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ABSTRACT
Distance metric learning is a powerful approach to deal with
the clustering problem with side information. For semi-
supervised clustering, usually a set of pairwise similarity
and dissimilarity constraints is provided as supervisory in-
formation. Although some of the existing methods can use
both equivalence (similarity) and inequivalence (dissimilar-
ity) constraints, they are usually limited to learning a global
Mahalanobis metric (i.e., finding a linear transformation).
Moreover, they find metrics only according to the data points
appearing in constraints, and cannot utilize information of
other data points. In this paper, we propose a probabilistic
metric learning algorithm which uses information of uncon-
strained data points (data points which do not appear in
neither positive nor negative constraints) along with both
positive and negative constraints. We also kernelize our met-
ric learning method based on the kernel trick which provides
a non-linear version of the learned metric. Experimental re-
sults on synthetic and real-world data sets demonstrate the
effectiveness of the proposed metric learning algorithm.

Categories and Subject Descriptors
H.2.8 [Database Management]: Database Applications—
Data mining ; I.5.3 [Pattern Recognition]: Clustering—
Algorithms
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1. INTRODUCTION
Over the past few years, distance metric learning has been

widely studied in machine learning and pattern recognition
community due to its important rule in classification and
clustering problems [15, 17]. The goal of distance metric
learning is to learn a suitable metric function from data with
the constraint that similar (dissimilar) data points should
stay closer (further). For supervised learning applications
such as classification and regression tasks, class label infor-
mation of the training data can be used as the supervisory
information for learning an appropriate metric. for unsuper-
vised learning applications such as clustering and dimension-
ality reduction, however, class label information is not gener-
ally available. Hence, the distance metric learning problem
is an ill-posed problem with no well-defined optimization
criteria. Recently, researchers have given much attention to
distance metric learning for semi supervised (constrained)
clustering tasks. In this class of problems, class label infor-
mation is not generally available. However, some informa-
tion in the form of equivalence (similarity) and inequivalence
(dissimilarity) constraints is available as supervisory infor-
mation.
Many algorithms have been proposed for learning an ap-
propriate metric based on the similarity-dissimilarity con-
straints. Xing et al. [16] proposed a metric learning algo-
rithm by formulating the learning task into the following



constrained convex optimization problem.

A∗ =argmin
A

∑
(xi,xj)∈S

(xi − xj)
TA(xi − xj),

s.t.
∑

(xi,xj)∈D

(xi − xj)
TA(xi − xj) ≥ 1,

A ≽ 0, (1)

where A is a Mahalanobis distance matrix (A must be pos-
itive semidifinite matrix to satisfy the non-negativity and
triangle inequality conditions), and S andD is the set of pos-
itive and negative constraints respectively. Relevant Com-
ponent Analysis (RCA) is another method which learns a
global linear transformation (a Mahalanobis distance) by
utilizing only the positive (equivalence) constraints [2]. Hoi
et al. [8] extended the RCA method by incorporating the
inequivalence constraints into its objective function. Yang
et al. [17] proposed a probabilistic method based on the
logistic regression classifier parameterized by the distance
metric. In this method, the metric is learned using the max-
imum likelihood estimation which is equal to the following
convex optimization problem.

[A∗, µ∗] = argmin
A,µ

[ ∑
(xi,xj)∈S

log
(
1 + exp(−∥xi − xj∥2A + µ)

)
+

∑
(xi,xj)∈D

log
(
1 + exp(∥xi − xj∥2A − µ)

)]
s.t. µ ≥ 0, A ≽ 0, (2)

where µ is the threshold parameter, ∥xi−xj∥2A is the squared
Mahalanobis distance, and yij = 1, if (xi, xj) ∈ S, and
yij = 0, if (xi, xj) ∈ D (yij denotes whether two data points
xi and xj belong to the same cluster or not). Xiang et al.
[15] proposed a method for learning a linear transformation
matrix W (Learning the transformation matrix W can yield
the Mahalanobis metric A = WWT ) by maximizing the
trace ratio objective function:

W ∗ = argmax
WTW=I

WTSbW

WTSwW
, (3)

where Sb and Sw are the covariance matrices computed from
nagative and positive constraints respectively. The con-
straint WTW = I is for avoiding degenerate solutions [15].
Davis et al [6] proposed an information theoretic metric
learning method (ITML), which its goal is to learn a Ma-
halanobis distance parameterized by A that has minimum
LogDet divergence to a given baseline matrix A0 while sat-
isfying the similarity-dissimilarity constraints:

A∗ = argmin
A

tr(AA−1
0 )− log |AA−1

0 | −m,

s.t. dA(xi, xj) ≤ u, (xi, xj) ∈ S,

dA(xi, xj) ≥ l, (xi, xj) ∈ D, (4)

where m is the dimension of data points, and |X| denotes
the determinant of the matrix X. In the last few years,
some non-linear metric learning algorithms for constrained
clustering have been proposed. Yeung and Chang [19] intro-
duced a kernel-based metric learning algorithm which can
only use positive constraints. Baghshah and shouraki [1]
extended the objective function presented in (3) which can

learn a non-linear transformation and also preserves the ge-
ometrical structure of data using the idea of Locally Linear
Embedding (LLE) algorithm [11].
Although some of the metric learning algorithms [15, 16,
18, 8, 9, 20, 1] can use information of both similarity and
dissimilarity constraints, most of them [15, 16, 18, 8] learn
a Mahalanobis metric which corresponds to a linear trans-
formation. Furthermore, some recent kernel-based metric
learning methods [8, 9, 20] cannot take advantage of uncon-
strained data points.
In this paper, we propose an efficient non-linear metric learn-
ing method which uses both similarity and dissimilarity con-
straints along with the unconstrained data. More precisely,
we extend the idea of [17] by incorporating a new term into
the objective function presented in (2) using the information
of the unconstrained data.
The reminder of this paper is organized as follows. In sec-
tion 2, we introduce our metric learning algorithm which
considers the unconstrained data as well as the positive and
the negative constraints. In section 3, we describe the opti-
mization procedure for solving the proposed objective func-
tion based on the deterministic annealing EM algorithm [14].
Section 4 presents experimental results on some synthetic
and real-world data sets. Concluding remarks are described
in the final section.

2. PROPOSED METHOD
In this section, first we introduce our global Mahalanobis

metric learning method using pairwise constraints while uti-
lizing information of the unlabeled (unconstrained) data.
Then, we present a non-linear extension of this method.

2.1 Linear Metric Learning
We are given a set of N data points X = {xi ∈ Rm}Ni=1

and two sets of pairwised constraints which are defined as

S = {(xi, xj) | xi and xj are in the same class}, (5)

D = {(xi, xj) | xi and xj are in two different class}, (6)

where S is the set of similar pairwise constraints, and D is
the set of dissimilar pairwise constraints. We also define U
as a set of all pairs of data points which do not appear in S
and D. Hence, we have

U = {(xi, xj) | i ̸= j, (xi, xj) /∈ S ∪D}. (7)

For any pair of points xi and xj , let dA(xi, xj) denote the
distance between them parameterized by A ∈ Rm×m, and
is defined as

dA(xi, xj) = ∥xi − xj∥A =
√

(xi − xj)TA(xi − xj), (8)

where A is the Mahalanobis distance matrix. To learn a
distance metric, one can assume there exits a corresponding
linear mapping WT : Rm → Rw (w ≤ m), where W ∈
Rm×w, and A = WWT . Hence, the distance between two
data points xi and xj under A can be computed as

∥xi − xj∥A =
√

(xi − xj)TWWT (xi − xj)

= ∥WT (xi − xj)∥. (9)

In other words, the Mahalanobis distance between data points
is equal to the Euclidian distance between them after trans-
forming data points by WT . So, A represents a suitable Ma-
halanobis metric if clusters of data points are well-separated



after mapping them using its corresponding linear transfor-
mation (WT ), and all positive and negative constraints are
satisfied.
Following the idea of [17], we denote yij ∈ {+1,−1} as the
class label of data points xi and xj , and define it as

yij =

{
+1 if (xi, xj) ∈ S
−1 if (xi, xj) ∈ D.

