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ABSTRACT
Finding multiple clustering solutions has recently gained
much attention. Based on the observation that data is of-
ten multi-faceted, novel clustering methods have been in-
troduced capable of detecting multiple, diverse clusterings.
In this work-in-progress paper, we present a novel stochas-
tic subspace search principle that tackles the requirements of
multi-view clustering. The main idea is to consider each sub-
space as a state in a Markov chain and using Monte Carlo
methods to sample the multi-view subspaces. By dynam-
ically adapting the underlying probability density function
we realize the generation of alternative clustering views. We
present preliminary experimental results of our method and
we describe future research directions.

Categories and Subject Descriptors
H.2.8 [Database Management]: Database Applications—
Data mining ; I.5.3 [Pattern Recognition]: Clustering—
Algorithms

General Terms
Algorithms and Experimentation

1. INTRODUCTION
Traditional clustering techniques focus on finding a single

grouping of the objects. Real world data, however, is often
multi-faceted and allows multiple interpretations. Conse-
quently, traditional clustering methods are often not able
to uncover all structure hidden in the data. To tackle this
challenge, the paradigm of multi-view/alternative clustering
has been introduced. Methods from this paradigm are ca-
pable of finding alternative and diverse groupings in a single
dataset.

Consider, for example, a movie database where for each
movie multiple characteristics are recorded. While on the
one hand a grouping based on the movies’ genres might
be detected, an alternative grouping might highlight the
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grouping according to the movies’ directors, locations or
cast. These different clusterings reveal different perspec-
tives on the data and allow for an enhanced knowledge ex-
traction. Other examples include image data, where mul-
tiple groupings might summarize different features of the
images, customer data, where one grouping might represent
the personal interests of the customers and another group-
ing the professional interests, or biological data, where mul-
tiple groupings provide different perspectives on the mea-
surements recorded in several experiments or under different
treatments.

In the last few years, various methods able to detect mul-
tiple clustering solutions have been introduced. According
to [11], they can briefly be categorized into methods operat-
ing on the original (full-dimensional) dataspace [6], methods
performing space transformations [5, 14], and methods an-
alyzing (axis-parallel) subspace projections [9, 8]. In this
work-in-progress paper, we describe a novel method belong-
ing to the last category. We present a stochastic subspace
search principle which is able to highlight different views in
the data. The main idea is to consider each subspace as a
state in a Markov chain, with transitions allowed, for ex-
ample, only between similar subspaces. Starting from an
initial subspace, we can then use Monte Carlo methods to
perform random walks in the subspace space to sample the
multi-view subspaces.

In contrast to [9], which does not explicitly model the
views the clusters belong to, our method operates on the
level of subspaces and, thus, directly ensures the grouping
of clusters into views. Similar to [8], we also allow views to
overlap, i.e. individual dimensions might belong to multiple
views. While [8] proposes an extension of mixture models
where the number of clusters needs to be specified for each
view, we exploit the paradigm of kernel density estimation
allowing us to automatically determine the number of clus-
ters per view.

2. MULTI-VIEW SUBSPACE SEARCH
In this section, we present our multi-view subspace search

principle. We assume a database X of |D|-dimensional points

in the space R|D| is given, where D represents all attributes
of the dataspace. As mentioned above, we consider each sub-
space as a state in a Markov chain.1 Similar to most works in
the subspace clustering community, we refer to axis-parallel
subspaces only. That is, a subspace S corresponds to a set

1Please note the difference to the work [12] where each state
corresponds to one possible partitioning.



of dimensions S ⊆ D. Thus, the Markov chain has a finite
state space with 2|D| states. We define the neighbors of each
state to be its immediate subset-superset relationships.

Definition 1. Given a subspace S, the set of subspaces
adjacent to S in the Markov chain search space is defined as

N(S) := {S′ ⊂ S | |S\S′| = 1} ∪
{S′ ⊆ D|S ⊂ S′ ∧ |S′\S| = 1)}

Besides being efficient to compute, this definition of neigh-
borhood additionally ensures that each state of the Markov
chain has the same number of outgoing transitions.

Given this search space, our goal is to design an appropri-
ate sampling scheme for multi-view subspace exploration.
The better the clustering structure in a subspace and the
more novel the information the clustering reveals, the higher
should be the likelihood to sample this subspace. This task
requires to solve multiple challenges: a) How to define a
sound probability density function (pdf) that represents the
goodness of subspaces. According to this pdf, the sampling
is performed. b) How to realize that different views on the
data are detected? We do not want to detect very similar
subspaces that lead to redundancy. c) How to perform an
efficient sampling according to both previous aspects? Ana-
lyzing all states of the Markov chain is obviously intractable.
In the following sections, we discuss theses issues.

