
Spectral Graph Multisection Through Orthogonality

Huanyang Zheng and Jie Wu
Department of Computer and Information Sciences

Temple University, Philadelphia, PA 19122
{huanyang.zheng, jiewu}@temple.edu

ABSTRACT
Although the spectral modularity optimization algorithm
works well in most cases, it is not perfect, due to the charac-
teristic of its recursive bisection, which loses “global” view.
In this paper, we propose a spectral multisection algorithm,
which cuts the graph into multisections directly, with ac-
ceptable time complexity. Instead of using −1 and +1 in the
modularity bisection algorithm, we propose using orthogo-
nal vectors of the Hadamard matrix, as to denote the group
assignments in the graph division. Then the modularity ma-
trix is“inflated”to higher order through the Kronecker prod-
uct, which is able to coordinate with the vectors that rep-
resent the group assignments of the nodes. The relaxation
method is also employed in our algorithm. The eigenvector,
which corresponds to the largest eigenvalue of the inflated
modularity matrix, reflects the final group assignment of the
nodes. The proposed algorithm can be viewed as a natural
extension of the original bisection algorithm, which also suc-
ceeds its properties. In sparse graphs, the time complexity
of the proposed algorithm is O(K4n2), where K is a care-
fully designed input parameter that reveals the estimated
number of communities. Finally, the simulations show that
the proposed algorithm achieves outstanding performances
in the LFR benchmarks of different settings.

Categories and Subject Descriptors
H.3.3 [Information Storage and Retrieval]: Information
Search and Retrieval—Clustering ; G.2 [Discrete Mathe-
matics]: Graph Theory—Graph algorithms

General Terms
Algorithms, Design, Performance

Keywords
Community detection, orthogonality, relaxation, modularity,
spectral multisection.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
MultiClust ’13, August 11, 2013, Chicago, Illinois, USA.
Copyright 2013 ACM 978-1-4503-2334-5/13/08 ...$15.00.

1. INTRODUCTION
Rather than being randomly wired together, the compo-

nents of complex network systems represent a community
structure, where highly concentrated edges are found within
special groups of vertices, and low concentrated edges ex-
ist between different groups [1]. Communities, also called
modules, are groups of vertices which have common features
and similar network structures. Generally speaking, the
communities of a graph can be viewed as highly indepen-
dent ingredients, such as organs in a human body. There-
fore, community detection has been a significant problem
in network-related sciences, with huge efforts taking place
over the past few decades. The applications of community
detection range from social network science and biomedical
component analysis, to business investment analysis.

However, community detection is an NP-hard problem,
and is not yet perfectly solved. Although outstanding per-
formances have been achieved by some algorithms such as
[2], the time complexities of these algorithms are quite high.
Meanwhile, algorithms [3] with linear time complexities do
not have satisfactory performances. A tradeoff between the
performance and the time complexity is desired, resulting in
the emergence of the modern spectral modularity optimiza-
tion algorithm [4]. This algorithm has both a competitive
performance and a time complexity of O(n2 logn) in sparse
graphs, by exploring the relationship between community
assignments of the nodes and the eigenvectors of the mod-
ularity matrix. Compared to [5], the spectral modularity
optimization has worse time complexity, but its division re-
sults are of far better quality. The reason for its outstanding
performance is that the spectral modularity optimization is
a “relaxed” optimal division.

The spectral modularity optimization algorithm is a recur-
sive bisection algorithm, which divides the graph into more
than two communities through a repeated bisection process
[6–8]. As described in [8], the recursive bisection algorithm
is not optimal, since the recursion is a greedy process, re-
gardless of the “global” structure information. As illustrated
in Fig. 1(a), the spectral modularity optimization does the
bisection in the first round, which cuts the graph into two
halves (four left nodes in one community, and the remaining
four right nodes in another). Then, in the second round,
it stops, since the modularity does not increase if it further
cuts the two communities. However, this division is not op-
timal, as illustrated in Fig. 1(b), which cuts the graph into
three parts. Obviously, even the repeated optimal bisection
algorithm would never find the global optimality, due to the
loss of “global” view.