(10)

We model the probability distribution of yij , given xi and
xj based on the logistic regression model parameterized by
A as [17]

P (yij | xi, xj) =
1

1 + exp
(
− yij(∥xi − xj∥2A − µ)

) , (11)

where µ ≥ 0 is the threshold parameter. The intuition of
Eq. 11 is that two samples xi and xj belong to the same
cluster if their distance ∥xi − xj∥2A is less than µ. Given S
and D, A and µ can be estimated by maximizing the overall
likelihood function for all the constraints in S and D (Eq.
2). The problem with this model is that it cannot exploit the
unlabeled (unconstrained) data points. Motivated by semi-
supervised logistic regression algorithm [7], we can include
unlabeled data based on the following intuition: if the clus-
ters are well-separated (after transforming data points by
WT ), then the classification on any pairs of unlabeled data
points (xi, xj) ∈ U should be confident. More precisely, any
pairs of unlabeled data points should clearly belong to the
same cluster, or to different clusters. Equivalently, the pos-
terior probability P (yij | xi, xj) should be either close to 1,
or close to 0. One appropriate way for measuring the confi-
dence is the Shannon’s conditional entropy which is defined
as

H(X) =

{ ∑
x

P (X = x) log 1
P (X=x)

if X is discrete,∫
x
p(x) log 1

p(x)
if X is continuous.

(12)
where X is a random variable, and P (X = x) and p(x) are
the probability mass function (PMF) and the probability
density function (PDF) of X respectively.
Since the class label of each pairs of data points is a Bernoulli
random variable (yij ∈ {+1,−1}) with probability p =
1/

(
1 + exp(−∥xi − xj∥2A + µ)

)
, its entropy is defined as

H(p) = −p log p− (1− p) log(1− p). (13)

The above entropy H reaches its minimum 0 when p = 0
or p = 1 (The entropy is small if the classification on the
unlabeled samples is certain). So, we propose the following
optimization problem based on the unlabeled data and the
positive and negative constraints:

[A∗, µ∗] =argmin
A,µ

[ ∑
(xi,xj)∈S

log
(
1 + exp(−∥xi − xj∥2A + µ)

)
+

∑
(xi,xj)∈D

log
(
1 + exp(∥xi − xj∥2A − µ)

)
+ λ

∑
(xi,xj)∈U

H
(
1/

(
1 + exp(−∥xi − xj∥2A + µ)

))]
s.t. µ ≥ 0, A ≽ 0, (14)

where λ is the regularization parameter. In other words,
the goal of entropy term is to alter the maximum likelihood
solution, by biasing it towards low entropy.

In order to simplify the computation for solving the above
problem (the difficulty with solving the above problem is
due to the positive semi-definitive constraint A ≽ 0), we
follow the idea of [17] and use the eigenspace of the train-

ing samples to approximate A. Let R = 1
N

∑N
i=1 xix

T
i be

the sample correlation matrix, and {ui}ki=1 be the top k
(k ≤ min(m,N)) eigenvectors of the matrix R. Then A is
assumed to be a linear combination of the top k eigenvectors
[17]:

A =

k∑
i=1

θiuiu
T
i , θi ≥ 0, (15)

where Θ = [θ1, ..., θK ]T is a vector of the non-negative weights
in the linear combination. Low-rank distance metrics are
desirable because they not only can drastically reduce the
computational requirements for working with the data, but
also they can often provide noise reduction as well.
By replacing A with the right-hand side of Eq. 15, the pro-
posed optimization problem can be reformulated as

[Θ∗, µ∗] =argmin
Θ,µ

[ ∑
(xi,xj)∈S

log
(
1 + exp(−ΘTVij + µ)

)
+

∑
(xi,xj)∈D

log
(
1 + exp(ΘTVij − µ)

)
+ λ

∑
(xi,xj)∈U

H
(
1/

(
1 + exp(−ΘTVij + µ)

))]
s.t. µ ≥ 0,Θ ≥ 0, (16)

where Vij = [v1ij , v
2
ij , ..., v

k
ij ]

T is a k dimentional vector with

vlij = uT
l (xi − xj)(xi − xj)

Tul, l = 1, ..., k. (17)

2.2 Kernel-Based (non-linear) Metric Learn-
ing

In this section, we introduce a kernelized version of the
proposed linear metric learning method presented in the pre-
vious section. In order to learn our linear metric in Repro-
ducing Kernel Hilbert Space (RKHS), we map the data into
a high-dimensional feature space F equipped with an inner
product as

ϕ : Rm → F , (18)

where ϕ is a non-linear function which maps data points
from input space to the high-dimentional feature space F .
Suppose we use a kernel function K(., .) which satisfies Mer-
cer’s condition (many choices for kernel functions satisfy
Mercer’s condition, such as polynomial, RBF, and exponen-
tial kernels), then it can be proved [13] that there exist a
nonlinear mapping ϕK which can be implicitly specified by
K as

