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ABSTRACT

This paper studies the problem of finding the densest sub-
graph in an uncertain graph. Due to uncertainty in graphs,
the traditional definitions of dense subgraphs are not ap-
plicable to uncertain graphs. In this paper, we introduce
the expected density of an uncertain graph. Based on the
expected density, we formalize the problem that, given an
uncertain graph G = (V, E, P) and a set of vertices R C V,
finds an induced subgraph G’ = (V’, E’, P’) of G of the max-
imum expected density such that R C V'. We show that the
optimal solution can be found in O(nmlog(n®/m)) time us-
ing maximum flow techniques, where n = |V| and m = |E|.
Moreover, unlike the existing models of uncertain graphs,
the model used in this paper is quite general, which doesn’t
assume the existence of edges is mutually independent.

Categories and Subject Descriptors

G.2.2 [Discrete Mathematics|: Graph Theory — Graph
algorithms; H.2.8 [Database Management|: Database Ap-
plications — Data mining

General Terms

Measurement, algorithms, performance

Keywords

Uncertain graph, marginal constraint, expected density, para-
metric maximum flow

1. INTRODUCTION

Dense subgraph discovery is a fundamental problem in
the research on graph databases. In literature, a number of
algorithms have been proposed for finding dense subgraph-
s in a given graph, where a variety of definitions of dense
subgraphs have been used, e.g., cliques [23], quasi-cliques
[1], k-cores [10], k-truss [24], and so on. In this paper, we
consider the density measure that assesses the ratio of the

Permission to make digital or hard copies of all or part o tvork for

personal or classroom use is granted without fee providatiabpies are
not made or distributed for profit or commercial advantage that copies
bear this notice and the full citation on the first page. Toyootherwise, to
republish, to post on servers or to redistribute to listgyies prior specific
permission and/or a fee.

Eleventh Workshop on Mining and Learning with Graphs (MLG). Chicago,

lllinois, USA.

Copyright 2013 ACM 978-1-4503-2322-2 ...$10.00.

Figure 1: Uncertain graph G.

number of edges to the number of vertices [12]. More precise-
ly, given a graph G = (V, E), the density of G is defined by
p(G) = |E|/|V]. This definition of density of graph G equiv-
alently measures the average degree of G' because 2|E|/|V|
is equal to the average degree of G. Based on this density
measure, many studies have been carried out on the prob-
lem of finding a subgraph or an induced subgraph of the
maximum density in a given graph [4, 8, 9, 12].

Recently, uncertainty has been recognized to be intrin-
sic in large graph databases due to errors of measurements,
delayed updates of data, and data integration. Managing
and mining uncertain graph data have attracted a lot of re-
search attentions [14, 15, 16, 17, 18, 20, 21, 25, 26, 27]. In
our prior work [27], we define an uncertain graph by a triple
G = (V,E, P), where each edge e € F has a probability
of P(e) to exist in practice. Due to uncertainty, the tradi-
tional definition of density p(G) of a graph G doesn’t make
sense on an uncertain graph. Consider the uncertain graph
G = (V,E,P) in Figure 1, where the real number on each
edge e is P(e). If we think of G as an exact graph, the densi-
ty of G is 8/5. However, since edges (v2,v4) and (v3, vs) exist
with very low probability, the density of G should actually
be much lower than 8/5, and be close to 6/5.

In this paper, we first formalize the problem of finding a
densest subgraph in an uncertain graph. According to our
uncertain graph model, an uncertain graph G = (V, E, P)
exists as an exact graph G’ = (V,E’) in practice, where
each edge e € F exists in E’ with probability P(e). More
formally, we say that G implicates G. Let Q(G) be the set
of exact graphs implicated by G. The uncertain graph G es-
sentially represents a probability mass function p over Q(G),
where p(G) is equal to the probability of G implicating G
for all G € Q(G). For each exact graph G = (V, E) € Q(G),
the density of G is p(G) = |E|/|V|. Therefore, we evaluate
the density of G by the expected value of density of an exact
graph G chosen at random from 2(G) according to proba-
bility mass function p. Namely, this measure is called the



expected density of G. Hence, the densest subgraph problem
on uncertain graphs can be formalized as follows. Given an
uncertain graph G = (V, E,P) and a set R C V, find an
induced subgraph G[V'] of G of the maximum expected den-
sity such that R C V’. The input R of the problem is a
constraint on the output induced subgraph. If R = (, the
output is an induced subgraph of G of the maximum density.