(a)

(b)

Figure 1: An illustration of dividing a graph into
three communities. (a) The division result of the
recursive bisection algorithm (spectral modularity
optimization). (b) The optimal division which max-
imizes the whole modularity.

Naturally, spectral multisection algorithms [9] are focused,
which removes the recursive division part, and cuts the graph
into multisections directly. Theoretically, this approach can
find better divisions due to the “global” view, while in prac-
tice it is more complicated and generally brings a longer
running time. Therefore, our research motivation is to de-
sign a “global” multisection algorithm with acceptable time
complexity. The proposed algorithm achieves better perfor-
mances with almost the same time complexity of the re-
cursive bisection algorithm. Instead of using {−1,+1} to
denote group assignment in the bisection algorithm, we pro-
pose employing orthogonal vectors of the Hadamard matrix
to do it. Meanwhile, the modularity matrix is randomly “in-
flated” to higher orders through the Kronecker product, as
to coordinate with these orthogonal vectors. Therefore, the
graph can be cut into more than two sections directly, with
acceptable time complexity.

The main contributions of this paper are summarized as
follows: we introduce Hadamard matrix for orthogonal vec-
tors generation and Kronecker product for matrix operation;
then a spectral multisection algorithm is proposed, which
directly cuts the graph into multisections, as to get rid of
greedy division; finally, the time complexity of the proposed
algorithm is analyzed, which is O(K4n2) in sparse graphs
(K is a predefined parameter which shows the estimated
number of communities).

The remainder of the paper is organized as follows: in
Section II, we present the preliminaries, which describes the
spectral modularity optimization algorithm. Then we de-
scribe our multisection approach in Section III, including
the Hadamard matrix and the Kronecker product. Then
the evaluation of our algorithm is shown in Section V, which
is based on the LFR benchmark. Finally, we conclude the
paper in Section VI.

2. PRELIMINARIES
In this section, we will introduce the traditional spectral

modularity maximization algorithm proposed by [4]. First,
we discuss the literature of the community detection algo-
rithms, where the concept of modularity and the traditional
spectral bisection technology is presented. Then, we dis-
cuss the traditional spectral multisection technology, which
is done through recursive bisection. In the following dis-
cussion, we tacitly assume the graph is undirected and un-
weighted, with n nodes and m edges.

2.1 Modularity
In the first generation graph partition algorithms, the

objective is to minimize the number of edges between ver-
tices in different groups, which is generally denoted as the
cut size. However, minimizing cut size fails to recognize the
complete network structure. For example, one optimal but
incorrect solution for minimizing cut size can be dividing
the original graph into two subgraphs: an empty subgraph
which contains no node, and a subgraph which contains
all the nodes. Since no node exists in the empty set, the
cut size is 0 for the divided two groups of nodes, which is
clearly meaningless. Intuitively, instead of simply minimiz-
ing the cut size (denoted as Cs), a better idea is to consider
the group size (denoted as n1, n2) along with the cut size
(for example, minimizing Cs/(n1n2)). In the literature, this
approach is called ratio cut partitioning, which effectively
avoids incorrect partitioning. However, in the ratio cut par-
titioning, the denominator n1n2 has no remarkable physi-
cal meanings. A simple but powerful argument is why we
use Cs/(n1n2) rather than Cs/(n

2
1n

2
2) (or something else)

as the partition metric. Mathematically, the denominator
may be anything if it monotonically decreases with increas-
ing |n2 − n1|. Moreover, the ratio cut partitioning becomes
even more unreasonable, when more than two communities
exist in the graph, since the denominator is mathematically
defined without real-world meanings.

Rather than using cut size, a better idea is to develop
a new graph partition measurement which reflects the net-
work structure more. Instead of simply minimizing cut size,
we can minimize the difference between the actual and the
expected number of edges across different groups, which is
called modularity. Assume Aij is denoted as the element of
the row i and column j in the graph adjacency matrix A, ki
is the degree of node i, and m is the number of edges in the
graph. Then modularity Q is calculated as:

Q=
1

2m

∑
ij

(
Aij−

kikj
2m

)
δ(ci, cj)=

1

2m

∑
ij

Bijδ(ci, cj) (1)

where Aij and kikj/2m are, respectively, the actual and the
expected number of edges between nodes i and j. Addition-
ally, ci is the group assignment of node i. δ(ci, cj) is the
Kronecker delta. Here Bij = Aij − kikj/2m is considered
as an element of a matrix B, which is called modularity ma-
trix. Then we can minimize the modularity between differ-
ent groups, or maximize the modularity in the same groups,
as to detect communities. This idea is called modularity
maximization, as presented in the next subsection.