ϕK(xi)
TϕK(xj) = K(xi, xj), ∀xi, xj ∈ Rm. (19)

Using Eq. 19, we can make use of kernel trick idea which is
also known as kernel substitution. Precisely speaking, if we
have an algorithm, in which input data points enters only in
the form of inner products, we can replace that inner prod-
uct with some other choice of kernels (kernels which satisfy
Mercer’s condition).
Let Φ = [ϕ(x1), ..., ϕ(xN )] be the matrix containing the
transformed training data, so that each data point xi(i =



1, ..., N) is projected onto a point ϕ(xi), andK = [K(xi, xj)] =
ΦTΦ be the corresponding kernel matrix. We now perform
our linear metric learning in the feature space, which implic-
itly defines a nonlinear metric in the original data space.
Let Rϕ = 1

N

∑N
i=1 ϕ(xi)ϕ(xi)

T be the sample correlation

matrix in feature space, and {ai}ki=1 be the top k (k ≤ N))
eigenvectors of the matrix Rϕ. Our goal is to reformulate
the objective function of Eq. 16 in the feature space with-
out having to work explicitly in that space. Motivated by
the idea of Kernel PCA algorithm [12], we propose an opti-
mization problem that is formulated based on the elements
of the kernel matrix K. We know that each eigenvector
ai(i = 1, ..., k) can be computed by eigenvector expansion of
Rϕ as

Rϕai = σiai, i = 1, ..., k, (20)

where σi is the corresponding eigenvalue of ai. From the
definition of Rϕ, Eq. 20 can be reformulated as

1

N

N∑
n=1

ϕ(xn)(ϕ(xn)
T ai) = σiai, i = 1, ..., k. (21)

From Eq. 21, we can see that each eigenvector ai can be
represented by a linear combination of the {ϕ(xn)}Nn=1 as

ai = Φzi, i = 1, ..., k, (22)

where zi is an N dimensional coefficient vector. By substi-
tuting the above expansion back into Eq. 21, we obtain

1

N

N∑
n=1

ϕ(xn)ϕ(xn)
TΦzi = σiΦzi, i = 1, ..., k. (23)

By multiplying both side of the above equation by ΦT , we
obtain

K2zi = NσiKzi, i = 1, ..., k (24)

where we used the fact that K(xi, xj) = ϕ(xi)
Tϕ(xj). Now

we can compute each zi by solving the following eigenvector
problem

Kzi = Nσizi, i = 1, ..., k, (25)

where we have removed a factor of K from both sides of Eq.
24. Having computed the vectors zi(i = 1, ..., k) based on
the above eigenvector problem, the optimization problem in
Eq. 16 can be cast in terms of the kernel matrix as

∆∗ =argmin
∆

[ ∑
(xi,xj)∈S

log
(
1 + exp(−∆TV ϕ

ij )
)

+
∑

(xi,xj)∈D

log
(
1 + exp(∆TV ϕ

ij )
)

+ λ
∑

(xi,xj)∈U

H
(
1/

(
1 + exp(−∆TV ϕ

ij )
))]

s.t. ∆ ≥ 0, (26)

where ∆ = [ΘT , µ]T , and V ϕ
ij = [v1

ij , v
2
ij , ..., v

l
ij , ..., v

k
ij ,−1]T

is a k + 1 dimensional vector with

vl
ij = aT

l (ϕ(xi)− ϕ(xj))(ϕ(xi)− ϕ(xj))
Tal

= zTl Φ
T (ϕ(xi)− ϕ(xj))(ϕ(xi)− ϕ(xj))

TΦzl

= zTl (K(.,i) −K(.,j))(K(.,i) −K(.,j))
T zl, (27)

and K(.,i) is the i-th column of matrix K.

3. OPTIMIZATION PROCEDURE
In this section, we describe the optimization procedure for

the proposed objective function (Eq. 26). Solving (26) is a
challenging task because it is not convex. Precisely speaking,
although the first two component of the proposed objective
function is convex, the entropy component of the objective
function is concave, hence their weighted sum is usually not
convex, except for λ = 0. Hence, the optimization surface is
expected to possess local minima.
In order to solve (26), we reformulate the minimization prob-
lem in Eq. 26 as the following maximization problem.