It is worth noting that the model of uncertain graphs pro-
posed in this paper is quite general. Unlike the existing work
on managing and mining uncertain graphs [14, 15, 16, 17,
18, 20, 21, 25, 26, 27], we don’t assume that the existence
of edges of an uncertain graph is mutually independent. In
fact, any probability mass function over 2(G) that satisfies
the marginal constraint given later can be used in our work.

Except the theoretical importance, the problem of finding
induced subgraphs of the maximum expected density from
an uncertain graph also has many practical applications. For
example, the densest subgraphs have been used as interest-
ing regions of annotated biological networks, in which valu-
able cross genome patterns can be found [5]. In fact, due to
the inherent uncertainty of high-throughput biological ex-
periments, biological networks are uncertain graphs [6, 13].
Therefore, it is of practical significance for biologists to find
the densest subgraphs from uncertain biological networks to
get more reliable patterns.

The densest subgraph problem has also been applied in
community detection in large networks [7]. Indeed, a sub-
stantial number of networks such as social networks are un-
certain graphs due to the volatile nature of relationships [2].
Therefore, it is very important for analysts to find subgraphs
of the maximum expected density from uncertain social net-
works to get more reliable communities.

The traditional densest subgraph problem defined on ex-
act graphs has attracted considerable research attentions.
Goldberg [12] proposed an algorithm that requires O(logn)
maximum flow computations to find a subgraph of the max-
imum density. Charikar [9] developed a simple greedy algo-
rithm that finds a subgraph of density within a factor 2 of
the optimum. Most recently, Bahmani et al. [7] studied the
problem in a data stream model, and presented algorithms
that find a subgraph of density within a factor 2(1+¢) of the
optimum by making O(log,_, . n) passes over the input graph
stream, where € > 0. For the variant of the problem with
size constraint, Anderson et al. [4] gave a 3-approximation
algorithm for the problem of finding an densest subgraph in-
duced by at least k vertices. Bhaskara et al. [8] studied the
problem of finding an densest subgraph induced by exactly k
vertices, and showed that the problem can be approximated
within a ratio of O(n'/*) in n®1°&™) time.

Although the existing algorithms for the densest subgraph
problem on exact graphs guarantee good approximation ra-
tios, they can’t be used on uncertain graphs. From the as-
pect of semantics, all these algorithms don’t consider uncer-
tainties, so the outputs of the algorithms are unable to be
explained with respect to uncertainties. In addition, while
some algorithms find densest subgraphs that satisfy size con-
straints, they can’t find a subgraph of the maximum expect-
ed density that consists of a set R of specified vertices.

In this paper, we first study the special case of the problem
in which the input R is an empty set. That is, the output of
the problem is an induced subgraph of the input uncertain
graph G = (V, E, P) of the maximum expected density. We
show that this problem is equivalent to the problem of find-

ing a densest induced subgraph in a weighted exact graph.
Thus, it can be solved in O(nm log(n?/m)) time [11], where
n =|V] and m = |E|.

We next study the problem when the input R is not an
empty set. The method is very interesting. Let A > 0 be a
real value that we guessed for the maximum expected den-
sity of an induced subgraph that contains R. We reduce the
densest subgraph problem to the problem of searching the
desired value of A. Interestingly, we can tell whether A is
too big or too small by computing a minimum cut of a flow
network constructed with respect to A\. We show that, s-
tarting from an arbitrary guessed value of A, we can find the
desired value of A\ by carrying out at most n 4+ 1 minimum
cut computations, which in turn can be solved by maximum
flow techniques. When the desired value of A is found, we
can construct an induced subgraph of the maximum expect-
ed density that contains R from the minimum cut of the
flow network constructed with respect to the desired value
of A\. Note that the computation shared by the series of min-
imum cut computations can be saved by parametric maxi-
mum flow techniques. Thus, the densest induced subgraph
that contains R can be found in O(nmlog(n?/m)) time by
carrying out the parametric maximum flow algorithm [11]
implemented using dynamic trees [22], where n = |V| and
m = |E|.