2.2 Spectral Bisection
Let us start with the spectral bisection algorithm [8], which

divides the graph into two non-overlay parts with maximized
modularity Q. To represent Eq. 1 better, here we use si to
denote the group assignment of node i rather than ci:

si =

{
+1 if node i belongs to group 1.
−1 if node i belongs to group 2.

(2)

Since δ(ci, cj) = 1
2
(sisj + 1) and

∑
ij Bij = 0, we have

Q =
1

4m

∑
ij

Bij(sisj + 1) =
1

4m

∑
ij

Bijsisj (3)

If we use s to denote the vector with elements si, where s =
[s1, ..., sn], then Eq. 3 can be rewritten in the matrix form of
Q = 1

4m
sTBs. Since the constraint si ∈ {−1,+1} is hard to

deal with, we relax this constraint to be sT s =
∑

i s
2
i = n,

where n is the number of nodes in the graph. This method
is called relaxation method. Then the modularity maximiza-
tion is a straightforward optimization problem, which can
be solved through a simple Lagrange multiplier β:

∂

∂si

[∑
ij

Bijsisj + β(n−
∑
i

s2i)

]
= 0 (4)

which gives
∑

j Bijsj = βsi, or in matrix notation, Bs = βs.
It can be seen that the relaxed s should be an eigenvector
of the modularity matrix B, and then we have

Q =
1

4m
sTBs =

1

4m
sTβs =

n

4m
β (5)

Since we are maximizing modularity, the relaxed s is se-
lected to be the eigenvector u1 corresponding to the largest
eigenvalue of the modularity matrix B. Meanwhile, s = u1

is “rounded” to be ±1 (for each element in s = u1, we round
it to be 1 if it is larger than 0, and round it to be −1 if it is
smaller than 0) since we have relaxed the original constraint
si ∈ {−1,+1}. Then, the ith element in the rounded vector
s represents the group assignment of node i, as shown in
Eq. 2. It can be seen that this graph partition method is
a good approximation of the optimal partitioning, since we
have only relaxed the constraint a little. The time complex-
ity of finding the leading eigenvector of a matrix is O(mn),
which is equivalent to O(n3) in a dense matrix, as opposed
to O(n2) in a sparse one. However, there is a more efficient
method for finding the eigenvector [4]. In consideration of
the general case, we assume the graph is sparse and the time
complexity of the bisection algorithm is O(n2).

2.3 Multisection through Recursive Bisection
Through spectral bisection algorithm, the graph is divided

into two groups of unspecified size. However, the number of
the natural groupings of nodes, or communities, may not be
only two. And we would like to find the most “natural” divi-
sion of the graph, without restrictions of the size and number
of the partitions. In principle, the modularity maximization
is still valid for graph multisection, as described in Eq. 1.
However, spectral multisection algorithm is not as easy as it
is supposed to be, since we have used si ∈ {−1,+1} to rep-
resent group assignment in the bisection algorithm. Some
multisection algorithms, such as [9], have been developed;
they are promising, but bring higher time complexity.

Instead of directly finding the maximum modularity over
divisions into any number of groups, an alternative but pop-
ular method is to do the recursive bisection [8]. That is, do
the bisection recursively until the modularity is no longer
increased. Note that, here we cannot proceed directly and
treat the subdivisions as totally new graphs, applying the
bisection algorithm to the subdivisions. Instead, we need to
consider the entire change of modularity over the whole net-
work [8]. Therefore, the modularity change 4Q on further
bisection of community c is calculated as:

4Q =
1

4m

[∑
ij∈c

Bijsisj −
∑
ij∈c

Bij

]
(6)

The recursive bisection algorithm works well in many situ-
ations, although optimality is not guaranteed, as shown in
Fig. 1. The recursive depth of this algorithm depends on the
average depth of the graph dendrogram, which is O(logn).
Therefore, the time complexity of the whole algorithm is

O(n2 logn). This algorithm runs slower, but has much bet-
ter performance than the linear partition algorithms, as the
tradeoff between time complexity and partition accuracy.

