
Application of Group Testing in Identifying High
Betweenness Centrality Vertices in Complex Networks

Vladimir Ufimtsev
Computer Science Department

University of Nebraska at Omaha
vufimtsev@unomaha.edu

Sanjukta Bhowmick
Computer Science Department

University of Nebraska at Omaha
sbhowmick@unomaha.edu

ABSTRACT
Group testing is a mathematical technique that uses super-
imposed code theory to find a specified number of distinct
units among a large population, using the fewest number
of tests. In this paper, we investigate the applicability of
group testing in finding vertices with high betweenness cen-
trality. Betweenness centrality (BC) is a widely applied net-
work analysis objective, for identifying important vertices in
complex networks. Most algorithms for computing BC com-
pute the values for all the vertices in the network. However,
in practice, only the vertices with the highest BC values are
used in analyzing the network, and even then we only need
the identities of the vertices–not the exact values.

We demonstrate that Latin square based group testing is
effective in finding the top two highest BC nodes of most
networks. We also show that the instances where group
testing fails to obtain the top BC nodes are networks where
slight perturbation of the edges can change the ranking of
the vertices. An additional benefit of group testing is that
it allows us to decompose the betweenness centrality com-
putation into a trivially parallelizable algorithm with high
scalability.

Keywords
betweenness centrality, group testing, network perturbation

1. INTRODUCTION
Many systems of interacting entities, such as those appear-

ing in biology [26], epidemiology [6] and social sciences [2],
can be modeled as networks. In a network model, the enti-
ties are represented by vertices and the interaction between
each pair of entities as edges. Analysis of the properties of
networks can help us understand the characteristics of the
underlying system.

One important analytical property of networks is the be-
tweenness centrality of the vertices. Betweenness centrality
(BC) measures the importance (centrality) of a vertex with
respect to the flow of information in a network, based on the

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
Eleventh Workshop on Mining and Learning with Graphs. Chicago, Illinois,
USA
Copyright 2013 ACM 978-1-4503-2322-2 ...$15.00.

number of shortest paths that pass through that vertex [3],
[4, 5, 15, 18]. The popular Brandes method [5] for obtaining
BC, cumulatively computes the values for every vertex in
the network. This method has a complexity of O(|V | · |E|)
for unweighted networks, where |V | is the number of vertices
and |E| is the number of edges. Although the algorithm has
polynomial complexity, the execution time is still prohibitive
for large-scale networks.

However, most applications of betweenness centrality, such
as the Girvan-Newman community detection method using
the divisive method [18], require only the top few vertices in
the network with high BC. Moreover, the BC values for most
real-world networks, with strong community structure, show
an exponential decay. In most cases, only a small fraction of
vertices have distinctive high BC values, and the values then
quickly fall with a bulk of vertices having zero betweenness
centrality.

Based on these observations we posit that the analysis al-
gorithm should focus on identifying only the top-highest BC
vertices in the network, and it is the identity not the actual
BC value of the vertex that is important. We present a group
testing based method that identifies the highest BC vertices
in a network, without explicitly computing their individual
values. We study how well group testing is suited for finding
high BC vertices in complex networks, along with solutions
to deal with the issue of interacting entities. Our experi-
ments demonstrate that group testing is most successful on
networks that are stable under edge perturbations, i.e. they
retain the same ranking of high BC vertices. We also show
that group testing can be translated into an easily paralleliz-
able algorithm requiring minimum communication.

Group testing is a mathematical technique employed in
the design of screening experiments [9] to identify items
that have a given special characteristic from a population of
items. It originated during World War II for efficiently test-
ing potentially infected blood samples of millions of draftees.
Since then, group testing has been used in many applica-
tions[21, 22] including finding counterfeit coins, patterns in
data and DNA library screening. The central idea of group
testing is that if there is a small percentage of defective units
in the population, it is more efficient (requires less tests) to
test the units in carefully selected groups, rather than testing
each unit separately. For example, if the total population is
n, using group testing, two defective units can be identified
in O(

√
n) tests.