The rest of the paper is organized as follows. Section 2
defines the densest subgraph problem on uncertain graphs.
Section 3 presents a method for finding a densest induced
subgraph of the input uncertain graph G when the input set
R is empty. Section 4 gives an algorithm for finding the
densest induced subgraph containing R when the input R is
not empty. Finally, the paper is concluded in Section 5.

2. PROBLEM STATEMENT

In this section, we introduce a model of uncertain graph-
s, define the expected density of an uncertain graph, and
give a formal statement of the densest subgraph problem on
uncertain graphs. We also introduce some helpful notation.

2.1 Uncertain Graphs

An uncertain graph is a triple G = (V| E, P) in which V is
a set of vertices, F is a set of edges, and P is a function from
E to (0,1] that associate each edge e € E with a quantity
P(e) € (0,1] which represents the probability of e existing
in practice. If P(e) = 1, edge e certainly exists.

Because it is uncertain whether an edge e with P(e) < 1
exists in practice, an uncertain graph G = (V, E, P) actually
exists as an exact graph G = (V,E’) which satisfies that
{ele € E,P(e) = 1} C E' C E, that is, (1) all the edges e
with P(e) = 1 exist, and (2) some of the edges e with P(e) <
1 may be absent. Following up the terminology in [27], we
say that the uncertain graph G = (V, E, P) implicates the
exact graph G = (V, E’), denoted by G = G. Let Q(G) be
the set of exact graphs implicated by G. One can readily
verify that |Q(G)| = 2/{elecBP(e)<1}

Given an uncertain graph G = (V, E, P), if the existence
of edges of G is mutually independent, the probability that
G implicates an exact graph G = (V, E') is given by

Prlg=Gl= [[ Ple)- ] (1-P(e) .
ecE’/ e€E\E’/

Therefore, the function p(x) = Pr[G = z] is a probability
mass function over Q(G). For a proof, please refer to [27].



In this paper, we don’t assume that the existence of edges
of an uncertain graph G = (V, E, P) is independent. In fact,
any probability mass function p(z) = Pr[G = z] over Q(G)
that satisfies the following property can be used.

Marginal constraint: For all e € F, we require that

> Pr[G = G] = P(e) .

G=(V,E")eQ(G),ecE’

Given an uncertain graph G = (V, E, P) and a set of ver-
tices V! C V, we call G’ = (V', E', P’) a subgraph of G, de-
noted by G’ C G, if E' C Fand P’ = P|g/, i.e., P'(e) = P(e)
for alle € E'. Let p(z) = Pr[G = x| be the probability mass
function over Q(G) which satisfies the marginal constraint.
We define, for all G’ € Q(G'),

Prlg = G= >

GeQ(g),G'CG

Pr[G = G] ,

where G’ C G represents that G’ is a subgraph of G. One
can verify that the function p'(z) = Pr[G’ = z] is a prob-
ability mass function over £2(G’), and satisfies the marginal
constraint with respect to G'.

Given a set V' C V, the subgraph of an uncertain graph
G = (V,E, P) induced by V', denoted by G[V'], is the un-
certain graph G’ = (V', E’, P'), where E' = {(u,v)|(u,v) €
E,u € V',;v € V'} and P’ = P|g/. For convenience, we
denote E’ by E[V'].

2.2 Densest Subgraph Problem on Uncertain
Graphs

The density of an exact graph G = (V, E), denoted by
p(Q), is defined by p(G) = |E|/|V|. Since 2|E|/|V] is equal
to the average degree of G, p(G) essentially measures the
average degree of G.

Based on the model of uncertain graphs, we are now ready
to define the density of an uncertain graph. Given an uncer-
tain graph G = (V, E, P), the ezpected density of G, denoted
by p(G), is defined by

plG) = > p(@Prlg=a] .

GeQ(G)

In other words, p(G) is the expected value of density of an
exact graph G chosen at random from Q(G) according to
probability mass function p(G) = Pr[G = @], that is, p(G) =
E[p(G))

Thus, the densest subgraph problem on uncertain graphs
can be stated as follows:

Input: an uncertain graph G = (V, E, P) and aset R C V,
where |V| = n, |[E| = m, and the probability mass
function p(xz) = Pr[G = z] over Q(G) satisfies the
marginal constraint.

