Network Traffic Analysis Using Principal Component
Graphs

Harsha Sai Thota
Indian Institute of Technology
Guwabhati, Assam, India_
harsha.sal@iitg.ernet.in

ABSTRACT

Graph-based techniques for monitoring network traffic and
traffic classification have gained widespread attention due to
their power of visualization and ability to detect anomalous
behavior. In this work, we construct generic traffic activity
graphs (TAGs) to represent packet-level traces and propose
a method based on principal component analysis (PCA) of
TAGs for traffic classification. The technique proposed in
this work overcomes the issues with TAG construction re-
lated to ambiguity in edge definition, interval of trace col-
lected for graph construction, and the time and location of
trace collection. We construct a set of TAGs correspond-
ing to traces from different time intervals and locations, and
analyze the collection of TAGs by using PCA on the set
of TAGs to identify the applications associated with traffic
flows. Results on traffic classification show that the accuracy
is very high and the technique is portable across different
traces and therefore is useful to develop better graph-based
traffic analysis tools.

General Terms

Principal component analysis; Graph Mining; Network Traf-
fic Classification

Keywords
1. INTRODUCTION

Due to an increasing number of applications in the Inter-
net and the complex interactions among them, monitoring
network traffic and understanding communication patterns
among the hosts in a network has attracted significant inter-
est in the recent past [7]. Understanding network-wide com-
munication patterns is critical for several reasons, from traf-
fic classification to network planning and anomaly detection.
In the recent times, representing the interaction between the
hosts in a network as traffic activity graphs (TAGs), is ob-
served to help not only in visualization of communication
patterns of different applications but also in identification

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.

Eleventh Workshop on Mining and Learning with Graphs. Chicago, Illinois,
USA

Copyright 2013 ACM 978-1-4503-2322-2 ...$15.00.

V. Vijaya Saradhi
Indian Institute of Technology
Guwahati, Assam, India

saradhi@iitg.ernet.in

T. Venkatesh
Indian Institute of Technology
Guwabhati, Assam, India
t.venkat@iitg.ernet.in

of applications from packet-level interactions [8]. Recent
studies based on TAGs (sometimes also called traffic disper-
sion graphs (TDGs)), showed that representing host-level
interactions in the form of graphs can help to identify be-
havioral characteristics of hosts in the network and identify
anomalous communication patterns [6].

Traditionally, traffic classification (or identification) is done
by associating the applications with a set of well-known port
numbers. Rapid proliferation of a new set of applications
and masquerading the port numbers for firewall traversal
make port-based traffic classification unreliable [4]. Payload
examination, sometimes called deep packet inspection that
looks for unique strings called signatures inside the packet
content is an alternate technique for classification. However,
this technique is very slow to operate online, has privacy
concerns, and does not work when the packet content is en-
crypted. These problems with the traditional techniques led
to the development of machine learning techniques (both su-
pervised and unsupervised) which identify the applications
based on some discriminant criteria based on statistical dis-
tributions of various packet-level features [13]. However,
these techniques require selection and extraction of features
for each data set separately, and for most of the applications
it is not easy to determine the discriminant features [4]. All
the above techniques, ignore network associations that can
provide valuable information about the host behavior and
the application-specific communication. In recent times, ap-
proaches that take into account social interaction of hosts
have shown to improve the accuracy of traffic classification
and are shown to be robust to obfuscation of ports, modifi-
cation of traffic features, and encryption of payload [6, 5].

TAGs are very useful to visualize and analyse the inter-
action of the hosts in a network. In an application-specific
TAG, the nodes of the graph represent the hosts in the net-
work and the edges represent the interaction between them
with a specific application. For example, a TAG used to
study HTTP traffic is a graph that has edges representing
only HTTP interactions among the hosts in a network. It is
shown that the application-specific TAGs have some char-
acteristic features that help to distinguish between differ-
ent applications [6]. Based on graph properties such as de-
gree distribution and the size of giant connected component,
TAGs are used to identify the type of application and detect
anomalous interactions in the network. By constructing a
TAG for each port or a range of ports and then analyzing the
graph properties, the application using these ports can be
identified given the graph properties of known applications.