In our approach, the defective units correspond to ver-
tices with high betweenness centrality. We group samples of
vertices and approximate the betweenness centrality of each

sample to find which groups have BC values higher than a
given threshold. These groups contain vertices with high be-
tweenness centrality values. We apply a Latin Square-based
strategy for composing the groups. This method guarantees
that we find at least two defective units in 3d

√
ne tests from

a sample of n units.
To date, there has been very limited implementation of

group testing in graph theory. Examples include finding
broken links in optical networks [19] and congested links
in wireless sensor networks (WSNs) [7].To the best of our
knowledge, this is the first application of group testing in
identifying sensitive vertices in complex networks. Our pre-
vious work on this topic and preliminary results can be found
in [25]. There is however previous work on identifying the
vertices in a network with the highest closeness centrality,
a different centrality measure. For example in [23] rank-
ing and approximation algorithms are used to obtain the
ranking of the k highest closeness centrality vertices in a
network. These methods widely differ from our group test-
ing approach though the end goal is very similar to ours i.e.
identifying important vertices in a network.

2. BACKGROUND

2.1 Terminology for Network Analysis
A network (or graph) G = (V,E) is defined as a set of

vertices V and a set of edges E. An edge e ∈ E is associ-
ated with two vertices u, v which are called its endpoints. A
vertex u is a neighbor of v if they are joined by an edge. A
graph is undirected if (u, v) ∈ E also implies that (v, u) ∈ E
and is unweighted if there are no values associated with the
edges, that is all edges have the same importance. In this pa-
per we will be dealing only with undirected and unweighted
networks.

A path, of length l, in a graph G is an alternating sequence
of v0, e1, v1, e2, . . . , el, vl vertices and edges, such that for
j = 1, . . . , l; vj−1 and vj are the endpoints of edge ej , with
no edges or internal vertices repeated.

The centrality of a vertex is a parameter which speci-
fies the importance of the vertex in a network. The be-
tweenness centrality of vertex v is defined as [15]: BC(v) =∑
s 6=v 6=t∈V

σst(v)
σst

, where σst is the total number of shortest

paths in G between nodes s and t, and σst(v) is the total
number of shortest paths in G between s and t that pass
through v. The most commonly used algorithm for com-
puting betweenness centrality is the Brandes algorithm [5],
which cumulatively computes the BC of every vertex while
traversing the entire network. The Brandes algorithm has
complexity O(|V |·|E|) on unweighted networks. Faster algo-
rithms include methods for approximating BC scores [8, 17]
and sampling to obtain the BC of a single vertex [3]. Par-
allel algorithms for computing BC algorithms include [4,
14]. All these methods still focus on computing the exact or
nearly exact BC value of all the vertices.

2.2 Group Testing
Group testing [9] is a mathematical technique to find a

specified number of defective units among a large popula-
tion of units using the fewest number of tests. Given a pop-
ulation of n entities, units are termed as ”defective” if they
have a characteristic that is not present in the the other
”non-defective” units. In group testing, the items of the

population are combined in carefully selected groups. For a
given group and a given threshold, the presence or absence
of the defective characteristic can be established by exactly
one test. If a defective unit is present in the group then
the result of the test is said to be positive (1), otherwise it
is a negative (0) result. After N tests on sufficient number
of groups, we can exactly identify the defective units. An
important research topic in group testing is designing algo-
rithms to select the composition of the groups, such that
the fewest number of tests are required to find the defective
units. Superimposed code theory is used to design efficient
composition of groups.

2.3 Superimposed Code
A superimposed code is a set of binary vectors such that

no vector in the set can be covered by a Boolean-OR of a
certain number of other vectors in the set. A superimposed
code of length (number of elements in the set) N and size
(size of the vectors) n can be represented as a binary N ×n
matrix, X. Let xi,j ∈ {0, 1} denote the element in row i and
column j of X and let xj denote the jth column of X. The
Boolean-OR sum of any k columns xj1 ,xj2 , ...,xjk is;

f(xj1 ,xj2 , ...,xjk) =


x1,j1 ∨ x1,j2 ∨ . . . ∨ x1,jk
x2,j1 ∨ x2,j2 ∨ . . . ∨ x2,jk

...
xN,j1 ∨ xN,j2 ∨ . . . ∨ xN,jk


where ∨ is the Boolean-OR operation i.e. 0 ∨ 0 = 0, 0 ∨ 1 =
1, 1 ∨ 0 = 1, 1 ∨ 1 = 1.