Therefore, algorithms that improve the recursive bisection
have been focused. In [6], the authors reformulated the re-
laxation process, as to pursue a lower time complexity. How-
ever, this algorithm does not get rid of “local” optimization,
where the graph division is done through a greedy iteration.
The same problem can be found in [7]. In the next section,
we will introduce a direct multisection scheme through or-
thogonality to pursue better performance. Different from
former algorithms, our approach does not include the itera-
tion. It “globally” cuts the graph into multisections directly,
which gets rid of “local” optimization.

3. SPECTRAL MULTISECTION
In this section, a novel multisection scheme is presented,

which is based on the orthogonality. Firstly, the Hadamard
matrix [10] is introduced to produce orthogonal vectors, with
the Kronecker product to extend the matrix to high orders.
Then the detailed algorithm is presented, which employs
the orthogonal vectors to represent the group assignment
of nodes rather than simply using {−1,+1}. Finally, the
subsequent processing of the proposed algorithm is attached,
as to achieve better division.

3.1 Hadamard Matrix
The Hadamard matrix is a square matrix composed by

elements of +1 or −1. Its key feature is that the rows of
the matrix are mutually orthogonal, which is used to pro-
duce orthogonal vectors. Moreover, every two different rows
in Hadamard matrix have matching entries in exactly half
of their columns, and mismatched entries in the remaining
columns. For simplicity, we will use K = 2k in the following
discussions. A Hadamard matrix H2K can be calculated by

H2K =

[
+HK +HK

+HK −HK

]
(7)

where H1 = [1]. Hadamard matrix satisfies HT
K = HK and

HT
KHK = nIK . Meanwhile, a Hadamard matrix has a maxi-

mal determinant among matrices with entries of an absolute
value less than or equal to 1. For further analysis, we also
define hi to represent the ith row of HK . Note that we have
hih

T
i = K, since the length of hi is K.

Here, we also define a new matrix operation called matrix
inflation, which extends an original n × n matrix M to a
Kn × Kn matrix MK (K is a specified input parameter).
This operation replaces each element in M by a K × K
diagonal matrix. Essentially, the inflation operation is the
Kronecker product of the original matrix M and a K × K
identity matrix. An example for K = 2 is listed below:

M =

[
1 2
3 4

]
and M2 =

1 0 2 0
0 1 0 2
3 0 4 0
0 3 0 4

 (8)

Meanwhile, we also introduce a matrix operation called
randomized matrix inflation, which is based on the matrix
inflation. After inflating M to MK , this operation respec-
tively adds a random number λij to the element MK,ij of the

matrix MK , resulting in the matrix of M̃K . Here, λij follows

the uniform distribution of interval [−ε,+ε], and are inde-
pendent of one another. Therefore, we have

∑
ij MK,ij =∑

ij M̃K,ij +
∑

ij λij , where
∑

ij λij → 0 with increased size

of MK , due to the central limit theorem. If Kn is large
enough, δ =

∑
ij λij would intend to follow the normal dis-

tribution of N(0,Knε2/3).

3.2 Multisection through Orthogonality
In the proposed algorithm, the number of communities

needs to be pre-estimated (denoted asK = 2k communities),
which is an input parameter. Here the predefined parameter
K means the graph is divided into at most K communities,
rather than exactly K communities. Then, instead of using
si ∈ {−1,+1} in the bisection algorithm, we use the rows of
HK to denote the group assignment of node i (to be different
from si in the bisection, here we use s̄i):

s̄i =

h1 if node i belongs to group 1.
h2 if node i belongs to group 2.
...

...
hK if node i belongs to group K.