Problems in TAG-based analysis: Though TAGs or

TDGs are shown to be useful in visualizing and monitor-
ing the social behavior of hosts in the network, there are
several issues with the construction and use of TAGs as a
network monitoring tool. Some key issues in the construc-
tion of TAGs are:

1. Edge Definition: The first issue is that of defining
the edge used to represent the interaction among the
hosts. An edge in a TAG could be based on a filter
such as the number of packets/bytes exchanged, port
number used for interaction, the transport protocol
used, or a combination of these [6]. Each edge defi-
nition gives rise to different graph representations for
the network interactions and analyzing these graphs is
a difficult task in network monitoring. Often, a TAG
is constructed for each application and the edges do
not carry any information about the number of pack-
ets/bytes exchanged (i.e., the edges are not weighted)
so that the statistical feature information is lost in a
TAG representation.

2. Time Interval: Another issue with TAG construction
is that of the time interval used for trace collection
and thus graph construction. Like many other com-
plex network graphs, TAGs evolve over time and their
degree distributions change with the time of observa-
tion [14]. As the time interval of observation increases,
new interactions may be noticed and existing interac-
tions may be terminated. This changes the number
of edges with time and the graph properties change
over time. However, identifying the time interval nec-
essary to build a TAG that can throw some light on
the application characteristics is not easy. Selecting
a large time interval for graph construction leads to
large graphs and many finer details are lost. At the
same time, if the time interval is very small the graphs
are sparse providing very little information about the
interactions over time.

3. Portability: The hour of the day during which the
trace is collected also affects the constructed TAG.
TAGs constructed in peak traffic hours have differ-
ent characteristics from those constructed in off-peak
hours. The number of flows from different applica-
tions is also different during the peak and the off-peak
hours [12]. Hence the analysis of TAGs might be in-
fluenced by the hour at which the trace is collected.
Similarly, the graph metrics of TAGs change with the
packet trace data used for construction. For exam-
ple, two TAGs for DNS application constructed based
on the trace collected at two different locations have
a completely different average degree [6]. The degree
distribution and other graph properties are also sig-
nificantly different for TAGs constructed for different
locations. This affects the portability of graph-based
techniques for traffic analysis since, the information
learned from a trace cannot be used for another trace.

In the present work, we address all the above shortcom-
ings in TAG-based tools for traffic analysis by obtaining con-
structing a set of generic TAGs. We construct a single
TAG for different applications and port numbers. The TAGs
are constructed with both equal observation intervals and
unequal observation intervals. The TAGs are constructed
from traces collected at different hours of the day and at

different locations. These mixed TAGs are all placed in the
same set and a longitudinal approach for analysis is taken.
Further, the TAGs used in this work also include the num-
ber of bytes transferred between the hosts as a weight on
the edges.

The central idea in constructing a generic set of TAGs is
that the application associated with a flow can be identified
by observing the variance in the bytes transferred between
the hosts across different time intervals and locations [12].
We apply principal component analysis (PCA) on the set
of TAGs (graphs) to capture the variance in the number of
bytes across different interactions to identify the application.
Note that each TAG is a graph and PCAs work on the set of
graphs instead of traditional vector data. Resulting princi-
pal components are called principal component graphs
(PCGs) that capture variance across TAGs. We analyze the
PCGs to identify the application associated with the edges
of the graph. Key contributions of this work are:

1. Addressed all the issues in application-specific TAG
construction by analyzing a mixed set of TAGs.

2. Addressed the problem of portability of traffic analysis
tools by applying PCA on a set of mixed TAGs; the
resulting PCGs are able to clearly identify the applica-
tion flows in traces collected at different locations and
times.

3. Proposed a method for traffic classification using PCA
applied on TAGs.

4. Proposed a method to interpret the PCGs as a unified
view of the set of graphs.

This paper is organized as follows: Section 2 discusses the
construction of mixed set of TAGs. PCA on graphs is dis-
cussed in Section 3 along with the proposed method of edge
classification and graph construction of PCGs. Demonstra-
tion of the proposed technique on public network traces is
presented Section 4. Review of the literature on application
of PCA for traffic classification and application of PCA to
different data types is given in Section 5. Section 6 summa-
rizes the work.