Output: the induced subgraph G[V’] of G of the maximum
expected density such that R C V’.

3. METHOD FOR FINDING DENSEST SUB-
GRAPHS

In this section, we investigate the special case of the dens-
est subgraph problem in which the input R = (. That is,
the output of the problem is the induced subgraph of G of
the maximum expected density. The main theorem of the
section is as follows.

Theorem 1. Given an uncertain graph G = (V, E, P), where
|V =n, |E| = m, and the probability mass function p(z) =
Pr[G = z] over Q(G) satisfies the marginal constraint, the
induced subgraph of G of the maximum expected density
can be computed in O(nmlog(n?/m)) time.

As a proof of the theorem, we provide a method in the rest
of this section to find the induced subgraph of the maximum
expected density. We first show the following proposition.

Proposition 1. Given an uncertain graph G = (V, E, P),
the expected density of a subgraph G’ = (V', E’, P’) of G
can be evaluated by

_ 1
w9 = 7 3 Ple) - (1)
ecE’
Proof. For all e € E, let X, be a random variable following
the Bernoulli distribution below.

Pr[X. =1] = P(e) ,
Pr[Xe=0]=1- P(e) .

In other words, X. = 1 represents the event that e exists
in practice, and X. = 0 represents the event that e doesn’t
exist in practice. Then, we have E[X.] = P(e).

Let G be an exact graph chosen at random from Q(G’)
according to probability mass function p(G) = Pr[¢’ = G].
The number of edges of G is therefore ) Xe. Thus, the
density of G is

ecE’

1
P(G):mzxe-

ecE’

Due to the definition of expected density, we have p(G') =
E[p(GQ)]. By the linearity of expectation,

— / 1 1
P(Q)ZWZE[XJZWZP(@)'

ecE’ ecE’

Thus, the proposition holds. [

If we think of P(e) as the weight of edge e, then Eq. (1)
is identical to the density of a weighted exact graph, that
is, the ratio of the sum of weights of edges to the number
of vertices [12]. Thus, an induced subgraph of the uncer-
tain graph G = (V, E, P) of the maximum expected density
can be computed by Goldberg’s algorithm [12] or a para-
metric maximum flow algorithm [11] which were used to
find a densest induced subgraph in a weighted exact graph.
Let n = |V| and m = |E|. Goldberg’s algorithm runs in
O(p(n,m)(p(n,m)+q(n,m))) time if the maximum flow al-
gorithm uses O(p(n, m)) comparisons and O(g(n, m)) addi-
tions, where p(n, m) and ¢(n, m) are polynomials in n and m
[12]. The parametric maximum flow algorithm implement-
ed using dynamic trees runs in O(nmlog(n®/m)) time [11],
which is apparently faster than Goldberg’s algorithm. This
completes the proof of Theorem 1.

4. ALGORITHM FOR FINDING DENSEST
SUBGRAPHSCONTAINING SPECIFIED
VERTICES

In this section, we study the densest subgraph problem in
which the input R # @. That is, the output of the problem is
the induced subgraph of G of the maximum expected density
which contains all the vertices in R. The main theorem of
the section is as follows.



Theorem 2. Given an uncertain graph G = (V, E, P) and
a set R C V, where |V| = n, |E| = m, and the probability
mass function p(xz) = Pr[G = z] over Q(G) satisfies the
marginal constraint, the induced subgraph G[V'] of G of the
maximum expected density with R C V' can be computed
in O(nmlog(n®/m)) time.

To prove this theorem, we propose an algorithm based on
maximum flow techniques [3] in the rest of this section. We

define
p=> Pl ,
ec
and
Do = Z P(e) foralveV .

e=(v,u)€EE

Let A > 0 be a real value that we guessed for the maximum
expected density of an induced subgraph of G which consists
of all the vertices in R. Then, we construct a flow network
Gn = (Vn, En) with respect to A as follows. The vertex
set of Gy is Vy = V U {s,r,t}, where s is the source, and ¢
is the sink. For all v € R, there is an arc (r,v) € Enx with
capacity c(r,v) = co. For all v € V \ R, there is an arc
(r,v) € Enx with capacity ¢(r,v) = p. For all v € V, there is
an arc (v,t) € En with capacity c(v,t) = 2\ + p — p,. For
all e = (u,v) € E, there is an arc (u,v) € Ex with capacity
of ¢(u,v) = P(e), and an arc (v,u) € En with capacity
c(v,u) = P(e). Moreover, there is an arc (s,r) € Ex with
capacity c(s,r) = np. More precisely,