(9)

Since δ(ci, cj) = 1
K
s̄is̄

T
j , Eq. 1 changes to be

Q =
1

2m

∑
ij

Bijδ(ci, cj) =
1

2Km

∑
ij

Bij s̄is̄
T
j (10)

In Eq. 10, both s̄i and s̄Tj are vectors, and thus Eq. 10 is
different from Eq. 3. Similarly, we define s̄, which is equal
to [s̄1, s̄2, ..., s̄K]T . If we put matrix inflation operation on
matrix B to obtain BK , then Eq. 10 is extended to be

Q =
1

2Km
s̄T BK s̄ (11)

Note that the coefficient in Eq. 11 is 1
2Km

rather than 1
4m

in Eq. 5, which is due to the difference between si and s̄i.
However, Eq. 11 is very similar to Eq. 3, since we just count
in the same elements for K times (

∑
ij BK = K

∑
ij B).

Then the following process is very similar to the bisection
algorithm. We also relax the constraint that s̄i belongs to
a row of the Hadamard matrix to be s̄T s̄ =

∑
i s̄

T
i s̄i = Kn.

Through the method of Lagrange multipliers, we can also
obtain the equation of BK s̄ = βs̄, meaning that s̄ should be
the eigenvector ū1 corresponding to the largest eigenvalue of
the matrix BK . Meanwhile, s̄i in s̄ = ū1 is “rounded” to be
the most “similar” vector in Eq. 9, as to represent the group
assignment of the node i. In other words, s̄i is rounded to
hj , if s̄ih

T
j has the largest value among all rows of HK .

It can be seen that the classic bisection algorithm is a
special case of the proposed multisection algorithm, which
subtly utilizes the orthogonality of the rows of the Hadamard
matrix to represent the group assignments of the nodes. The
proposed algorithm is a natural extension of the spectral bi-
section algorithm. However, there is a fatal flaw in the pro-
posed spectral multisection algorithm. Due to the nature of
the matrix inflation operation, the eigenvectors of BK are
greatly influenced by the eigenvectors of B, leading to mean-
ingless ū1 of BK . In the following subsection, this problem
is described and then solved.

3.3 Subsequent Processing
The multisection algorithm proposed in the former sec-

tion seems to work well, however, this algorithm does not

work, due to the inherent defect of the matrix inflation op-
eration. The eigenvectors of matrix MK are related to the
eigenvectors of the original matrix M . If [e1, e2, ..., en] is an
eigenvector of the matrix M , then it can be extended to be
K different eigenvectors of matrix MK by respectively fill-
ing z1 zeros before, and z2 zeros after, each element in the
eigenvector of M . Here z1 and z2 are non-negative integers,
and z1 +z2 = K−1. For example, if K = 2, the eigenvector
[e1, e2, ..., en] of M can be extended to [e1, 0, e2, 0, ..., en, 0]
and [0, e1, 0, e2, ..., 0, en], which are the eigenvectors of M2.
This structure severely destroys the process of “rounding”
s̄ = ū1 to the rows of the corresponding Hadamard matrix,
leading to an ineffective relaxation.

To overcome this flaw, MK is replaced by M̃K (random-
ized matrix inflation), which avoids the strong relationship
between M and MK . The intuition behind this trick is to
protect the relaxation effectiveness in the inflation operation.

Since the M̃K is randomized, we run the algorithm t times,
and then pick out the best result (the highest Q) as the
final partitioning result. To prove the effectiveness of this
method, there are two points: (1) prove that the Q calcu-

lated by the M̃K has limited error from the Q calculated
by the MK ; (2) make sure that a small t is good enough to
obtain a qualified result, otherwise, the time complexity of
the proposed algorithm is too large to be useful.

For the first point, it can be proved by central limit the-
orem. The variance 4Q can be calculated by

4Q =
1

2Km
s̄T (B̃K −BK)s̄ =

1

2Km
δ (12)

where δ is the summation of K2n2 random variables (δ =∑
ij λij). These random variables are independent to each

other, but follow the same uniform distribution U [−ε,+ε].
Here we have utilized the property, in that −λij have the
same distribution as +λij . Central limit theorem shows
that δ tends asymptotically toward normal distribution of
N(0,Knε2/3). If we use ε = 1/n, then the normal distribu-
tion becomes N(0,K/3n) Since n is generally very large, it
can be seen that K/3n → 0. So we have 4Q → 0, which
proves the first point. Moreover, each element in B has very

limited variance, when inflated to be a submatrix in B̃K .
For the second point, we empirically declare that t ∈ O(K2)

is a good choice. Randomized matrix inflation effectively
avoids equivalent treatment for the different original ele-
ments in M , each element of which is inflated to be a K×K
submatrix in M . Intuitively, the size of the submatrix dom-
inates the value of t, and this is the reason why we choose
t ∈ O(K2). Due to the difficulty of the mathematical anal-
ysis, we will show its efficiency in the simulations.