2. CONSTRUCTION OF SET OF GENERIC
TAGS

We consider two public traces from (i) trans-Pacific 150
Mbps line (WIDE) collected on different dates and (ii) CAIDA
1 Gbps commercial backbone links (equinix-chicago and equinix-
sanjose). Table 1 gives the total number of unique IP ad-
dresses, the number of flows, and the number of packets in
each trace. For constructing the TAGs only the flows from
HTTP, HTTPS, DNS and AIM-Video (a peer to peer appli-
cation) are considered. Though the experiments were con-
ducted on other applications such as Yahoo! Messenger and
MSN Messenger, results for them are not presented since
they are similar. Table 2 shows the total number of unique
IP addresses (nodes in a TAG) and the number of flows for
each application (edges in a TAG).

TAG construction: For each trace, a unique IP address
is represented as a node in the TAG. Two nodes u and v
are connected by an edge when there is a flow that uses one
of the ports corresponding to the application of interest,
namely HTTP (port 80), HTTPS (port 443), DNS (port

Application Port Number | # Unique IPs | # Flows

WiDE RS %
07-May-2009 @14:00 A11\]4D 1;I/?deo 10245-35000 287901§< gggg
WIDE HITP |80 e X

13- April-2010 Q0400 ey 7 5000 K K
WiDE RS T
13-April-2010 @10:45 An\]dj 1:I/Sideo 10245-35000 24581}I<< égiﬁ
CAIDA }lf ;, 11: S 48403 26157;{{ 370 SOII{<
16-April-2009 An\]a) 1i?deo 10245-35000 43138I§< 47730}1{(
CAIDA HTTP 80 1
21-Jan-2010 AII\]/? I;I/Sideo 10245-35000 23674}I<{ éégﬁ

Table 2: Application Composition in Each Trace

Trace Date # IPs | # Flows
WIDE 07-May-2009 966K 1M
WIDE 13-April-2010 626K 2M
WIDE 13-April-2010 576K 2M

CAIDA | 21-January-2010 | 923K 2M
CAIDA 16-April-2009 1M 2M

Table 1: Traces Used for Experimentation

53) or AIM Video (port range 1024 to 5000). Note that, the
edge filter is only to reduce the number of edges in the TAG
and we do not use the port number in traffic identification
anywhere in the proposed technique. To verify the accuracy
of the classification we use port number since the traces are
not tagged with any other ground truth. In addition to this
simple edge definition, we also use the total number of bytes
transferred between nodes u and v during the time interval
as a weight on the edge (u,v).

Set of TAGs: As mentioned in the Section 1, instead of
using single TAG for analysis, a mixed set of TAGs is con-
structed for analyzing the variance across the TAGs used to
represent different application interactions. The set of TAGs
are constructed in different settings as described below.

1. Single Trace: Each trace in the table 1 is partitioned
into groups using either equal time intervals or unequal
time intervals.

Each group comprises of as many TAGs as the number
of applications considered. For example, a 900 seconds
WIDE trace with 2 applications say, HT'TP and DNS
is divided into 4 groups using same time interval of 225
seconds. In each group, 2 TAGs are constructed one
for HTTP and one for DNS. A total of 8 TAGs are thus
constructed when 4 time intervals and 2 applications
are considered. This set of 8 TAGs includes a mixture
of TAGs characterizing two different applications and

traces from 4 times.

Using the same trace one can obtain 4 groups each
constructed for unequal intervals say 150 seconds, 200
seconds, 250 seconds and 300 seconds and with 2 ap-
plications in each. In this case, first group consists of
2 TAGs, HTTP and DNS, constructed with an obser-
vation time interval of 150 seconds. Similarly second
group consists of 2 TAGs constructed with a time in-
terval of 200 seconds and so on. This set of 8 TAGs
includes a mixture of TAGs with varying time intervals
and two different applications.

2. Multiple Traces: Procedure described above is em-
ployed for constructing TAGs across two traces col-
lected from two different locations. For example, when
a 900 seconds WIDE and 60 seconds CAIDA traces
are considered for TAG construction, both traces with
flows from 2 applications are partitioned using 4 equal
time intervals, then 8 TAGs are obtained such that
each group consists of TAGs from both WIDE and
CAIDA. This case takes considers different edge defini-
tions, observation periods, and trace collection points
while constructing TAGs. Similarly the two traces are
divided into 4 groups with unequal time intervals each
consisting of 2 application TAGs resulting in a total of
8 TAGs.

