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ABSTRACT
An important challenge related to the prediction of relation-
ships between groups of vertices or the properties of such
relationships (e.g., link prediction) is that links are not in-
dependent (they share vertices) and hence the common as-
sumption that examples are drawn identically and indepen-
dently does not hold. A related problem occurs in frequent
pattern mining, where it is non-trivial to define an appealing
frequency measure for measuring the support of a pattern in
a network. In this paper, we discuss a line of research aiming
at solving these two problems in an elegant way by defining a
measure which both describes the generalization power of a
sample and is an anti-monotonic, normalized graph support
measure. We review earlier work, discuss recent results, and
suggest directions for future work.

Categories and Subject Descriptors
I.2 [ARTIFICIAL INTELLIGENCE]: Learning; G.2.2
[DISCRETE MATHEMATICS]: Graph Theory—Hyper-
graphs, Network problems

General Terms
Theory

1. INTRODUCTION
Recently there is an increasing amount of networked data,

i.e., data represented with networks of connected entities.
One of the challenges of machine learning in the context of
such networked data is that the common assumption that
examples are distributed identically and independently does
not hold. In fact, in many applications making such assump-
tion does not give good results. A better understanding
of the statistical aspects of learning in a networked setting
would be beneficial to guide further research in that setting.

In our research, we consider a weaker form of indepen-
dence assumption, and derive for it a learning bound and a
pattern frequency measure. This paper explains the earlier
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work, our ongoing research and a roadmap for further work.
The contributions of this paper are threefold. First, we in-
troduce a concept of networked examples, i.e., examples for
a machine learning task sharing parts of their features. Sec-
ond, under a weaker independence assumption, we show a
learning bound which is better than in earlier work. Third,
we point out a relationship between graph support measures
in the context of pattern mining and measures for the sta-
tistical power of a sample.

The paper is structured as follows. First, after some pre-
liminaries in Section 2, in Section 3 we define more precisely
our setting for networked examples. Then, Section 4 reviews
work on support measures and relates it to our setting. In
Section 5 we will formulate the problem of learning from
networked examples and state the weaker independence as-
sumption we make. In Section 7 we discuss MBNL, a Mea-
sure for Bernstein-bound-optimal Learning from Networked
examples, including the learning bound (the detailed reason-
ing can be found in [14]) and pattern frequency measure it
allows for. In Section 8 we review related work on learning
in a network. In Section 9 we conclude with a discussion
and pointers for future work.

2. PRELIMINARIES
In this section, we briefly review some basic definitions on

graphs. A labeled graph is a triple (V,E, λ) where V is a set
of vertices, E is a set of edges and λ is a labeling function
which assigns every vertex (and/or every edge) a label. We
denote the set of vertices of a graph G with V (G), the set of
edges with E(G) and the labeling function λG. We denote
the set of all graphs with G. A hypergraph is a pair (V,E)
where V is a set of vertices and E is a set of hyperedges. Two
graphs P and D are isomorphic iff there exists a bijective
mapping π : V (P ) 7→ V (D) such that 1) for all v ∈ V (P ),
λP (v) = λD(π(v)), 2) any two vertices u and v of P are
adjacent in P if and only if π(u) and π(v) are adjacent in
D. The mapping π is called the isomorphism mapping. A
graph P is a subgraph of a graph D iff V (P ) ⊆ V (D) and
E(P ) ⊆ E(D). A graph P is subgraph isomorphic to a graph
D iff P is isomorphic to a subgraph of D. An embedding
of P in D is an isomorphism mapping between P and a
subgraph of D. The set of all embeddings of P in D is
denoted Emb(D,P ). We will often call P the (subgraph)
pattern and D the database graph or network.

3. A SETTING FOR NETWORKED EXAM-
PLES



In this paper, we consider a setting where examples share
part of their features. The i.i.d. assumption does not al-
ways hold in this setting. For instance, suppose that we are
interested in predicting whether a given person likes a given
movie. We could ask a set of persons to grade five of the
movies they have seen in the past. Then, we want to predict
for a new visitor (drawn from the same distribution as our
training persons) whether he will like a newly introduced
movie (having features drawn from the same distribution as
the movies in the past). Our training examples (each con-
taining a person ID, a movie ID and a grade) are not all
independent since each person graded several movies and all
movies were graded by several persons. Still, we would like
to get a generalization guarantee.