Gy = (VNn,EN) ,

VN =V U{s,nrt},

Enx ={(s,")} U{(r,v)|lve V}U{(v,t)lv e V}
U{(u,v)|(u,v) € E} U{(v,u)|(u,v) € E} ,

c(r,v) = o0 forallve R,

c(r,v) =p forallv e V\R ,
c(v,t) =22 +p—py forallveV ,

c(u,v) = P(e) for all e = (u,v) € E |
c(v,u) = P(e) for all e = (u,v) € E |

c(s,r) =np .

Therefore, |Vy| =n+3, and |Enx| = 2(n+m) + 1. Figure
2 illustrates the flow network Gy .

Let X = Vv \ X for any X C Vy. We say that (X, X) is
a cut of Gy if s € X and t € X. The capacity of (X, X),
denoted by c(X, X), is defined by

o(X,X) = >

e=(u,v)EEN,u€EX,vEX

c(u,v)

that is, the sum of capacities of arcs from a vertex in X to a
vertex in X. A cut of the minimum capacity is said to be a
minimum cut. For more knowledge on network flows, please
refer to [3].

The following two lemmas show that if vertex r is on the
source side X of a minimum cut (X, X) of Gy, all the ver-
tices in R are also on the source side X; if r is on the sink
side X of (X, X), then (X, X) = ({s}, VU {rt}).

Lemma 1. Let (X, X) be a minimum cut of the flow net-
work G constructed with respect to a specific A > 0. If
r € X, then R C X\ {s,r}.

Figure 2: Flow network Gn.

Proof. Let S = X \ {s,r} and T'= X \ {t}. If R C S, the
capacity of (X, X) is

(X, X)
= Z e(r,v) + Z c(v,t) + Z c(u,v)
veT veS e=(u,v)EE,ueS,veT

= p|T| + plS| + 2X[S| = Y po + > P(e)

veES e=(u,v)EE,ueS,veT
= np +2|S|(A = p(G[S])) - (2)
Otherwise, ¢(X, X) = co. Thus, RC S. O
Lemma 2. Let (X, X) be a minimum cut of the flow net-

work Gy constructed with respect to a specific A > 0. If
r € X, then X = {s}.

Proof. Let S = X \ {s} and T'= X \ {r,t}. If S = 0, then
¢(X, X) = np. Otherwise, the capacity of (X, X) is

(X, X) =c(s,r) + Z c(v,t) + Z c(u,v)
veS e=(u,v)EE,ueS,veT
=np+ Y (2A+p—p,)+ > P(e)
vES e=(u,v)EE,ueS,veT

>np ,

where the inequality holds because A > 0, p > p, for all
ve S, and P(e) >0 forall e € E. Thus, X = {s}. O

The following theorem shows that we can tell whether
the guessed value A is too big or too small by computing
a minimum cut of the flow network G'x constructed with
respect to A. Hereafter, we require that the maximum flow
algorithm used in our method finds the minimum cut (X, X)
such that | X| is the largest over all minimum cuts of Gn.

Theorem 3. Let p* be the maximum expected density of
an induced subgraph of G that consists of all the vertices
in R, and let (X, X) be a minimum cut of the network G
constructed with respect to A. We have the following results:

1. A< p* if and only if » € X and ¢(X, X) < np;
2. A > p" if and only if X = {s};



3. A=p* if and only if r € X and ¢(X, X) = np;

4. If A = p*, then R C X \ {s,r}, and the expected
density of the subgraph of G induced by X \ {s,r} is
P
Proof. We first prove result 1.

Efficacy of result 1: Let S = X \ {s,r}. Since r € X,
we have R C S by Lemma 1. Then, by Eq. (2), we have
c(X, X) = np + 2|S|(A — p(G[S])). Since c¢(X, X) < np, we
get A < p(G[S]). Thus, X < p*.

Necessity of result 1: Let V* C V be the set of vertices
such that R € V* and p(G[V"]) = p*, and let X* = V" U

{s,r}. By Eq. (2), we have ¢(X*, X™) = np+2|V*|(A - p").