2.1 Quality of Subspaces
To evaluate the clustering structure of a subspace, we refer

to the principle of non-parametric density estimation using
kernel functions [16]. In particular, we focus on multiplica-
tive kernels, i.e. kernels where the d-dimensional kernel func-
tion κ(x) can be formulated as κ(x) = K(x1) · . . . · K(xd)
and K is a univariate kernel. Thus, given a database X of
|D|-dimensional points in space R|D|, the multivariate ker-
nel density estimator for the dataset in a specific subspace
S is defined as

fS
X (x) =

1

|X |
∑
y∈X

{∏
d∈S

h−1
S,d ·K(

xd − yd

hS,d
)

}
(1)

Instead of using a fixed bandwidth h, we use an adaptive

bandwidth vector ~hS = (hS,1, hS,2, . . . , hS,m) in which each
entry corresponds to one attribute of them-dimensional sub-
space S. This way, we account for the challenges of real
world data where each attribute might show different charac-
teristics. Note that the entry hS,d depends on two variables,
the subspace dimensionality m and the currently considered
dimension d ∈ S.

In our ongoing work, we use the Gaussian multiplica-
tive kernel, i.e. the function K corresponds to the univari-
ate Gaussian function. Using this set-up, we exploit Sil-
verman’s Rule of Thumb [16] to select the bandwidth in a
m-dimensional subspace, i.e.,

hS,d :=

(
4

m+ 2

1
m+4

)
n
−1

m+4 σd

where σd denotes the standard deviation for the d-th at-
tribute and m = |S|. The rationale behind choosing Silver-
man’s Rule of Thumb is when using the Gaussian multiplica-
tive kernel, the asymptotic mean integrated squared error
(AMISE) is minimized [15]. It is fair to mention that this
adaption provides only a rough estimate for the bandwidth.

In general, kernel density estimation for multi-dimensional
data is a challenging task and different methods for band-
width selection have been proposed including methods using
a variable bandwidth over the domain to be estimated [17].
The above rule, though, does a first step in this direction
while simultaneously allowing an efficient computation.

Additionally, to ensure the comparison of the density val-
ues between subspaces of different cardinality, we normalize
the density of a point x by fS

X (x) ← fS
X (x) · vol(S) where

vol(S) is defined as the volume of the hypersphere which
encloses the datapoints in subspace S. This principle fol-
lows the idea of an dimensionality unbiased computation as,
e.g., proposed in [2]. The multiplication by vol(S) avoids
the bias to lower-dimensional subspaces. While this solution
has shown good results in our experiments, we are currently
studying further approaches how to ensure a fair compari-
son between the density values of different subspaces. Sim-
ilar to the problem of bandwidth selection discussed above,
it might be reasonable to replace the global normalization
of the overall subspace by a variable normalization which
considers local properties of specific regions.

Assessing the clustering structure.
The function fS

X provides a density estimate for the en-
tire dataset, including potentially sparse regions of the data.
For our method, however, we are only interested in assess-
ing the clustering structure of the corresponding subspace.
Thus, instead of measuring the density of the entire dataset,
we measure the density only w.r.t. the hidden clusters. For
detecting the clusters, we use the well established Mean Shift
clustering method [4] in combination with the kernel func-
tion introduced above. By using Mean Shift we are able to
detect arbitrarily shaped clusters and we avoid setting the
number of clusters as a predefined parameter, thus, allowing
us to detect views where the number of clusters varies.

Overall, by replacing in Equation 1 the set X with the
individual clusters Ci, we formalize:

Definition 2. Let CS = {C1, . . . , Cm} be the set of clus-
ters in subspace S. The probability density function Q(S)
which reflects the clustering structure of each subspace is
defined as

Q(S) ∝ 1

|X |
∑

Ci∈CS

|Ci| ·
∑
x∈Ci

fS
Ci

(x)

Intuitively, the function fS
Ci

provides a density estimate for
the cluster Ci only (in terms of mixture models, this func-
tion would correspond to a single component of the mixture
distribution). We then compute the weighted average over
all clusters according to their cluster sizes (similar to mix-
ture models where the weighted sum of the components is
computed). Since the function fS

Ci
is evaluated at the cor-

responding datapoints, the measure Q(S) well assesses the
quality of the subspace.