More formally, given a graph D and a subgraph pattern P ,
we say that a P -example e is an embedding under subgraph
isomorphism of P in G, i.e., e ∈ Emb(D,P ). For instance,
in our movie grading problem, we could represent our data
as follows: we represent every movie with a vertex labeled
movie, every person wtih a vertex labeled person and every
grade with a vertex labeled grade. We connect every grade
to the person vertex who gave the grade and the movie ver-
tex which was graded. We also connect every pair of persons
who are friends. For our pattern graph P , we would have
vertices V (P ) = {1, 2, 3}, edges E(P ) = {{1, 2}, {2, 3}} and
labeling function λP = {(1, person), (2, grade), (3, movie)}.
Emb(D,P ) induces a hypergraph on the vertices V (G)

of G. In particular, we denote with Ex(D,P ) the hyper-
graph for which V (Ex(D,P )) = V (D) and E(Ex(D,P )) =

{e ∈ V (D)V (P ) | ∃π ∈ Emb(D,P ),∀v ∈ V (P ) : ev =
π(v)}, where hyperedges e ∈ E(Ex(D,P )) are indexed with
vertices of P , e.g., in our movie grading database if e ∈
E(Ex(D,P )) then e1 refers to a person vertex in D. For
ease of notation and without loss of generality we assume
that the pattern vertices are the integers from 1 to |V (P )|, as
is the case in the above example. A feature map on a graph
D is a mapping φ assigning to each vertex and edge of D a
feature. Features may be single values or may be structured
(e.g. consist of vectors). While labels should be preserved
by subgraph isomorphism, features should not. We also use
the notation φ as a function on examples: for any exam-
ple e, we call φ(e) = [φ(e(1)), φ(e(2)), . . . , φ(e(k))] the feature
vector of e. For instance, in our movie rating example, φ
could assign to movies m ∈ V (1) pairs (genre, length), to

persons p ∈ V (2) a triple (gender, age, nationality) and to

a rating r ∈ V (3) a pair (watching time,movie version). φ
would therefore assign to an example a triple with in total
8 values.

4. COUNTING FREQUENCY
In our movie grading database, we considered already

triples of movies, grades and persons. However, there may
be many other patterns of vertices satisfying specific rela-
tionships and of interest to consider. For instance, consider-
ing pairs of friends we may discover interesting correlations
between their properties or the types of movies they watch.

The task of pattern mining is concerned with collecting
all such patterns of interest. A classic form of pattern min-
ing is frequent (subgraph) pattern mining. There, patterns
which occur often in a database (i.e., patterns which are
frequent) are considered as interesting. However, in order
to perform frequent pattern mining, one needs a frequency

measure (also called support measure). In particular, given
a pattern P ∈ G and a network D ∈ G, a support measure is
a function sup : G×G 7→ R+ which measures how frequently
the pattern P occurs in the network D.

4.1 Desirable properties
For simple settings such as itemset mining, a simple sup-

port measure is to count the number of transactions matched
by the pattern. However, in the context of subgraph pat-
terns in a single network, the issue is less straightforward as
several articles have demonstrated [11, 1, 5, 2].

We say that a support measure is anti-monotonic if Sup(D,
P ) ≤ Sup(D, p) whenever p is a subgraph of P , i.e., p � P .
The anti-monotonicity of the support measure (or more gen-
erally interestingness measure) plays a very important role in
the design of a subgraph pattern miner as it makes it possi-
ble to prune the search space [9]. For instance, just using the
number of occurrences of a subgraph pattern as its support
does not give an anti-monotonic support measure because
the number of embeddings of a pattern in a fixed network
may be exponential in the pattern size. In [1], the authors
proposed an anti-monotonic support measure, which we call
min-image : minImage(D,P ) = minv∈V (P ) |{φ(v) | φ ∈
Emb(D,P )}|. However, the min-image measure may over-
estimate the statistical evidence of a pattern [15]. We will
discuss such statistical concerns in Section 7.