∆∗ = argmax
∆

[ ∑
(xi,xj)∈S

logP (yij = 1 | V ϕ
ij ;∆)

+
∑

(xi,xj)∈D

logP (yij = −1 | V ϕ
ij ;∆)

+ λ
∑

(xi,xj)∈U

P (yij = 1 | V ϕ
ij ;∆) logP (yij = 1 | V ϕ

ij ;∆)

+ λ
∑

(xi,xj)∈U

P (yij = −1 | V ϕ
ij ;∆) logP (yij = −1 | V ϕ

ij ;∆)

]
s.t. ∆ > 0. (28)

In order to find a suitable local maxima of the above ob-
jective function, we use the Deterministic Annealing EM
(DAEM) algorithm [14]. This algorithm is a simple gener-
alization of the standard EM algorithm that doesn’t have
the initialization dependence problem. More precisely, the
DAEM algorithm includes a temperature parameter (T =
1 − λ) which controls the influence of unreliable model pa-
rameters, and this annealing process can reduce the de-
pendency on initial model parameters [14]. DAEM starts
from a possibly concave conditional likelihood (λ = 0, i.e.,
T = 1) and the temperature is gradually decreased (gradu-
ally increasing λ) until it reaches some predetermined value
1−λ0 = T0 ≥ 0, to return a good local maximum of the ob-
jective function. For each trial value of λ, the corresponding
solution is computed by a two-step iterative process, where
the soft assignments for class labels of unlabeled data are
calculated at the E-step, and at M-step, the expected log-
likelihood is maximized.
Using the DAEM algorithm for the proposed model (Eq.
28), the posterior distribution for the class label of each
(xi, xj) ∈ U given the current value of ∆ at iteration t (∆t)
can be computed as

Q(yij = 1 | V ϕ
ij ,∆

t) =

P (yij = 1 | V ϕ
ij ,∆

t)
1

1−λ

P (yij = 1 | V ϕ
ij ,∆

t)
1

1−λ +
(
1− P (yij = 1 | V ϕ

ij ,∆
t)
) 1

1−λ

.

(29)

The M-step then consists in maximizing the expected log-
likelihood with respect to the ∆,

∆t+1 = argmax
∆

[ ∑
xi,xj ,i̸=j

Q(yij = 1 | V ϕ
ij ,∆

t) logP (yij = 1 | V ϕ
ij ,∆)

+
(
1−Q(yij = 1 | V ϕ

ij ,∆
t)
)
log

(
1− P (yij = 1 | V ϕ

ij ,∆)
)]

s.t. ∆ ≥ 0, (30)

where Q(yij = 1 | V ϕ
ij ,∆

t) is equal to the right-hand side



of Eq. 29 for unlabeled data points ((xi, xj) ∈ U), and

Q(yij = 1 | V ϕ
ij ,∆

t) = δyij=1 for labeled samples. It can
be seen that the optimization problem (30) is concave with
respect to the ∆. Hence, it can be solved efficiently us-
ing convex optimization tools [3]. Algorithm 1 presents the
pseudocode of DAEM algorithm for solving (28).

Algorithm 1 DAEM algorithm for solving (28)

Input: x1, x2, ..., xN , K, λ0, and ∆0

Output: ∆t

initialization: Set λ = λ0, and t = 0
1. Compute z1, ..., zk(k ≤ N), where {zi}ki=1 are the k

eigenvectors corresponding to the non-zero
eigenvalues of K;

2. Compute V ϕ
ij (i = 1, ..., N, j = 1, ..., N) using Eq. 27;

3. Iterate EM-steps with λ fixed until the objective
function of Eq. 30 converged:

E step: compute Q(yij | V ϕ
ij ,∆

t) for each
unlabeled pair using Eq. 29;

M step: compute ∆t+1 using Eq. 30;
t = t+1;

4. Increase λ;
5. If λ > 1, stop the procedure. Otherwise go to step 3.

4. EXPERIMENTAL RESULTS
In this section, we explain experiments that we have con-

ducted to evaluate the performance of our method. We
demonstrate results of the proposed method on some syn-
thetic and real-world datasets and compare them with re-
sults of some recently introduced metric learning methods.