Please note that the function fS
X (x) as well as the func-

tion Q(S) represent probability density functions. However,
they operate on completely different domains. The first one
is used to estimate the distribution of the points in the cor-
responding subspace. That is, the function’s domain are
points in a |S|-dimensional space. The function Q(S), in
contrast, assesses the clustering structure of the subspaces.
Its domain corresponds to all possible subspace projections.

2.2 Top-K Multi-View Subspaces



Since very similar subspaces often show similar clustering
structure and, thus, similar quality, simply sampling from
the above pdf does not meet the needs for detecting alterna-
tive views. To solve this issue, we exploit the following idea:
We do not use a static pdf, but we adapt the pdf during the
clustering process. After detecting a good subspace S, we
lower the likelihood of sampling similar subspaces. The pdf
will be locally distorted.

Formally, this local distortion is defined as:

Definition 3. Given a set of already detected subspaces
M = {S1, . . . ,Sq}, the adapted pdf is defined as:

Q(S|M) ∝ (1− sim(S,M)) ·Q(S)

where sim(S,M) := maxSi∈M( |S1∩S2|
|S1∪S2|

)

The more similar a subspace S is to one of the already
detected subspaces fromM, the stronger the pdf is adapted,
i.e. the lower the subspace’s probability. In the case of S ∈
M, we get Q(S|M) = 0; thus, preventing to sample the
same subspace twice. Subspaces that are not located in the
local neighborhood of any previously detected subspace are
not affected at all.

Based on this adaptive pdf, our overall goal can be for-
mulated as:

Definition 4. Top-k multi-view subspaces
Finding the top-k multi-view subspaces corresponds to deter-
mining subspaces S1, . . . ,Sk such that

∀i : Si = argmax
S⊆D

Q(S|Mi−1)

where Mi = {S1, . . . ,Si} and M0 = ∅.

2.3 Efficient Sampling Schemes
Analyzing all subspaces to find the top-k result is obvi-

ously intractable. Instead we propose approximate methods
based on Monte Carlo sampling to determine the solution.

Simulated Annealing (SA).
Our first principle to sample subspaces follows a simulated

annealing approach [18]. SA is an optimization method for
finding a good approximation of the global optimum of a
target function. SA was inspired from thermodynamic sim-
ulation, which involves heating and controlled cooling of a
material in order to reduce the defect rate. Here, we sam-
ple a subspace S from the space of all possible subspaces
according to the rule

p(S) ∝ exp

{
Q(S|M)

T

}
where T > 0 is the temperature. By successively lowering
the temperature T , the generated samples will concentrate
around the maximum of the function Q(S|M).

We use the above equation within a Metropolis-Hastings
algorithm. Thus, given the current state of the Markov
chain, i.e. the subspace S, the acceptance probability for

Algorithm 1: Simulated Annealing (SA) exploration

Input: X = {x1,x2, . . . ,xn}, k, T0, α
Output: Multiview SubspacesM

1 T ← T0;
2 S← Init-Subspace(∅);
3 while |M| 6= k do
4 Choose S′ uniformly from N(S);
5 Accept S′ with probability as given in Eq. 2;
6 if S′ is accepted then S← S′;
7 ;
8 else // new subspace is rejected
9 if T < 0.001 then

10 Remove S′ from N(S);
11 if N(S) == ∅ then
12 Insert S inM;
13 S← Init-Subspace(M);
14 T ← T0;

15 UpdateT(T , α);

a random S′ ∈ N(S) is:

ASA(S,S′) = min

1,
exp

{
Q(S′|M)

T

}
· |N(S)|

exp
{

Q(S|M)
T

}
· |N(S′)|


= min

{
1, exp

{
∆Q(S′,S|M)

T

}}
=

{
1 , if Q(S′|M) > Q(S|M)

exp
{

∆Q(S′,S|M)
T

}
otherwise

(2)

where ∆Q(S′,S|M) = Q(S′|M)−Q(S|M). The higher the
temperature T the more likely we accept a subspace with
lower quality, enabling the algorithm to move off a local
maxima. Subspaces with better quality are always accepted.