Calders et al. [2] pointed out that being anti-monotonicity
is not sufficient to be a good support measure. For ex-
ample, a support measure that just returns a constant is
anti-monotonic, but not informative. [2] proposed using a
situation in which occurrences of a subgraph pattern occur
independently (i.e., they do not overlap according to some
notion of overlap) as a reference. In particular, the notion of
a normalized graph support measure was defined: a support
measure is normalized if every subgraph pattern which only
has non-overlapping occurrences in a network has a support
in this network that equals the number of occurrences.

4.2 Overlap-graph based support measures
An important class of anti-monotonic normalized support

measures relies on the notion of overlap. There are differ-
ent types of overlap, e.g. two embeddings of a pattern have
vertex-overlap if they share a vertex. There is a relationship
between overlapping embeddings of a pattern and dependent
observations. For instance, if we have a movie graded by
two different people, the movie-related features of the corre-
sponding examples would be equal (depend on each other).
At the same time, the two embeddings would overlap (more
specifically, would vertex-overlap [12]).

In order to study overlap, [12] introduced the notion of
overlap graph. In an overlap graph GPD, the vertices rep-
resent embeddings of a given subgraph pattern P , and two
vertices are adjacent if and only if the corresponding em-
beddings overlap in the network D (according to some no-
tion of overlap, such as sharing a vertex or an edge). An
overlap graph therefore indicates how often a subgraph pat-
tern occurs in the network, and how independent these oc-
currences are. An overlap-graph based support measure
(OGSM) takes an overlap graph of a subgraph pattern in
a network as its input, and outputs the support of that sub-
graph pattern in that network. Vanetik et al. [11] proposed
the MIS measure, i.e., the size of the maximum independent
set of the overlap graph, MIS(D,P ) = maxI⊆V (GP

D
){|I| |



∀e ∈ E(GPD) : |e ∩ I| ≤ 1}. This is intuitively appealing
since it measures how often we observe a subgraph pattern
occurring independently. However, computing (or even ap-
proximating) the MIS of an overlap graph is untractable
[4]. Calders et al. [2] showed that any normalized anti-
monotonic support measure should be larger than the MIS
measure and smaller than the MCP measure (the minimum
clique partition, another NP-hard to approximate number).
Moreover, they proposed the Lovász theta function (see, e.g.,
[8]), ϑ(D,P ) = ϑ(GPD), which is computable in time poly-
nomial in the size of the overlap graph using semidefinite
programming (SDP). Unfortunately, even the best known
polynomial time algorithms [6] don’t scale sufficiently well
to compute ϑ(D,P ) for large D.

4.3 An overlap-hypergraph based measure
[15] proposed a new anti-monotonic, normalized support

measure s that is based on bounding the value of all occur-
rences of a subgraph pattern that share a particular part
of the network. The s value can be computed efficiently as
it is the solution to a linear program (LP). In particular,
given a pattern P and a network D, we weight every em-
bedding in Emb(D,P ) a nonnegative value. The s value
takes the maximization of the sum of the weights under the
constraints that the sums of the weights of the embeddings
which share a certain vertex in D should be smaller than
or equal to 1. The measure s is not a traditional OGSM,
because its output does not merely depend on the overlap
graph, but on a more fine-grained overlap hypergraph HP

D

not only representing that two embeddings overlap but also
representing the element (e.g. the shared vertex) in which
they overlap. One can think of the HP

D considered in [15] as
a dual of the graph Ex(D,P ) considered here: in Ex(D,P ),
vertices are the pieces of information (referring to objects
in the world and their features) and hyperedges group these
objects into examples, while in HP

D vertices are the examples
(embeddings of P ) and hyperedges group examples sharing
a common piece of information (e.g. vertex of D).