A column xj covers column xi if f(xj,xi) = xj. Code X
has strength d if and only if the Boolean-OR sum of any
d columns does not cover any other column [11]. Superim-
posed code theory can be applied to group testing as follows;

Given a population n, we can construct N tests each rep-
resented by binary vectors of length n. The vector xi is
created such that, xi,j = 1 if the jth element is included in
the group for the ith test. Based on this construction it is
easy to see that the groups and the tests can be represented
as a superimposed code. If the strength of the code is d,
then at most d defective units can be identified in N tests.
The goal is to select the binary vectors to maximize d.

The weight, w(xj), of column xj is the number of ones
in the column. The minimum weight w = min

1≤j≤n
w(xj).

The intersection, λ(xj,xi), between two columns xj,xi is
the number of positions in which both xj and xi have a
1. The maximum intersection λ = max

1≤i 6=j≤n
λ(xj,xi). The

Kautz-Singleton Bound [20] states that d ≥ bw−1
λ
c; that

is, just by knowing the minimum weight w and maximum
intersection λ we are able to obtain a lower bound on the
strength d of the code. It has been shown by D’yachkov
and Rykov ([11],[12],[13]) that as n → ∞ and d → ∞ with
d ≤ log2 n, the minimum number of tests N is bounded by:

Ω
(

d2

log2 d
log2 n

)
≤ N ≤ O

(
d2 log2

n
d

)
.

Figure 1: Example of Group Testing Using Latin Squares. (a): Construction of coding matrix using a 4 by
4 Latin square. (b): A sample graph of two-8-cliques connected by one edge. The final matrix given in (c),
allows at most 16 units to be tested.The threshold is set to 65. Clearly vertices 4 and 8 are the ones with
highest BC, as given by the Results column in (c).

3. GROUP TESTING FOR IDENTIFYING HIGH
BETWEENNESS CENTRALITY

We now present our main contribution on how group test-
ing can be applied to find high betweenness centrality ver-
tices in a network. The central idea in our method is that
when high BC vertices are part of a group of vertices (hence-
forth referred to as the supervertex) then the BC of the
supervertex should also be high. We combine the selected
vertices in a group as follows; given a network G = (V,E),
for each test, the group of selected vertices are combined
into one ”supervertex” whose set of neighbors is the union
of the sets of neighbors of its constituent vertices. For ex-
ample, assume that in test i we have the set of vertices to
be grouped and tested: Ti = {v1, v2, ..., vg} ⊂ V . Let vTi

denote the supervertex made by combining all vertices in Ti
and let Nvj = {u ∈ V : (vj , u) ∈ E} be the set of neigh-
boring vertices for vertex vj . Then the set of neighboring
vertices of the supervertex corresponding to Ti is simply

NTi = {u ∈ V : ∃vj ∈ Ti, (vj , u) ∈ E} =
g⋃
j=1

Nj .

3.1 Latin Square Based Group Testing
In our experiments, we used a group testing strategy based

on Latin Squares, which is guaranteed to find at least 2 de-
fective units. The superimposed codeX is created as follows:
given a population of n units, create finite set of contiguous
integers {1, 2, ..., l}, where l = d

√
ne. Then create a l × l

Latin square is a matrix A, where Ai,j ∈ {1, 2, ..., l} such
that each element from {1, 2, ..., l} appears exactly once in
any given row and column (left diagram in Figure 1(a)).

We construct a coding matrix X from a Latin square L in
the following way; the first 2 positions in any given column
in X are coordinates (row and column) in L and the 3rd
position is the element in L at those coordinates (middle
diagram in Figure 1(a)). We then encode each integer in
X in its binary form. Each integer is coded as a binary
vector of length l, where for integer i, the vector has zero in
all positions, except at position i which has one. In other
words, the binary representation of integer i is the ith row
(or column) of an l× l identity matrix (right hand diagram
in Figure 1(a)). Once the elements of the coding matrix are
transformed to their binary form, the total number of tests
is equal to the number of rows in the X matrix, which is
3d
√
ne, for a population of n units (Figure 1(c)).

Due to the Latin square construction, any two columns in
X can intersect in at most one position. Defective units are
those whose value is more than the user selected threshold.
We find the minimum weight w = 2 and maximum inter-
section λ = 1 then use the Kautz-Singleton Bound to get a
guaranteed value for the strength parameter d ≥ bw−1

λ
c =

b 2
1
c = 2. Although ideally in non-interactive cases the final

results of the Latin-Squares method should not vary, the
composition of the groups can change according to how the
vertices are ordered.