Since A < p*, it yields that ¢(X™, X™) < np. Since (X, X)
is a minimum cut, we have c¢(X, X) < ¢(X*, X*) < np.

We also have r € X because if r ¢ X, then X = {s} by
Lemma 2, and hence ¢(X, X) = np. Therefore, (X, X) can

not be a minimum cut, which leads to a contradiction.
Then, we prove result 2.

Efficacy of result 2: Since X = {s}, we have ¢(X, X) =
np. For any subset S C V with R C S, the capacity of
(SU{s,r}, (V\S)U{t}) is greater than np because otherwise,
(X, X) will not be a minimum cut that has | X| maximum.
Then, by Eq. (2), we have np+ 2|S|(A — p(G[S])) > np, that
is, A > p(G[S]). Therefore, A > maxs p(G[S]) = p*.

Necessity of result 2: We first prove that » € X. Assume
r € X and let S = X \ {s,r}. It follows from Lemma 1 that
R C S. Then, by Eq. (2), we have ¢(X, X) = np + 2|S|(\ —
p(G[S])). Since A > p*, it produces that A > p(G[S]). Thus,
¢(X, X) > np. Since the capacity of the cut ({s}, VU{s,r})
is np, (X, X) is certainly not a minimum cut, which leads to
a contradiction. Therefore, r ¢ X. By Lemma 2, we have

X ={s}.
Next, we prove result 3.

Efficacy of result 3: We first prove that A\ < p*. Let
S =X\ {s,r}. Since r € X, we have R C S by Lemma 1.
Then, by Eq. (2), we have ¢(X, X) = np+2|S|(A— p(G[S]))-
Since ¢(X, X) = np, it produces that A = p(G[S]). Thus,
A< p*.

Then, we prove that A > p*. Assume A < p* and let V* be
the set of vertices such that R C V* and p(G[V*]) = p*. The
capacity of (V*U{s,r}, (V\V*)U{t}) is np+2[V*|(A—p*),
which is less than np. Therefore, (X, X) is not a minimum
cut, which leads to a contradiction.

Consequently, A = p*.

Necessity of result 3: Without loss of generality, let V* C
V be the unique set of vertices such that R C V*, p(G[V*]) =
p*, and |V*| is maximized. Since A = p*, we have np +
2]lV*|(A = p*) = np, ie., the capacity of (V* U {s,r},(V \
V*YU{t}) is np.

We first show that r € X. Assume r ¢ X. It follows
from Lemma 2 that X = {s} and thus ¢(X, X) = np. Since
X = {s} ¢ V*U{s,r}, the maximum flow algorithm does
not output (X, X), which leads to a contradiction.

Since r € X, we have R C X \ {s,r} by Lemma 1. For
any subset S C V with R C S and S # V*, the capacity of
(SU{s,r},(V\ S)U{t}) is np + 2|S|(A — p(G[S])). Since
A = p* > p(G[S]), the capacity of (SU{s,r}, (V\S)U{t}) is
no less than np. In addition, since |S| < |[V*|, the maximum

flow algorithm will finally produce X = V* U {s,r}. By
Eq. (2), we have ¢(X, X) = np+2|V*|(A - p(G[V*])). Since
A= p(G[V*]) = p*, we have ¢(X, X) = np.

Now consider the general case. Let Vi, Va,..., Vi be the
subsets of V' such that R C V;, p(G[Vi]) = p*, and |V;] is
maximized for ¢ = 1,2,...,[. By above arguments, there
must exist an integer 1 < ¢ <[ such that X = V; U {s,r}.
Therefore, r € X and ¢(X, X) = np.

Finally, we prove result 4. Let S = X \ {s,r}. Since
r € X, we have R C S by Lemma 1. Then, by Eq. (2), we
have c¢(X, X) = np + 2|S|(A — p(G[S])). Since (X, X) = np
and A = p*, we have p(G[S]) = p*.