3. PCA ON SET OF GRAPHS

PCA: Given a data set having a certain coordinate sys-
tem, principal component analysis (PCA) obtains a new co-
ordinate system. Axes of the new coordinate system are
orthonormal to each other and are referred to as principal
components (PC). Each of the PC captures maximum vari-
ance when the original data is projected onto these PCs.
First PC captures maximum variance in the data when the
data is projected onto the first PC. Second PC captures the
second largest variance when the data is projected onto sec-

ond PC and so on. Note that any point in the data set
can be expressed as a weighted linear combination of the
obtained PCs. This process of expressing the data point
through the PCs is known as reconstruction. A data point
is reconstructed by considering a few PCs instead of consid-
ering all of the PCs leading to reduced dimensionality of the
new coordinate system.

PCA on TAGs: Each TAG in a set of TAGs is repre-
sented in the form of a matrix, say G. Element G;; gives
the total number of bytes transferred from node ¢ to node j
in the interval of observation. The vectorized form of G is
considered as a vector in one dimension. Thus there would
as many dimensions as the cardinality of the TAG set. Total
number of data points in this representation is equal to the
number of elements in the TAG.

PCA is applied on wvectorized form of the TAG set to ob-
tain PCGs. Covariance matrix on the set of TAGs is ob-
tained. PCA is applied on the resulting covariance matrix.
Note that [3] has shown that the covariance matrix is a posi-
tive semidefinite matrix which is necessary to solve the eigen-
value problem.

After applying PCA, we obtain as many principal compo-
nents as the number of TAGs in the set. Each principal axis
is termed as a PCG which gives an unified view of the set of
TAGs constructed across time and location. The PCGs cap-
ture the variance of the bytes transferred over the edges of
the graphs constructed across different time intervals. The
key idea in including the number of bytes pertaining to each
application flow on the TAG edges is that variance of the
number of bytes across different time intervals or across dif-
ferent traces for any given application will be similar and
the PCGs capture this variance.

Classifying edges of each PCG: Let the set of TAGs
be: {GI,GQ,G3,--- ,Gd}; where d = number of groups
X number of applications. Let the constructed PCGs be
{PCG",PCG?, PCG®, - ,PCG"}. Let the size of each
graph be n X n; where n is the number of unique IP ad-
dresses and let an edge (i,7) in G? be denoted by G7; which
represents the number of bytes transferred in a time inter-
val. Note that each GY, by edge definition, stand for an
application. Let ¢(.) be a function which takes as argument
a TAG and return the application that TAG signifies. For
each ¢ € {1,2,--- ,d} and when GY; > 0, the contribution
of the closest PCG is obtained as:

inde = arg min(G; - |PCG})).

Then the edge (4,7) in the PCGZ-””” is assigned to applica-
tion ¢(G?) as

arg 7rLin(ng7\PCG§j b

PCG,; ‘ =c(G?) (1)
We explain the above edge classification through an ex-
ample. Let a given trace be divided into 4 groups. In each
group, we construct 2 TAGs corresponding to applications
HTTP and AIM-Video. We then have a total of 8 TAGs.
Let G* though G* represent HT'TP TAG and let G® through
G® represent AIM-Video. Table 3 shows 8 TAGs for edge (1,
2) and corresponding PCGs. G1, carries 1934 bytes and the
PCG that has closest contribution corresponding to these
bytes is the PCG® with a contribution of -1950.03. There-
fore PCG3, is classified as ¢(G*) which is HT'TP. This pro-

cedure is continued for all g = 1,2, - ,d.

Principal Components as Graphs: The obtained PCs
are orthogonal and are of unit norm. A threshold, set as %
where A is the variance captured on that PCG, is applied
to each element of the PCG to round every element to 0 or
1. Once the PC is rounded, the vectorized PC is converted
back to adjacency matrix form for a graph. This graph is
subjected to further inference.