An example of how Latin square group testing can be
used on a small network is given in Figure 1. The network
consists of 16 vertices, composed of two cliques of 8 vertices
each. The Latin Square is therefore created for a 4 by 4
matrix by right shifting the numbers {1,2,3,4} in each row.
The superimposed code has 16 columns and 12(3*4 rows),

Figure 2: Parallel Group Testing For Finding High
BC vertices. This figure shows the parallel imple-
mentation of our group testing algorithm. Each
group is sent to a different processor which calcu-
lates the value of the associated test.

where the first row gives the row in the Latin Square, the
second row gives the column and the third row gives the
value. This matrix is then expanded to its binary form.
Each row denotes a test, presence of a 1 indicates that a
vertex will be included in the test. For example, test 2
contains only the vertices {4,5,6,7}, which are combined as
a supervertex. The threshold is set to 65 and all tests where
the BC value of the supervertex is higher than 65 are marked
as positive (colored red). The result vector has 1 for positive
tests and 0 for negative ones. Note that the Boolean-OR of
the columns 4 and 8 is exactly the same as the resultant
vector. Therefore vertices 4 and 8 are the high BC vertices.

3.2 Implementation Details.
As described above, group testing for identifying high BC

vertices consists of three steps. The first step is to generate
the coding matrix based on Latin Square. We do not create
the Latin square or the coding matrix explicitly. Based on
the number of vertices, we can then determine the positions
of the ones at each row, hence the group of vertices for each
test.

The second step is to compute the BC values for the group
of vertices per test. We add a new vertex to the network that
is connected to the neighbors of all the vertices in the group
and compute the BC value of this supervertex.

In the third step, once the BC values of the supervertex
from all tests are collected, we set the threshold to be τ%
of the highest value. If the BC value of a test is equal to
or higher than the threshold it is positive, otherwise it is
negative. Again, we do not explicitly compute the boolean-
OR of the columns of the coding matrix. Instead, we initially
mark all vertices to be in the high ranking set. If a vertex
belongs to a group that tests negative, we remove it from
the high ranking set. At the end of this process only the
vertices whose groups always tested positive remain. These
are identified as the high ranking vertices. The pseudo code
for the algorithm is given in Algorithm 1.

Parallel Algorithm. This process of identifying high BC
vertices can be easily parallelized. We implemented a MPI-

Data: Network C, threshold τ
Result: High BC vertices from C
n = number of vertices in C;
T = 3d

√
ne (number of tests);

Result[T] = vector of length T ;
Create G, a binary 3d

√
ne × n group testing matrix

based on a d
√
ne × d

√
ne Latin square;

for i = 1 to T do
Group vertices indicated by row i of matrix G into
supervertex vi;
Compute BC value of vi;
Result[i] = BC(vi);

end
MAX = max1≤i≤T (Result[i]);
for i = 1 to T do

if Result[i] ≥ τMAX then
Result[i] = 1;

else
Result[i] = 0;

end

end
Use binary Result vector to determine which columns
of G are covered by it and output the vertices
corresponding to the covered columns;
Algorithm 1: Group Testing for High BC Algorithm

based master-worker parallelization scheme. The master
processor determines the groups of vertices per row (test),
and sends each test to a worker. Each worker processor
retains a copy of the network, and based on the group ob-
tained from the master, creates the new network and then
computes the BC value. The BC value and the associated
group is returned to the master. Once all the BC values are
received, the master then performs the final step of identify-
ing the high BC nodes. A schematic diagram of this process
is given in Figure 2. Note that the parallelization is on the
group testing process and not the calculation of BC. Each
processor has a group assigned to it and it calculates the BC
of that group sequentially.

Network Perturbation. Networks collected from real-world
applications inherently contain some noise, i.e. false positive
edges that are added, but should not be and false negative
or missing edges. We perturb the networks to see whether
the ranking of the high BC vertices is maintained under
perturbation. We used the Erdős-Rényi random graph based
perturbation model developed in [1]. In this model, for a
given parameter ε, 0 ≤ ε ≤ |V |, an edge that is present in the
original network has a probability of ε

|V | of being removed,

and an edge that is not part of the original network has a
probability of ε

|V | of being added. Note that if the network

is fairly sparse then the perturbed network will have more
edges added than removed which will result in a network
with more edges than the original.