Thus, the theorem holds. [l

Define

PR = Z P(e) .

e€E[R]

Since |R| < |S| < n, and

pr < Z Ple) <p
ecE[S]

for all R C S C V, we have

PR ~ p
- = p(gls) = ]

Intuitively, we may use a maximum flow algorithm as a
subroutine to test whether A is too big or too small by Theo-
rem 3, and find the desired value of A, that is, the maximum
expected density of an induced subgraph of G that consists
of all the vertices in R, within interval [pr/n,p/|R|] by a
search method such as binary search, monotonic search, or
Megiddo’s method [19]. However, since P(e) € (0,1] is a
real number for all e € E, the number of all possible values
of X is infinite. Thus, the simple search methods such as
binary search, monotonic search, or Megiddo’s method need
not terminate at all.

Interestingly, by the following property of minimum cuts
of the flow network G, we can find the desired value of A
in polynomial time. Let ¢()) be the capacity of a minimum
cut of Gn constructed with respect to A. It is known that
c()\) is a piecewise linear and concave function of A with at
most |Vn| — 1 = n + 2 breakpoints [11]. Each line segment
between two consecutive breakpoints at A = A\; and A = Ag,
where A1 < A2, in the graph of ¢()\) corresponds to a distinct
minimum cut which remains a minimum cut for A\; < A <
A2. By Theorem 3, the rightmost breakpoint on the graph
of c(A) is at A = p*, and ¢(A) = np for A > p*. Figure 3
gives an illustration of the graph of ¢()).

Thus, we can compute the maximum expected density p*
of an induced subgraph of G that contains all the vertices
in R by searching the rightmost breakpoint on the graph of
¢(M\). This can be done using parametric mazimum flow al-
gorithms [11]. First, we consider \ as a variable rather than
a constant. Therefore, the flow network G is a parametric
flow network in which the capacities of all arcs into the sink
t are linear functions of A\. Then, we use a parametric max-
imum flow algorithm, e.g., the one proposed by Gallo et al.
[11], to find the rightmost breakpoint on the graph of ¢()).

Let (X,X) be a minimum cut of Gy produced by the
parametric maximum flow algorithm for A = p* such that
| X| is the largest. By Theorem 3, we have R C X\{s, r}, and
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Figure 3: Graph of c()).

the subgraph of G induced by X \ {s,7} has the maximum
expected density p*.

We are now ready to provide an algorithm that, given an
uncertain graph G = (V, E, P) and a nonempty set R C V,
finds the induced subgraph of G of the maximum expected
density which consists of all the vertices in R. The algorith-
m, denoted by DS, is presented in Figure 4.

Input: an uncertain graph G = (V, E, P) and a set of ver-
tices RCV

Output: an induced subgraph of G of the maximum ex-
pected density which consists of all the vertices in R

Step 1. Let A be a variable representing the guessed value
for the maximum expected density p* of an induced
subgraph of G that consists of all the vertices in R.
Construct a parametric flow network Gy = (V, En)
with respect to A.

Step 2. Use the parametric maximum flow algorithm [11]
implemented using dynamic trees to find the rightmost
breakpoint on the graph of ¢(A) which is at A = p*.
Let (X, X) be the minimum cut of Gn produced by
the parametric maximum flow algorithm for A = p*.

Step 3. Output the subgraph of G induced by X \ {s,r}.

Figure 4: Algorithm DS.

Finally, we analyze the time complexity of DS. The para-
metric flow network Gy = (Vn, En) consists of |[Vy| =n+3
vertices and |En| = 2(n +m) + 1 arcs. Therefore, Gy can
be constructed in O(|Vn| + |En|) = O(n 4+ m) time in Step
1. The value of p* and the minimum cut (X, X) of Gn with
respect to A = p* can be computed by the parametric max-
imum flow algorithm implemented using dynamic trees [22]
in O(|Viv| | Ex|log(|Vi */|Ex1)) = O(nmlog(n®/m)) time
[11] in Step 2. Thus, DS runs in O(nmlog(n?/m)) time.

5. CONCLUSIONS

In this paper, we have given a general model of uncertain
graphs in which the existence of edges is not required to
be independent. Based on this model, we have defined the
concept of expected density of an uncertain graph. We have
also shown that, given an uncertain graph G = (V, E, P)

and a set of vertices R C V, we are able to find an induced
subgraph G’ = (V', E', P') of G of the maximum expected
density such that R C V' in O(nmlog(n?/m)) time, where
n=|V|and m = |E|.
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