4. EXPERIMENTAL RESULTS

1. Single Trace: We have considered third trace in ta-
ble 2 and the pairs of applications considered are: (HTTP,
DNS), (HTTP, HTTPS), (HTTPS, DNS) and (HTTP,
AIM-Video). The trace is divided into 4 equal groups
and a total of 8 TAGs are formed for each pair of ap-
plications.

Variance Across TAGs: Figures 1 and 2 show the
variance within a TAG and across every edge of TAGs.
That is variance on edge (i, j) across G* through G¢.
For every pair of applications, it is observed that HTTP
graph has the highest variance compared to any other
application while DNS graph has the lowest variance.
This observation is independent of time duration and
edge definition. For the case when applications (HTTP,
DNS) are involved, we note that first 4 PCGs capture
HTTP traffic and last 4 PCGs capture DNS traffic. A
similar observation is made for applications (HTTP,
HTTPS), (HTTPS, DNS) and (HTTP, AIM-Video).

Importance of smallest variance PCGs: Though
the contribution of low-variance PCGs towards recon-
structing original graphs is small, one cannot discard
these PCGs unlike in the case of traditional PCs. Rea-
son for this is that every PCG captures a unified view
of the TAGs and applications having small variance in
the number of bytes are potentially captured in the
lower order PCGs. In case of (HTTP, DNS) applica-
tion traffic, if we decide to discard last 4 PCGs, then
we lose information about DNS completely.

Classification of PCGs: Each edge in the PCG is
classified as per the procedure explained in section 3.
In the case of (HTTP, AIM-Video) applications, we
observe from figures 3 and 4 that 1%, 4" 5% and 6"
PCGs capture HTTP traffic and 279,37 7t and 8"
PCGs capture the AIM-Video traffic. Note that ATM-
Video application variance is very close to that of HT' TP
traffic and the PCGs are able to classify these two ap-
plications 1 and 2. Table 4 shows total number of flows
in each graph from HTTP and AIM-Video applications
and how many of these flows are captured in the PCGs.
This table suggests that G contains 2115 flows related
to HTTP and the majority of the flows are captured
in PCG® which has small variance. This suggests that
in the time interval when G* graph constructed, there
is not much variance in the HTTP flows. Remaining
109 flows are misclassified into other PCGs. The last
column denotes the percentage of edges having HTTP
traffic in PCG8.

2. Multiple Traces: We have considered four traces
namely first to fourth from table 2 and the pairs of ap-
plications considered are (HTTP, DNS) and (HTTP,
HTTPS). The trace is partitioned into 4 equal groups

TAG Set
HTTP TAG AIM-Video TAG
Gt G? GG | G]G]G] G®
1934 | 1444 | O 768 | 0 96 |0 0
PCG Set
PCG' | PCG? | PCG® PCG* | PCG® | PCG® | PCG" | PCG®
0.35 -392.70 | -1950.03 | 1374.92 | -36.01 | -753.37 | 89.98 -3.32

Table 3: Example bytes transferred from node 1 to node 2 in TAG set and its corresponding edge (1,2) in
PCG set; As contribution of edge PCG3, close to G1,, according to (1) PCG3, belongs HTTP. Similarly PCGY,

belongs to HTTP and PCG], belongs to AIM-VIDEQO applications.

PCG' | PCG? | PCG® | PCG* | PCG® | PCG® | PCG™ | PCG® | Accuracy
G':2115 | 9 16 15 13 12 23 21 2006 97.49
G?:1644 | 10 15 23 28 20 23 1496 29 95.38
G® . 1805 | 28 50 17 1637 11 29 15 18 95.96
G*: 1986 | 1852 18 15 20 17 32 15 17 95.92
G® : 2588 | 26 27 2359 30 24 46 32 44 94.36
G® : 2688 | 32 45 23 26 2473 38 20 31 95.31
G7:3151 | 25 32 27 30 38 2956 17 26 96.38
G®: 2514 | 40 2240 28 51 39 55 21 40 93.83

Table 4: Confusion Matrix: First column: Total number of flows from each TAG. Rest of the columns the

number of flows captured by respective PCG.