4.1 Experimental Setup
We compare our non-linear method with the metric learn-

ing algorithms introduced in [15, 18], as they are the most ef-
fective methods considering both positive and negative con-
straints. We also include the methods introduced in [4, 19,
1] as non-linear metric learning methods in our evaluations.
As in [18, 4, 19, 1], we use the Euclidean distance (without
metric learning) for the baseline comparison and apply the
k-means clustering algorithm with different distance metrics
to evaluate the efficiency of these metrics. For the kernel-
based methods, we apply the kernel k-means algorithm on
the obtained kernels.
Thus, we compare the performance of the following algo-
rithms:

• k-means without metric learning (Euclidean);

• k-means with the metric learning method introduced
in [15] (Xiang’s);

• k-means with the LLMA [4] method for metric learning
(LLMA);

• k-means with the extended RCA [18] method for met-
ric learning (ERCA);

• kernel k-means with the kernel obtained by the kernel-
β method [19] (Kernel-β);

• kernel k-means with the non-linear metric learning method
introduced in [1] (Baghshah’c);

• k-means with our probabilistic non-linear metric learn-
ing method (PM);

In our experiments, we use the exponentional kernelK(x, y) =
exp(−∥x− y∥/η) for all datasets. We also set the kernel pa-
rameter η as

η = 2
∑
i<j

∥xi − xj∥22
N(N − 1)

. (31)

The regularization parameter λ was updated by λi =
√

i/TN ,

where λi is the value of λ at i-th iteration, and TN is the to-
tal number of the iterations. From preliminary experiments,
we used TN = 20, and 10 iterations of the EM-steps were
conducted at each temperature.
The number of pairwise similarity and dissimilarity con-
straints is set to be equal |S| = |D|. We also generate 20
different S and D sets for each data set. Moreover, we run
the k-means algorithm 20 times with different random ini-
tializations for each S and D set, and report the average
rand index over the 20 runs.

4.2 Performance Measure
In order to measure the performance of the clustering

methods in our experiments, we use the Rand index which
is the most widely used measure for evaluating the perfor-
mance of metric learning algorithms. It shows how well the
clustering results agree with the ground truth clusters [1].
This measure is defined as [16]

RI = 2
Ns +Nd

N(N − 1)
, (32)

where Ns is the number of data pairs assigned to the same
cluster, both in the ground truth and the resultant cluster-
ing, and Nd is the number of data pairs assigned to different
clusters both in the ground truth and the resultant cluster-
ing. Since this index is biased toward assigning data points
to different clusters when there are more than two clusters
[16], we use the modified Rand index introduced in [16], and
is defined as

R̂I =
1

2
×

∑
i>j δ(ci = cj ∧ ĉi = ĉj)∑

i>j δ(ĉi = ĉj)

+
1

2
×

∑
i>j δ(ci ̸= cj ∧ ĉi ̸= ĉj)∑

i>j δ(ĉi ̸= ĉj)
, (33)

where δ(.) is an indicator function (i.e., δ(true) = 1 and
δ(false) = 0), ĉi is the cluster to which xi is assigned by
the clustering algorithm, and ci is the correct cluster assign-
ment.
Using this measure, the matched pairs and mismatched pairs
are assigned weights to give them equal chances of occur-
rence ( 1

2
) [4].

4.3 Experiments on Synthetic Data Sets
We first perform some experiments on three synthetic

datasets (circle, cross, moon) demonstrated in Fig. 1. Data
points shown with the same color and point style belong to
the same cluster. For these datasets, we set the number
of constraints to nc = |S| = |D| = 15. Fig. 2 shows the
results of applying different algorithms on these datasets as
box-plots. From that figure, we can see that the K-means al-
gorithm has a poor performance on these datasets. Further-
more, these datasets cannot be clustered well using the linear
methods due to the non-linear structure of these datasets.
We can also observe that our method has better performance



Figure 1: Synthetic datasets. From left to right: dataset 1 (circle), dataset 2 (cross), dataset 3 (moon).

Figure 2: From left to right : clustering results on circle, cross, and moon datasets using different metric
learning methods: (1) Euclidean, (2) Xiang’s, (3) ERCA, (4) LLMA, (5) Kernel-β, (6) Baghshah’s, (7) PM.

than the LLMA and kernel-β as non-linear metric learning
algorithms, because our method utilizes the information of
unlabeled data but these algorithms do not consider the un-
labeled samples. Although the Baghshah’s algorithm gives
good results on these data sets, our method performs better
than this algorithm on all of them.

