1

Zk

{
ψ(αlk)− log βlk

}
.

Fig. 2 shows a pseudocode of our co-clustering algorithm,
which we call VBCA, standing for Variational Bayes learning

————————————————————————–
Input : X, W (z), W (h), K, L, θ0

Output : q(z), q(h), q(θ)

VBCA(X,W (z),W (h),K, L,θ0)

1: Initialize q(z) and q(h)
2: while F [q] is not converged do
3: VB-M step: Update q(µ) and q(s)
4: VB-E step: Update q(z) and q(h)
5: Calculate F [q]
6: end while

————————————————————————–

Figure 2: Pseudocode of VBCA

for Co-clustering with Auxiliary information. Finally in pre-
diction, for column n and rowm, we can assign cluster labels
ẑn and ĥm by using the posterior distributions, which are
optimized by VBCA, as follows: ẑn ← argmaxk q(zn = k)

and ĥm ← argmaxl q(hm = l).

3. EXPERIMENTS
We used the following parameter setting throughout our

experiments: w
(z)
k = w

(h)
l = 1, α0 = 2, β0 = 1, ξ0 = 1,

µ0 = 0 and w
(z)
A = w

(h)
A . We used the true number of clus-

ters as an input. We evaluated the performance of VBCA,
comparing with Bayesian Co-Clustering (BCC) [5] and k-
means, by using normalized mutual information (NMI) [6]
between estimated clusters CE and true clusters CT , as fol-

lows: NMI := MI(CE ,CT )√
H(CE)

√
H(CT )

, where MI(CE , CT ) is mutual

information, H(C) is entropy, and H(CE , CT ) is joint entropy.

3.1 Synthetic Data
Data Setting: we fixed K = 3, L = 2 and the number

of columns and rows per cluster at 50 and 20, respectively.
That is, we set z∗n = k (50(k − 1) + 1 ≤ n ≤ 50k) for col-
umn cluster k, and h∗

m = k (20(l − 1) + 1 ≤ m ≤ 20l)
for row cluster l. Under these true clusters, we generated
element (m,n) of data matrix Xmn according to Gaussian
distribution N (µlk, σ

2), where l = h∗
m, k = z∗n and µ were

fixed at µ11 = 1, µ12 = 0, µ13 = 1, µ21 = 0, µ22 = 0
and µ23 = 0.5, while different values were examined for σ2.
We generated auxiliary networks by using three parameters,
Rin: the ratio of intra-cluster edges in a cluster, Rout: the
ratio of inter-cluster edges in a cluster, and Rs: the ratio
of labeled nodes to all nodes. First, for columns, i.e. W (z),
we randomly generated 3×50×49×Rin intra-cluster edges
and 2×502×Rout inter-cluster edges. Similarly for rows, i.e.
W (h), 2× 20× 19× Rin intra-cluster edges and 202 × Rout

inter-cluster edges were generated. If Rout is large (compar-
ing with Rin), clusters cannot be separated well, meaning
that the auxiliary network can be like noise. So we exam-
ined different values of Rout, fixing Rin at 0.3. To realize
a semi-supervised setting, once after we generated auxiliary
networks, we randomly discarded all edges connecting to
50×(1−Rs) nodes inW (z) and 20×(1−Rs) nodes inW (h).
We used three types of parameter settings of (Rout, Rs, σ

2):
1) (0.1, 1.0, 4), 2) (0.15, 1.0, 3) and 3) (0.1, 0.75, 4), where
twenty datasets were generated randomly for each set.

Results: Fig. 3 shows the average NMI of the compet-
ing methods over 20 datasets for each parameter setting.
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Figure 3: Average NMI on synthetic data: (a1),
(a2) and (a3) for columns and (b1), (b2) and (b3)
for rows, under the parameter settings of 1), 2) and
3), respectively.

The horizontal axis shows the weight for auxiliary networks.
From this figure, we can see that for almost all values of the
weight for auxiliary networks, the average NMI of VBCA
was higher than those of BCC and k-means for both columns
and rows, particularly the highest NMI of VBCA being
clearly higher than competing methods. This demonstrates
that using auxiliary information was advantageous as well as
that VBCA could incorporate this information well enough.
(We note that larger weight values make q(z) and q(h) focus
on single clusters only, by which the NMI of VBCA becomes
worse for larger weight values.)

3.2 Real Data
Data Setting: We used a gene expression dataset in [4]

which has 42 human (tumor tissue) samples, consisting of
10 medulloblastomas, 10 rhabdoid, 10 malignant glioma, 8
supratentorial PNETS and 4 normal cerebella, resulting in
L = 4. We first selected 2,128 genes, by 1) first filtering out
genes with small absolute values and small variances over all
samples and 2) then discarding genes that were differentially
expressed between diseased tissue samples and normal sam-
ples, by using t-test with p-value of 0.01. We then further
chose genes to be used in our experiments, with generating

Table 1: Average NMI for real gene expression data

K VBCA BCC k-means
3 Gene 0.14 ± 0.17 0.01 ± 0.01 0.01 ± 0.01

Sample 0.69 ± 0.08 0.28 ± 0.20 0.55 ± 0.08
5 Gene 0.21 ± 0.15 0.02 ± 0.01 0.02 ± 0.01

Sample 0.62 ± 0.15 0.36 ± 0.19 0.56 ± 0.07
10 Gene 0.29 ± 0.11 0.04 ± 0.01 0.04 ± 0.01

Sample 0.58 ± 0.15 0.45 ± 0.07 0.56 ± 0.06

gold standard clusters by using Gene Ontology (GO), which
is standard gene categories. That is, we randomly chose K
GO terms, where each term has 50 to 100 genes, and used
genes in these K true clusters. We examined three values
(3, 5 and 10) for K. We then generated auxiliary networks
(twenty times for each value of K) by randomly choosing
pairs in the same cluster as edges for samples and genes,
limiting to only 0.75 ×M samples and 0.75 ×N genes, be-
cause of implementing a semi-supervised setting.

Results: Table 1 shows the average NMI over twenty runs

of three competing methods (VBCA is with w
(z)
A = w

(h)
A =

102). This table shows that VBCA clearly outperformed the
other two methods for all settings, indicating that VBCA
could incorporate auxiliary networks well enough to improve
the performance.

4. CONCLUDING REMARKS
We have proposed a new and efficient method, VBCA, for

co-clustering with auxiliary information. VBCA is based on
a probabilistic model, for which probability parameters are
estimated by using variation Bayes learning. Our experi-
mental results with synthetic and real datasets confirmed
the clear performance advantage of using auxiliary informa-
tion and of VBCA against two competing methods. Possi-
ble future work is to extend our approach to be applied to
a high-dimensional data array, such as a tensor.
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