5. LEARNING ASSUMPTIONS
We now return to the case we have one pattern P fixed

and want to learn about a target value of the P -examples in
D. For instance, in our movie-grading example we may want
to predict whether a new person will like a new movie. Even
though the results below apply more generally, in this paper
we assume that Ex(D,P ) is a k-partite graph, i.e., there is

a partition {V (i)}|V (P )|
i=1 of V (D) such that each hyperedge

e ∈ E(Ex(D,P )) intersects every set of the partition in
exactly one vertex. This is the case in our movie grading
example: the sets of movies, grades and persons are disjoint.

For convenience, we will use the following shorthand no-
tations. We use V and E to refer to V (Ex(D,P )) and
E(Ex(D,P )) = {el}ml=1 respectively. The number of par-
titions of V (and the arity of the hyperedges in E is de-
noted with k. The number of examples (hyperedges in E)

is denoted by m, and the cardinality of the partition V (i)

is denoted by ni, i.e., |V (i)| = ni. The j-th vertex of the

partition V (i) is denoted by v(i,j) where 1 ≤ j ≤ ni. We
denote the i-th component of an edge e as e(i), which is a
vertex in V (i). Hence, two edges ea and eb overlap if and

only if there exists 1 ≤ i ≤ k such that e
(i)
a = e

(i)
b . We also

define x(j,l) = φ(v(j,l)) and xl = φ(el). With every example

ei there is also associated a target value yi. We denote the
labeled example with zi = (xi, yi) We call the space of possi-
ble values of xl the input space and the space of all possible
target values Y the output space. We make the following
assumptions:

• The feature of every vertex in the partitions V (i) is
drawn identically and independently from a fixed but
unknown distribution ρi. We define ρe(e) =

∏k
i=1

ρi(φ(e(i))).

• Especially, these features are independent from the
edges in which they participate, i.e., ρj(φ(v(j,l))) =

ρj(φ(x(j,l)|E)).

• Moreover, all hyperedges el ∈ E (examples) get a tar-
get value yl drawn identically and independently from
ρy|x. Even if the hyperedges share vertices, still their
target value is sampled i.i.d. from some fixed but un-
known distribution ρy|x based on their (possibly iden-
tical) feature vector.

So one can choose freely which vertices participate in
which hyperedges, as long as this selection process is com-
pletely independent from the drawing of features for the ver-
tices and the drawing of target values. Our analysis of the
sample error E holds no matter what the distributions ρi
and ρy|x are, as long as the above assumptions hold. In our
movie rating example, it may or may not be realistic that
these assumptions hold. In particular, if ratings are obtained
from visitors of a cinema, then probably some visitors will
already have a preference and will not choose movies ran-
domly. On the other hand, if ratings are obtained during
an experiment or movie contest where a number of partici-
pants or jury members are asked to watch a specific list of
movies, one could randomize the movies to increase fairness,
and in this way our assumptions would be satisfied. There
are several other situations where our assumptions could be
realistic. For instance, one could consider medical random-
ized trials where patients get a random (possibly placebo)
treatment.

6. LEARNING STRATEGIES
In this section we discuss two plausible but suboptimal

strategies for learning under the assumptions formulated
above.

The EQW method In [7], the author shows an inequal-
ity which can be used to bound the error on averaging a
function over networked samples. Let us now consider a
learning strategy we call EQW (EQual Weight) and which
learns from a set of networked examples in the same way as
if they were i.i.d. (i.e., without weighting them as a func-
tion of the network structure). We can use the results in [7]
to bound the sample error of EQW, of which we give one
example below. In this paper, we consider the Empirical
Risk Minimization principle which aims to find a minimizer
of the empirical risk in a proper hypothesis space H to ap-
proximate the target function.

Theorem 1. Let H be a compact and convex set of func-
tions from X to Y. Assume H is M-bounded, i.e., supf∈H
|f(x) − y| ≤ M holds almost everywhere on Z according to
the probability distribution ρ on Z. Let h ∈ H be the function
minimizing the square loss over some training set (satisfy-
ing the assumptions stated earlier) containing m examples.