The proposed algorithm has a time complexity ofO(K2n2)
for one loop. Since we have t ∈ O(K2) loops, the total time
complexity is O(K4n2). Note that the recursive bisection
has a time complexity of O(n2 logn), since the recursive
depth is O(logn). Note that K is the estimated number
of communities. Although, theoretically, the multisection
algorithm is valid for K with large values, larger K brings
longer running time, due to more information loss in the
relaxation. Since generally we have K � n, meaning the
number of communities is much smaller than the number of
total nodes, time complexity of O(K4n2) is acceptable as a
tradeoff to pursue better graph division. In the next sec-
tion, we will show the effectiveness of our proposal through
extensive simulations.

0 0.2 0.4 0.6 0.8
0

0.2

0.4

0.6

0.8

1

Mixing Parameter µ

N
or

m
al

iz
ed

 M
ut

ua
l I

nf
or

m
at

io
n

MCL
RBS
PMS

0 0.2 0.4 0.6 0.8
0

0.2

0.4

0.6

0.8

1

Mixing Parameter µ

N
or

m
al

iz
ed

 M
ut

ua
l I

nf
or

m
at

io
n

MCL
RBS
PMS

(a) γ = 3, β = 2

0 0.2 0.4 0.6 0.8
0

0.2

0.4

0.6

0.8

1

Mixing Parameter µ

N
or

m
al

iz
ed

 M
ut

ua
l I

nf
or

m
at

io
n

MCL
RBS
PMS

0 0.2 0.4 0.6 0.8
0

0.2

0.4

0.6

0.8

1

Mixing Parameter µ

N
or

m
al

iz
ed

 M
ut

ua
l I

nf
or

m
at

io
n

MCL
RBS
PMS

(b) γ = 2, β = 2

0 0.2 0.4 0.6 0.8
0

0.2

0.4

0.6

0.8

1

Mixing Parameter µ

N
or

m
al

iz
ed

 M
ut

ua
l I

nf
or

m
at

io
n

MCL
RBS
PMS

0 0.2 0.4 0.6 0.8
0

0.2

0.4

0.6

0.8

1

Mixing Parameter µ

N
or

m
al

iz
ed

 M
ut

ua
l I

nf
or

m
at

io
n

MCL
RBS
PMS

(c) γ = 2, β = 3

Figure 2: Simulation results in LFR benchmarks of n = 128 (top) and n = 256 (bottom) nodes.

4. SIMULATION
In this section, extensive simulations are conducted to

evaluate the proposed algorithm, which is based on the LFR
benchmark [11]. LFR benchmark generated networks are
composed of communities with different sizes. In LFR bench-
mark, both the node degrees and the community sizes follow
power-law distribution. After presenting the settings used
in our simulations, we show the algorithms for comparison.
Finally, the evaluation results are shown from different per-
spectives to provide insightful conclusions.

4.1 Settings
In our simulation, LFR benchmark [11] of n nodes is intro-

duced as the testbed, instead of the traditional GN bench-
mark. In LFR benchmark, the node degree and the com-
munity size follow power-law distribution, with exponents
γ and β, respectively. Meanwhile, kmin and kmax are se-
lected to make the average degree of the generated network
to be 〈k〉. The minimal and maximal community sizes are
also restricted as smin and smax, where smin > kmin and
smax > kmax (each node can be surely included in a com-
munity). Then, the nodes are linked to each other. Links
between nodes in the same community are called internal
links, and links between nodes in different communities are
called external links. A mixing parameter µ is defined as the
ratio of the external node degree to the total node degree.
Through a subtle rewiring process, the ratio between exter-
nal and internal degrees of each node can be approximated to
the designed mixing parameter µ. LFR benchmarks of undi-
rected and unweighted graphs with n = 128 and n = 256
nodes are employed for our tests. For n = 128 nodes, we
set kmin = 8, kmax = 32, smin = 16 and smax = 64. For