Using this model we analyze the effects perturbations have
on the ranking of the top 10 BC vertices. We first compute
the BC of every vertex in each network, using the exact
Brandes algorithm and find the top 10 ranked vertices. Then
we run the perturbation model on each network at various
values of ε to obtain new networks for which we again find
the top 10 BC vertices. We then compare the new set with
the original set and measure their similarity using the Jac-
card index. Given two sets A and B, the Jaccard index is

defined to be: JI(A,B) = |A∩B|
|A∪B| where |A∩B| is the size of

their intersection and |A ∪B| is the size of their union. For
two sets that are identical, the Jaccard index is 1 and for
two disjoint sets the value is 0. Thus the closer the index is
to 1 the lower the effect of the perturbation.

We have observed that group testing is most effective in
finding the high BC values when the vertex rankings are
maintained under perturbation. If the vertex rankings alter
this indicates that the high ranked vertices are not signifi-
cantly higher than their competitors and this leads to false
positives in the group testing method as discussed in the
next section.

3.3 Issues in Group Testing on Networks
Although group testing seems a natural match for finding

important or sensitive vertices in a network, there exist sev-
eral issues (some related to group testing itself, and some
due to special properties of the network) that can affect the
accuracy and performance of the method. Some of the issues
and our solution to them are discussed below.

False Positive Results Due to Interaction Among Vertices:
Group testing was originally designed for non-interacting
samples–that is samples that do not combine to change their
characteristics. For example, two non-infected blood sam-
ples when combined, do not create an infected sample. But
this is not the case for vertices in a network. Two (or more)
vertices with low to medium BC values can together combine
in a sample to create a group with very high BC.

We have observed two types of false positives; in the first
type, the vertices with very low betweenness centrality can
be falsely identified if due to their placement in the super-
imposed code, they are always in the same group with at
least one very high BC vertex. These false positives can be
eliminated by permuting the vertices in the graph to cre-
ate a new set of groups. Alternatively, we can use known
topological characteristics, for example vertices with clus-
tering coefficient 1 have 0 BC, to cull out some of these false
positives.

The second type is when groups of vertices with medium
BC values combine together to give positive results. There is
a much lower chance of this happening because the positive
results also have to cover the appropriate columns of the
vertices. Therefore if both high and medium BC vertices
get covered then there would be an avalanche of positively
marked vertices which would signal the presence of many
false positives. In our experiments, we select thresholds to
restrict the number of positive results to around 7 vertices.

There are also cases where only the vertices with medium
BC values show up as positive, their group BC outrank-
ing the vertices with individually high BCs. This happens
when the original high BC vertices are by themselves not
high enough to counterbalance the cumulative effect of mid-
ranked vertices. Our method cannot distinguish false posi-
tives in this case. However, we have also observed that in
these problem instances, the rankings of the high BC vertices
change under small perturbations to the network. Thus, for
these problems, the ranking is not very stable, and identify-
ing ranking the vertices by their BC values would be more
academic than utilitarian.

Selection of Threshold: The threshold value for a given
group testing design determines which tests are classified as
positive (above threshold and thus contain high defective
units) and which are negative (below threshold). Selection

of correct threshold is a problem inherent to group testing
itself, and even more important when applied to finding high
betweenness centrality vertices, due to the probability of
achieving false positive results.

In our experiments, we start by selecting the threshold to
be 85% of the highest BC value obtained by group testing
and keep on decreasing the threshold by units of 5% until
we obtain enough positive results to cover a column corre-
sponding to a vertex. This strategy is currently based on
trial and error and we are working on a theoretical method
to select the threshold a priori. The Latin Square method
guarantees two defective units and we have seen that by
slightly decreasing the threshold we can obtain 3-4 high BC
vertices. We therefore keep on decreasing the threshold un-
til about 7 columns are covered. Some of these columns are
false positives, but they can be eliminated using the tech-
niques described above.

The value of the threshold does not affect the complexity
of our algorithm, only the final results. Thus, even if we
select a very low threshold, the runtime will be the same
but the final result will have too many identified vertices
(many false positives).