Algorithm 1 outlines the main idea of the SA-based ex-
ploration for multi-view subspace detection. We start with
an initial subspace (line 2; cf. details at the end of this sec-
tion). We then (line 4) uniformly choose a neighbor S′ from
the current subspace’s neighborhood, and we accept it with
probability according to Equation 2 (line 5). If the new sub-
space is accepted we set it as the current state of the Markov
chain. If the chosen neighbor is rejected, we stay at the cur-
rent subspace. To avoid repeated sampling of unpromising
subspaces, we additionally remove rejected subspaces from
the current subspace’s neighborhood (line 9). Please note
that this step is only performed when the temperatures has
reached a small value. For large T values, unpromising sub-
spaces are retained, thus, allowing us to explore a larger part
of the search space. If all neighbors of a subspace S have
been removed (line 10), we have reached a local maxima.
Thus, we add the subspace to the current result set M and
we start a new random walk in the Markov chain.

Finally, in line 14 we realize the lowering of the tempera-
ture T as required for the simulated annealing method. We
adopt the commonly used cooling scheme based on the geo-
metric rule for temperature variation [18], i.e. Tj+1 = α · Tj

where α is a positive constant smaller than 1. Typical values
for α are in the range of 0.80 to 0.99 [1].

Greedy Local Search (GLS).
While the SA method allows to accept neighboring sub-

spaces showing lower quality, we additionally analyze a sec-
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Figure 1: Experiments on Synthetic Datasets

ond principle based on a greedy local search: Given the
current subspace S, we do not perform a random transition
(lines 4-5 of Alg. 1) but the next state of the Markov chain
is chosen as

S′ = argmax
Ŝ∈N(S)

{
Q(Ŝ|M) | Q(Ŝ|M) > Q(S|M)

}
(3)

If there exists no Ŝ ∈ N(S) such that Q(Ŝ|M) > Q(S|M),
we have reached a local maximum and we perform the same
steps as in lines 11 and 12 of Algorithm 1.

Please note the the above principle finds a sequence of lo-
cal maxima, while Definition 4 is formulated as a sequence
of global maxima. Why do we expect this principle to work
well? The intuition is as follows: Due to the local distortions
performed within the function Q(S|M), subspaces which
have been rated as local maxima in early iterations might
evolve to global maxima in later iterations. This effect re-
sults due to the fact that the probability of subspaces close
to the global maximum is lowered as defined by Definition 3.
Thus, by directly focusing on the local maxima of the pdf,
the greedy local search might well approximate the overall
task.

Generating Initial Subspaces.
The choice of subspaces where the Monte Carlo sampling

starts (line 2 and 12 of Algorithm 1) is crucial for a good
subspace exploration. In the best case, we select subspaces
which have previously not been analyzed by our method;
thus, generating alternative views on the data. We exploit
two strategies to select these subspaces.

Our first strategy is based on (weighted) random projec-
tion, denoted as RP. We perform an independent sampling
among all attributes to determine which ones are included
in the initial subspace. That is, we assign a weight w(d) to
each attribute d ∈ D, where w(d) is the probability that d
belongs to the initial subspace and 1−w(d) the probability
that d does not belong to the initial subspace. At the start
of the algorithm, we assign to each attribute the probability
w(d) = 1

k
, where k is the input parameter specified by the

user denoting the desired top-k multi-view subspaces. Thus,
the expected dimensionality of the starting subspace is equal

to |D|
k

. Each time a new subspace is added to the result set
M, i.e. before restarting the search for a new subspace, we
update the weights w(d) based on the already detected sub-

spaces, thus, steering the search to novel solutions. More

precisely, we use the weights w(d) =
(

1
k

)xd+1
, where xd is

the number of times the dimension d has already appeared
in previously detected subspaces, i.e. xd = |{S ∈M|d ∈ S}|.
The more often a dimension d has been selected, the lower
the likelihood of being selected as a dimension of the initial
subspace.

While our first strategy performs an independent sampling
of all dimensions d ∈ D (thus, leading to initial subspaces of
potentially more than one dimension), our second strategy
is to always start from a one-dimensional subspace. The
probability of the attribute d ∈ D to be chosen as the initial

subspace is selected as ŵ(d) = w(d)∑
d′∈D w(d′) . Also for this

method, we update the weights w(d) as described above.
We call this strategy RT for short.

3. PRELIMINARY EXPERIMENTS
To analyze our method, we have performed preliminary

experiments on synthetic data containing multiple views.
The default dataset contains 4 views each located in a sub-
space with 5 dimensions. Additionally, we added two di-
mensions showing no clustering structure, thus, leading to
a default dataset with 22 dimensions. The number of clus-
ters in each view is 2, 4, 6 and 8, respectively. Each cluster
follows a multivariate normal distribution. The dataset has
3000 points by default. For evaluating clustering quality, we
use the E4SC measure [7]. The range of E4SC is in [0, 1]
and the higher the E4SC measure, the better the subspace
clustering result.