n = 256 nodes, we set kmin = 16, kmax = 64, smin = 32 and
smax = 128. In addition, for the proposed multisection al-
gorithm specifically, we set ε = 1, K = 8, and t = K2 = 64.
Our simulations do not include real-world data, since LFR
benchmark is highly recognized as a clustering benchmark.

To compare the partition results between different algo-
rithms, the metric of mutual information is introduced, which
is based on Shannon information theory. Let the set {xi} de-
note the community assignments of node i of the designed al-
gorithm, and let set {yi} denote the correct results generated
by the LFR benchmark; then mutual information I(X,Y)
shows how much information is mutual for the information
from {xi} and {yi}. This is done by assuming that labels
{xi} and {yi} are values of the random variable X and Y ,
respectively. The distributions of X and Y are calculated
by P (x) = nX

x /n and P (y) = nY
y /n, with their joint distri-

bution being P (x, y) = nxy/n. Here nX
x is the size of the

community labeled by x in {xi}, nY
y is the size of the com-

munity labeled by y in {yi}, and nxy is their overlap [12].
Then I(X,Y) can be calculated by

I(X,Y) =
∑
x

∑
y

P (x, y) log
P (x, y)

P (x)P (y)
(13)

To avoid the influence brought by the absolute value of
I(X,Y), it is normalized through

Inorm(X,Y) =
2I(X,Y)

H(X) +H(Y)
(14)

where H(X) and H(Y) are the entropies of X and Y , respec-
tively. Through the normalized mutual information Inorm,
the performances of different community detection algorithms
are effectively compared.

4.2 Algorithms in Comparison
Two algorithms in the following are for comparison with

the proposed multi-section algorithm, which is denoted as
PMS. The first one is the original recursive bisection al-
gorithm (denoted as RBS) in [4], which recursively cuts the
graph until the modularity is no longer increased. The other
method is the Markov Cluster algorithm (denoted as MCL)
proposed in papers [3, 13, 14], which simulates a peculiar
diffusion process of expansions and inflations on the graph.
The time complexity of the MCL is O(K2n), which is es-
sentially a linear algorithm. Note that, the time complex-
ity of RBS is O(n2 logn), and the time complexity of PMS
is O(K4n2). Compared to some other algorithms [15–17],
these three algorithms are not excellent for the partition ac-
curacy, as a tradeoff to pursue a lower time complexity.

4.3 Evaluation Results
The simulation results are shown in Fig. 2, where γ and β

respectively describe the power-law distribution exponents
of the node degree and the community size in the LFR
benchmarks. We set 2 ≤ γ ≤ 3 and 2 ≤ β ≤ 3, which in-
crease the difficulty of community detection. Meanwhile, the
real world power-law exponents are mostly reported to be in
the range of [2, 3]. It can be seen that PMS outperforms the
other algorithms for most values of µ. The normalized mu-
tual information of the MCL is quite high when µ is small,
however, it decreases quickly with increased µ. Similar re-
sults on the MCL are observed in the paper [12]. Although
PMS and RBS are better for larger µ, they cannot achieve
100% correct partition, even if µ is small enough, due to the
information loss resulting from the relaxation. PMS outper-
forms RBS over the entire range of µ, since PMS is based on
the “global” view of the partition, and RBS is based on the
“local” view. All three algorithms become ineffective, when
the mixing parameter µ is larger than 0.5. The normalized
mutual information obtained by MCL, on the whole, starts
with high value and decreases quickly with the increased µ.
Similarly, the normalized mutual information obtained by
PMS and RBS, on the whole, starts with a lower value than
MCL, but decreases more slowly with the increased µ.