4. EXPERIMENTAL RESULTS
We now present empirical results demonstrating how group

testing can be used to identify high BC vertices. Our exper-
iments were performed over a set of ten networks collected
from the DIMACS Implementation Challenge Set [10] and
the Stanford Network Analysis Project [24]. The networks
we used are:
(i) Karate, a social network of friendships between 34 mem-
bers of a karate club,
(ii) Chesapeake, the ecosystem network in the Chesapeake
Bay,
(iii, iv) AS20000101 and AS20000102, communication net-
works, two instances of an autonomous system comprised of
internet routers,
(v) Caida, autonomous systems network,
(vi) C. Elegans, the metabolic network of C. elegans species,
(vii) LesMis , coappearance network of characters in the
same chapter of the novel Les Miserables,
(viii) GrQc, collaboration network of authors submitting to
Arxiv in the general relativity and quantum cosmology cat-
egory,
(ix) HepTh, collaboration network of authors submitting to
Arxiv in the high energy physics theory category,
(x) Power Grid, network representing the topology of the
Western States Power Grid of the United States.

Accuracy of Results. In order to evaluate the accuracy,
we compare how many of the nodes identified to be high
ranking using group testing also have high rank when the
exact BC values are computed. We deem the group testing
method successful if group testing is successful in correctly
identifying the top 2 vertices. The results are given in Ta-
ble 1. Out of the ten networks, group testing was successful
in six networks (top six rows of the table), and found low
ranked (below rank 10) vertices for the other four (the last
four rows of the table).

We further perturbed the networks using 8 different ε val-
ues ranging from 0.05 to 2.5. We computed the BC values
of the vertices using the exact Brandes algorithm. We cal-
culated the Jaccard index between the top ten BC vertices

Table 1: Finding High BC Vertices Using Group Testing on Real-World Networks. The best threshold and
the vertices obtained using that threshold are given. The vertices are represented by their rank, as per their
BC values obtained using the Brandes method.

Name Vertices Edges # of Tests Threshold High BC
Vertices

Karate 34 156 18 55% 1st, 2nd
Chesapeake 39 340 21 30% 1st, 2nd
AS20000102 6474 13233 243 12% 1st, 2nd, 3rd
AS20000101 3570 7391 180 16% 1st, 2nd

Caida 16301 65910 384 21% 1st, 2nd, 3rd
C. Elegans 453 4050 66 35% 1st, 2nd, 4th

10th + 3 low ranked

Les Mis. 77 508 27 45% 1st, 10th,
+3 low ranked

GrQc 5242 28980 219 80.3% 20 low ranked
HepTh 9877 51971 300 76% 6 low ranked

Power Grid 4941 13188 213 84% 6 low ranked

from the original set and the new sets and took the mean of
the Jaccard indices over multiple runs over the same ε value.
As shown in Figure 3 some networks have a very stable top
10 BC set (Jaccard index very high) while some show in-
creasing instability as the level increases. Power grid is an
extreme example of instability where the top BC vertices
almost never match after perturbations.

The top figure contains results for the networks on which
group testing was successful. Note that the ranking is stable
with high Jaccard index, or the value gradually declines. In
contrast, Jaccard index values in the bottom figure, where
group testing did not work, do not exhibit any specific pat-
tern and even small ε values have very low Jaccard index.

One exception is the Les Mis dataset where group testing
was successful in finding the top vertex and then identified
the vertex with rank 10 as the next highest. Since this is
the network of interactions between characters in the novel
Les Miserbales, we could further investigate why group test-
ing failed. The top vertex corresponds to Jean Valjean, the
protagonist in the novel. The second highest BC vertex as
computed by the Brandes method corresponds to Bishop
Myriel, who only appears in 27 chapters out of a total 365.
The Bishop is one of the few characters in the early chapters
of the book who interacts with the protagonist and there-
fore is a vertex that links the characters in the first chapters
with the rest of the novel. This character is almost an ar-
ticulation point in the network, and therefore has high BC
value.

Our group testing method, however, failed to find this
second highest BC vertex and got the tenth highest vertex
instead. This vertex corresponds to Tholomyes, a character
who appears in only 9 chapters in the entire novel. This
vertex is also an almost articulation point, and is connected
with the network not by the protagonist but by a supporting
character Fantine (BC rank 6).