We denote our Simulated Annealing method as SA RP
and SA RT where the suffix indicates the principle which
is used to generate the initial subspaces. Accordingly, our
Greedy Local Search is denoted as GLS RP and GLS RT.
Since our methods are randomized, we repeat them 10 times,
and report the average. For SA RP, we set the initial tem-
perature to T0 = 50 and the cooling rate to α = 0.8.

We compared our methods with the subspace clustering
techniques DOC [13], FIRES [10] and INSCY [3]. DOC is a
Monte Carlo method, and FIRES and INSCY are all density-
based methods. Since DOC is a Monte Carlo method, we
ran DOC as many times as the number of ground truth
views. Then we combined the detected subspace clusters
by DOC from all runs as the final result. For competing
multi-view methods we selected Multivew1 and Multivew2



proposed in [5] and two variants AltClus1 and AltClus2 of
the Alternative Clustering methods proposed in [14]. Since
these methods do not generate subspace information, we
ignored the subspaces during the evaluation. In other words,
we evaluated only the point groupings and assume that all
clusters are located in the “correct” subspaces. This way
the competing multi-view methods have a huge advantage.
However, as we will see in the following, the results show that
the competing multi-view methods still have low quality.

Figure 1 shows the E4SC values for each algorithm when
varying different characteristics of the data. In Figure 1(a),
we varied the number of dimensions per view. As indicated,
each of our methods outperforms the competing approaches
in detecting the multi-view subspaces. The methods based
on the independent random projection principle (* RP) per-
form in most cases slightly better than the methods using
initial subspaces of cardinality one (* RT). For this dataset,
both sampling schemes perform very similar.

Since our methods are randomized, we additionally com-
puted the standard deviations of the obtained results. In
most cases, the standard deviation was around 0.1 with most
extreme values of 0.03 and 0.16 obtained by the GLS RP
method for the setting of 5-dimensional views and 2-dimen-
sional views, respectively. Thus, even when taking the stan-
dard deviation into account, in most cases our methods ob-
tain the best clustering results.

In Figure 1(b) we varied the number of total views in
the data. While for a small number of views, some com-
peting approaches obtain similar quality values, our meth-
ods clearly outperform them when the data contains a large
number of views. Our methods show constantly high qual-
ity, while the competing approaches show strongly decreas-
ing quality. In this experiment, the difference between the
four variants of our method is not as clear as before. The
methods based on random projection (RP) show a slightly
better performance.

Finally, in Figure 1(c), we varied the number of irrelevant
dimensions. As describe in the experimental setup, for each
dataset we added a certain number of dimensions showing
no clustering structure. As shown, our methods can handle
data showing this characteristic. In this experiment, the
GLS RP method obtains the best results for any number of
noise dimensions.

Overall, these preliminary results show that our methods
can detect multiple views in various settings.

4. CONCLUSION AND FUTURE WORK
We have introduced our ongoing work for multi-view sub-

space exploration. Our method exploits the idea of Markov
Chain Monte Carlo sampling where subspaces are sampled
according to their clustering structure as well as dissimi-
larity to previously detected subspaces. We have analyzed
two different sampling schemes based on simulated anneal-
ing and using a greedy local search as well as two different
strategies to generate the initial subspaces. Overall, the pro-
posed variants are able to detected subspaces that highlight
different views on the data.

As this is preliminary work, there are still many open chal-
lenges. First, our current method is limited to find multi-
view clusterings where the clusters of a single view are lo-
cated in exactly the same subspace. An interesting exten-
sion would be to allow individual clusters to slightly deviate
from their view, thus, realizing a more flexible detection.

Second, the Mean Shift clustering algorithm used in our
method is computationally intensive making an application
on large datasets challenging. We plan to analyze whether
alternative methods can serve as a good substitute for Mean
Shift to estimate the quality of the subspaces. Third, while
the kernel density estimation principle used in this paper
has empirically shown to perform well, we want to analyze
it more theoretically. Particularly, it is still an open chal-
lenge to derive a sound principle ensuring a fair comparison
of density values among different subspaces. Finally, while
currently the number of views is given as an input parame-
ter, we want to develop a method capable of automatically
determining the correct number of views. The degree of dis-
tortion of the probability density function might be a good
indicator for this task. Tackling all these issues is our future
research direction.
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[8] S. Günnemann, I. Färber, and T. Seidl. Multi-view
clustering using mixture models in subspace
projections. In SIGKDD, pages 132–140, 2012.
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