In terms of the normalized mutual information, PMS is
still not good enough, since many algorithms, such as [15],
are still able to obtain 0.9 normalized mutual information
when µ is larger than 0.3. However, PMS is essentially an
algorithm with a time complexity of O(K4n2), which is qual-
ified enough if considering its execution time. PMS and RBS
are approximation algorithms for the optimal partitioning,
which only loses information in the relaxation method. A
promising method for the further improvement of PMS and
RBS is to pursue a better relaxation with lower time com-
plexity, which can keep more information of si and s̄i, as is
done in [6].

5. CONCLUSION
In this paper, we propose a spectral graph multisection

algorithm through the orthogonality of Hadamard matrix,
which overcomes the flaw of the traditional spectral mod-
ularity optimization algorithm. Instead of doing recursive
modularity bisection, the proposed algorithm directly cuts
the graph into multisections. The basic idea of the pro-
posed algorithm is to extend the modularity matrix to a
higher order, and to use carefully designed vectors to repre-
sent the group assignments of the nodes for the relaxation.

The proposed algorithm can be viewed as an extension of
the bisection algorithm, which also succeeds the properties
of the bisection algorithm. In sparse graphs, the time com-
plexity of the proposed algorithm is O(K4n2), which is low
among all the community detection algorithms. Finally, the
simulations show that the proposed algorithm achieves good
performances in the LFR benchmarks of different settings.

References
[1] S. Fortunato, “Community detection in graphs,” Physics

Reports, vol. 486, no. 3-5, pp. 75 – 174, 2010.

[2] R. Guimera and L. A. Nunes Amaral, “Functional cartogra-
phy of complex metabolic networks,” Nature, vol. 433, no.
7028, pp. 895–900, 2005.

[3] S. Dongen, “Performance criteria for graph clustering and
markov cluster experiments,” Amsterdam, The Netherlands,
The Netherlands, Tech. Rep., 2000.

[4] M. E. J. Newman, “Modularity and community structure in
networks,” PNAS, vol. 103, no. 23, pp. 8577–8582, Jun. 2006.

[5] A. Clauset, M. E. J. Newman, and C. Moore, “Finding com-
munity structure in very large networks,” Physical Review E,
vol. 70, no. 6, p. 066111, 2004.

[6] S. White and P. Smyth, “A spectral clustering approach to
finding communities in graphs,” in Proc. of SDM 2005, pp.
76–84.

[7] J. Ruan and W. Zhang, “An efficient spectral algorithm for
network community discovery and its applications to bio-
logical and social networks,” in Proc. of ICDM 2007, pp.
643–648.

[8] M. Newman, Networks: An Introduction. New York, NY,
USA: Oxford University Press, Inc., 2010.

[9] P. Sanders and C. Schulz, “Engineering multilevel graph par-
titioning algorithms,” in Proc. of ESA 2011, pp. 469–480.

[10] J. A. Tropp, “Improved analysis of the subsampled random-
ized hadamard transform.”Advances in Adaptive Data Anal-
ysis, vol. 3, no. 1-2, pp. 115–126, 2011.

[11] A. Lancichinetti, S. Fortunato, and F. Radicchi, “Benchmark
graphs for testing community detection algorithms,”Physical
Review E, vol. 78, no. 4, 2008.

[12] A. Lancichinetti and S. Fortunato, “Community detection
algorithms: A comparative analysis,” Physical Review E,
vol. 80, p. 056117, 2009.

[13] U. Brandes, M. Gaertler, and D. Wagner, “Experiments on
graph clustering algorithms,” in Proc. of ESA 2003, pp. 568–
579.

[14] V. Satuluri, S. Parthasarathy, and D. Ucar, “Markov clus-
tering of protein interaction networks with improved balance
and scalability,” in Proc. of ACM BCB 2010, pp. 247–256.

[15] M. Rosvall and C. T. Bergstrom, “Maps of random walks on
complex networks reveal community structure,” PNAS, vol.
105, no. 4, pp. 1118–1123, 2008.

[16] A. Lancichinetti and S. Fortunato, “Consensus clustering in
complex networks,” Scientific Reports, vol. 2, Mar. 2012.

[17] A. McDaid and N. Hurley, “Detecting highly overlapping
communities with model-based overlapping seed expansion,”
in Proc. of ASONAM 2010, pp. 112–119.