In the group testing, if the Bishop vertex was often com-
bined with other vertices that were also connected to the
protagonist, then these other vertices duplicated the con-
tribution of the Bishop vertex to the high BC value. On
the other hand, the tenth highest vertex since it was not
connected via the protagonist could contribute more to the
BC value because it showed more unique connections. This
is an example where combining several medium ranked BC

vertices that cover different regions of the networks can lead
to a higher values than the actual high BC vertex covering
the same region.

Scalability Results We also present the scalability results
for the parallel group testing implementation. The experi-
ments were performed on the Firefly cluster at the Holland
computing centre. The cluster consists of 280 nodes running
two AMD Quad core processors and 871 nodes running two
dual core Opteron processors [16]. We used MPI to exchange
the jobs and information between the master and the worker
processors.

We executed the group testing in parallel using a master-
worker model, where each worker executes one test at a time
and communicates the results to the master (as described in
Section 3.2). Given below are the strong scalability results
of four of the larger networks from our test suite. The re-
sults show that the parallel implementation is very scalable.
Furthermore the parallel algorithm is designed such that we
obtain the same results regardless of the number of proces-
sors used.

5. DISCUSSION AND FUTURE WORK
We have presented a novel way of identifying high be-

tweenness centrality vertices using group testing. Our group
testing method is particularly effective in networks that have
stable BC ranking under small edge perturbations. This
work is but a preliminary study to demonstrate the poten-
tial of group testing in network algorithms, and there are
many research directions that can be pursued from these
initial studies. Here we list some of them.

Although our current method focuses on finding only the
top two betweenness centrality vertices, there exists other
superimposed codes, such as those constructed from Reed-
Solomon codes and randomly generated superimposed codes,
that can be designed to find d top betweenness centrality
vertices for a specified value of d. There also exist simpler
codes based on binary columns for finding only the top BC
vertex. The variety of superimposed codes provide an inter-
esting compromise between execution time and information,
and we plan to experiment with other strategies to exper-
iment this trade-off further. Alternatively we can also use
the Latin Square method to recursively divide the network

Figure 3: Effect of perturbation on the ranking of
the high BC vertices. Top: The ranking is stable
or has a smooth decline. Bottom: Ranking is easily
disrupted or has an erratic decline (except LesMis).

Figure 4: Strong Scalability Results of Group Test-
ing.

across high BC vertices and then find the next higher BC
vertices for the smaller networks.

We have seen that in some networks, the middle ranking
vertices can combine to give false positive results. However,
this phenomena can be utilized to identify alternate groups
of important vertices. For example, if the goal is to dis-
rupt the network and eliminating the highest BC vertex is
disadvantageous, we can use group testing to find alternate
groups of vertices that are not as high ranked, but together
can be effective in disrupting the network.

Each test in group testing methods requires computing
the value of only the supervertex. Currently, our implemen-
tation follows the more expensive method of using Brandes
method to compute the BC for all vertices in the compressed
network, and then use the value of the supervertex for group
testing. However, recall that we only need to order the su-
pervertices of each test by their relative and not exact value.
Thus group testing can be made much more efficient if we
use an approximation algorithm such as the one described
in [3] to estimate the BC of the supervertex only. We plan
to investigate further to determine such fast algorithms and
levels of approximations that would be allowable, and thus
create faster algorithms for computing betweenness central-
ity.

Finally it should be noted that our approach would also
work for directed and weighted networks. The grouping of
vertices remains exactly the same and only the BC calcu-
lation for each test is different. In the worst case we can
use the Brandes algorithm version which is for directed and
weighted networks though a better approach would involve
using a BC algorithm that can compute the BC value of a
specific vertex (as opposed to all vertices in the network).

6. ACKNOWLEDGEMENTS
The authors would like to thank V.S. Anil Kumar and A.

Adiga for their help and support with the perturbation mod-
els, and V. Rykov for his support with group testing. This
work was supported by F.I.R.E. (University of Nebraska at
Omaha Sponsored Programs), and College of IS&T (Univer-
sity of Nebraska at Omaha).

7. REFERENCES
[1] A. Adiga, V.S. Anil Kumar, How robust is the core of

a network?, (Pre-print from personal communication),
2012.