Then for all ε > 0,

Pr
(
E(heqw) ≥ ε

)
≤ N

(
H, ε

12M

)
exp

(
− 3mε

1400χ∗(GPD)M4

)
.

where the covering number N (H, τ) is the number of balls
of radius τ needed to cover H. χ∗(GPD) is the fractional
chromatic number of GPD.
The result above shows a larger sample may result in a
poorer bound since χ∗(G) can also become larger.

The IND method A straightforward idea to learn from
a networked sample is to find a subset of training examples
which corresponds to non-overlapping hyperedges. Due to
our assumptions, such set will be an i.i.d. sample. We can
then perform algorithms on this subset for learning. We call
this method the IND method. To bound the sample error of
this method, we can directly use the existing result. Under
the same conditions as in Theorem 1, we get

Pr
(
E(hind) ≥ ε

)
≤ N

(
H, ε

12M

)
exp

(
− nindε

300M4

)
where nind is the size of the subset of independent examples.

For any overlap graph GPD, it holds that (see, e.g., [3]),
|V (GP

D)|
χ∗(GP

D
)
≤ α(GPD) where α is the independence number and

an tight upper bound of nind. Therefore, the IND method
will give us a better bound than the EQW method if we
could find such a large subset of independent examples, but
is computationally intractable because finding a maximum
size set of independent examples is NP-hard.

7. BERNSTEIN-BOUND-OPTIMAL LEARN-
ING FROM NETWORKED EXAMPLES

We propose a computationally efficient method based on
the support measure discussed in 4.3. It allows for a better
bound on the sample error than the IND method. Let w∗

be an optimal assignment maximizing the objective func-
tion of the linear program used to compute s(H). One can
show that the value s(H) is always greater than α(GPD) The
following is our main result.

Theorem 2. Assume the same conditions of Theorem 1.
Let hmbnl minimize the weighted empirical risk 1

s

∑m
i=1

w∗i (hmbnl(xi)− yi)2. Then,

Pr
(
E(hmbnl) ≥ ε

)
≤ N

(
H, ε

12M

)
exp

(
− sε

300M4

)
.

8. RELATED WORK
[10] uses the concentration bound from [7] and studies

a problem similar to ours and analyses the EQW method
described above.

In [13], the authors consider a similar setting of networked
examples. They use a dual representation where vertices
correspond to examples and edges to dependencies, i.e., the
overlap graph. While we assume a worst case over all pos-
sible dependencies, and allow to model explicitely causes of
dependencies (represented with vertices which can be in-
cident with more than two edges), this work assumes a
bounded covariance between pairs of examples connected
with an edge (excluding possible higher-order interactions).
While we use our model to show learning guarantees, [13]

shows corrections for the bias (induced by the dependen-
cies between examples) on statistical hypothesis tests. It
seems plausible that both models can be applied for both
the learning guarantee and statistical testing tasks.

In the technical report [14] we discuss some more related
work which is less related to the graph mining / statistical
relational learning setting.

9. DISCUSSION AND FUTURE WORK
We can conclude that for overlapping (non-i.i.d.) exam-

ples it is possible to model and quantify the dependencies,
and use this to bound the expected prediction error of a
learner. We showed preliminary steps in that direction, us-
ing a weighting method and simple empirical risk minimiza-
tion, and a lot of open questions remain. The ability of our
idea to model dependencies is rather general, e.g. ’overlap’
is a fairly general concept which can be defined according
to the application domain and the needs of the analysis.
For instance, maybe one could believe that friends influence
each other heavily and therefore two triples (movie, grade,
person) overlap both if they share the same person or if the
two persons are friends. We also anticipate that it is pos-
sible to use a similar strategy to prove learning guarantees
in related networked settings. Even though we believe that
the measure discussed in Section 7 is optimal for Bernstein-
inequality based proofs, we would like to investigate whether
we can find measures and weightings optimal in a more gen-
eral way. In this paper, we also pointed to a relationship
with pattern mining, and we believe that exploring further
this connection could be interesting. Finally, a long-term
goal is to further weaken our independence assumptions.
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