4.4 Experiments on UCI datasets
In this section, we conduct experiments on nine real-world

datasets obtained from the Machine Learning Repository1 of
the University of California, Irvine (UCI). The properties of
these datasets are shown in Table 1, where N denotes the
number of data points, C denotes the number of classes, and
m denotes the number of features for each dataset. All of
the nine data sets are normalized before use in the cluster-
ing algorithms (each feature is normalized to zero mean and
unit variance).
The average Rand index of each method vs. the number of
constraints on the nine UCI data sets has been demonstrated
in Fig. 3, from which we can see that the proposed non-
linear method generally outperforms all the other methods.
Again, this is due to the fact that our method makes use of
unlabeled data while most of the other methods do not. By
comparing the Baghshah’s method with our method, we can
also observe that the proposed regularization term (entropy
term) is more appropriate than the Baghshah’s regulariza-

1http://archive.ics.uci.edu/ml/

Table 1: Properties of the UCI datasets used in our
experiments

dataset N C m
Soybean 47 4 35
Protein 116 6 20
Wine 178 3 13
Sonar 208 2 60
Glasses 214 6 10

Ionosphere 351 2 34
Boston housing 506 3 13
Breast cancer 569 2 31

Balance 625 3 4

tion term (geometrical structure term).

4.5 Experiments on MNIST dataset
Finally, we apply our method on the MNIST database [10]

which consists of 70000 28 × 28 grayscale images. In our
experiments, we choose 500 images randomly for each digit.
We also set the number of constraints to nc = |S| = |D| = 30
for all experiments performed on subsets of the MNIST
dataset. Table 2 shows the results of different clustering
algorithms for three-digit subsets. For each algorithm, we
show the mean rand index and standard deviation over dif-
ferent runs (corresponding to different sets of constraints and



Figure 3: Average Rand index curves of different methods on some UCI datasets. First row (from left to
right) : Soybean, Protein, Wine. Second row (from left to right) : Sonar, Glasses, Ionosphere. Last row
(from left to right) : Boston housing, Breast cancer, Balance.

Table 2: Mean and variance of the Rand index values obtained for different methods on some subsets of the
MNIST database.

subset Euclidean Xiang’s ERCA LLMA Kernel-β Baghshah’s PM
{1, 2, 3} 0.868 ± 0.04 0.862 ± 0.05 0.853 ± 0.07 0.636 ± 0.05 0.569 ± 0.08 0.865 ± 0.04 0.867 ± 0.03

{4, 5, 6} 0.771 ± 0.06 0.828 ± 0.08 0.871 ± 0.07 0.715 ± 0.04 0.561 ± 0.06 0.902 ± 0.05 0.914 ± 0.05

{7, 8, 9} 0.708 ± 0.02 0.745 ± 0.05 0.774 ± 0.04 0.645 ± 0.06 0.523 ± 0.01 0.819 ± 0.01 0.830 ± 0.01

different initializations of the k-means clustering algorithm).
From that table, we can see that our metric learning algo-
rithm gives the best clustering results for two out of three
subsets.

5. CONCLUSION
In this paper, we introduced a novel non-linear metric

learning algorithm for constrained clustering. The proposed

method uses the information of unlabeled data along with
positive and negative constraints to find an appropriate met-
ric. Some experiments on the synthetic, UCI, and MNIST
datasets demonstrated the superiority of our method over
some existing linear and non-linear metric learning methods.
As the future work, we will apply the proposed methods on
other real-world problems such as content-based image re-
trieval [5].



6. REFERENCES
[1] M. S. Baghshah and S. B. Shouraki. Semi-supervised

metric learning using pairwise constraints. IJCIA,
2009.

[2] A. Bar-Hillel, T. Hertz, N. Shental, and D. Weinshall.
Learning a mahalanobis metric from equivalence
constraints. JMLR, 6:937–965, 2005.

[3] S. Boyd and L. Vandenberge. Convex Optimization. .
Cambridge University Press, , Cambridge, UK, 2003.

[4] H. Chang and D. Yeung. Locally linear metric
adaptation with application to semi-supervised
clustering and image retrieval. Pattern Recognition,
39:1255–1264, 2006.

[5] H. Chang, D. Y. Yeung, and W. K. Cheung.
Relaxational metric adaptation and its application to
semi-supervised clustering and content-based image
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