[2] Barabasi, A.L., Jeong, H., Ravasz, E., Neda, Z.,
Schuberts, A., Vicsek, T. Evolution of the social
network of scientific collaborations. Physica. A. 311,
590-614 (2002)

[3] D. Bader, S. Kintali, K. Madduri, M. Mihail
Approximating Betweenness Centralityâ WAW2007,
4863, 134 (2007)

[4] D. Bader and K. Madduri, Parallel Algorithms for
Evaluating Centrality Indices in Real-World Networks,
ICPP, (2006)

[5] U. Brandes , Faster Algorithm for Betweenness
Centralityâ J. Math. Sociol., 25, 163 (2001)

[6] Boguna, M., Pastor-Satorras, R., Vespignani:
Epidemic spreading in complex networks with degree
correlations. Statistical Mechanics of Complex
Networks. Lecture Notes in Physics, vol. 625, pp.
127-147 (2003)

[7] M. Cheraghchi, A. Karbasi, S. Mohajer, V. Saligrama,
Graph-Constrained Group Testing. ISIT 2010
1913-1917 (2010)

[8] W.H. Chong, W.S.B. Toh, L.N. Teow, Efficient
Extraction of High-Betweenness Vertices, ASONAM,
31, 286, (2010)

[9] D. Du and F.K.Hwang, Combinatorial Group Testing
and its Applicationsâ World Scientific (1993)

[10] DIMACS 10th Implementation Challenge
http://www.cc.gatech.edu/dimacs10/archive/clustering.shtml
(2011)

[11] A.G. D’yachkov and V.V. Rykov, Bounds on the
Length of Disjunctive Codes, Prob.Pered.Inform 18(3),
7 (1982)

[12] A.G. D’yachkov and V.V. Rykov âSuperimposed
Distance CodesâProb.Cont.Inform.Theory, 18(4) 237
(1989)

[13] A.G. D’yachkov, A.J. Macula, V.V. Rykov, New
Constructions of Superimposed Codes, IEEE
Transactions on Information Theory, 46(1) , 284-290,
Jan 2000

[14] Nick Edmonds, Torsten Hoefler, and Andrew
Lumsdaine. A Space-Efficient Parallel Algorithm for
Computing Betweenness Centrality in Sparse
Networks. Indiana University Tech Report. 2009.

[15] L.C. Freemanâ A Set of Measures of Centrality Based
on Betweennessâ Sociometry, 40, 35 (1977)

[16] Firefly - Holland Computing Center
http://hcc.unl.edu/firefly/

[17] R. Geisberger, P. Sanders, D. Schultes: Better
Approximation of Betweenness Centrality. ALENEX
2008: 90-100

[18] M. Girvan and M.E.J. Newman, Community
Structure in Social and Biological Networksâ PNAS,
99, n12, 7821 (2002)

[19] N. J. A. Harvey, M. Patrascu, Y. Wen, S. Yekhanin,
V. W. S. Chan, Non-adaptive Fault Diagnosis for
All-Optical Networks via Combinatorial Group
Testing on Graphs Proceedings of the 26th Annual
IEEE Conference on Computer Communications
(INFOCOM), pp.697-705, (2007)

[20] W.H. Kautz, R.C. Singleton, Nonrandom Binary
Superimposed Codes,IEEE Trans. Inform. Theory,
vol. 10, no. 4, pp. 363-377, (1964)

[21] A.J. Macula, L.J. Popyack , A group testing method
for finding patterns in data, Discrete Appl. Math. 144,
no. 1-2, 149–157, (2004)

[22] A.J. Macula, Probabilistic nonadaptive group testing
in the presence of errors and DNA library screening,
Combinatorics and Biology (Los Alamos, NM, 1998).
Ann. Comb. 3, no. 1, 61–69, (1999)

[23] K. Okamoto, W. Chen, X.-Y. Li, Ranking of Closeness
Centrality for Large-Scale Social Networks. FAW 2008:
186-195

[24] Stanford Network Analysis Project (SNAP)
http://snap.stanford.edu/index.html

[25] V. V. Ufimtsev, A Scalable Group Testing Based
Algorithm for Finding d-highest Betweenness
Centrality Vertices in Large Scale Networks,Poster,
International Conference for High Performance
Computing, Networking, Storage and Analysis, 2011

[26] K. Voevodski, S.H.Teng, Y. Xia.: Finding local
communities in protein networks. BMC
Bioinformatics 10(10), 297 (2009)