1e+09

" HITP us NS =t
HTTP vs HTTPS =H=

HTTPS vs DNS —i—
HTTP vs ATH-VIDEQ === |

1e+08

1e+07

1e+06

1ee000

variance

16000

1088

108

10
PCGL

L 1 L 1
PCG4 PCGD PCGE FCG7

PCGs

L L
FCG2 PCG3 FCG8

Figure 1: Byte variance across TAGs: Single Trace,
Same Time Interval

1e+09 T T T

T T
HTTP vs DNS ===

HTTP vs HTTPS =H—
HTTPS vs DNS ==ll=
HTTP vs ATH-VIDEQ ==

1e+08

1e+07

1e+06

168000

Variance

16680

1008

168 1

L L L 1
PCGA PCGD PCGE PCG7

FCGs

10 1 L
PCG1 PCE2 PCG3 PCG8

Figure 2: Byte variance across TAGs: Single Trace,
Varying Time Intervals

HITP B3
ATH VIDED

168 T —

95 r

98 r

Classification Accuracy

85 -

88

PCGL FCE2

Figure 3: PCG Traffic Analysis: Single Trace, Same

Time Interval

PCG3

FCG4 PCGD
PCGs

HIP 23
AN VIDED =0

FCGB

FCE7

FCG8

188 T T

9 r

9 r

Classification Accuracy

[

88
PCGL PCE2

Figure 4: PCG Traffic Analysis: Single Trace, Vary-

PCG3

ing Time Intervals

PCG4 PCGS
PCGs

PCGE

PCE7

PCG8

168

1 68

1 68

1 48

128

168

1 88

1 68

1 48

128

Variance

Figure 5:
Traces, Same Time Interval

1e+18 T T T T T
HTTP vs DNS ===
HTTP vs HTTPS =H=—

1e+09

1e+08

1e+07

1e+06 4

168000

16888

1088

108

10 1 L L L L
PCG1 PCE2 PCG3 PCGA PCGD PCGE PCG7 PCG8
FCGs

Byte variance across TAGs: Multiple

(with equal time intervals) and a total of 8 TAGs are
formed for each pair of applications. Variance across
TAGs for HTTP is significantly high compared to DNS
or HTTPS.

Variance Across TAGs: Variances of TAGs are shown
in figure 5. For the case when applications (HTTP,
HTTPS) are involved, the HT'TP traffic variance is sig-
nificantly high and is captured in the first PCG. Last
PCG (i.e 8" PCG) captures least variance and corre-
sponds to HTTPS traffic. We note that first 4 PCGs
capture HTTP traffic and last 4 PCGs capture HTTPS
traffic. A similar observation is made for PCGs involv-
ing applications (HTTP, DNS).

Classification of PCGs: A clear separability of HT TP
and DNS, and HTTP and HTTPS, is observed from
the PCGs obtained. Since the volume of bytes trans-
ferred is significantly different in the two traces, the
PCGs are able to clearly separate out applications cor-
responding to each edge accurately. The results are
depicted in figure 6. To the best of our knowledge
this is the first time such a mixture of flows from dif-
ferent trace collection points were considered together
for analysis and inference.

. PCGs a Close Look as Graphs: As explained in

section 3, every PCG is interpreted back as a graph.
In the case of single trace and considering two appli-
cations (HTTP and DNS) the 4" TAG and the PCG
which captured this graph are plotted using open ac-
cess visualization tools and are given in figure 8. We
note that majority of edges belonging to 4" TAG are
captured in the PCG. Apart from the edges in 4"
TAG, this PCG captures edges which are from other
TAGs as well (the peripheral nodes and edges in PCG).

168

98 r

Classification Accuracy

92

98

Figure 6: PCG Traffic Analysis:

Ll ——]
HTTPS 3

9 -

9 r

1 68

PCGL

FCE2 PCG3 FCG4 PCGI FCG6 FCE7
PCGs

Same Time Intervals

Figure 7: HTTP-TAG

FCG8

-t

188

1 88

1 48

128

Figure 8: HTTP-PCG

Multiple Traces,

S. RELATED WORK

In general, PCA is applied on vector data. PCA is also
applied for special types of data such as time series data [9],
discrete sets [9], trees [1] and graphs [3]. In particular, [1]
considered blood vessels whose structure correspond to trees
is considered and PCs for tree structures is developed. An
interesting relation between human age and blood vessel
structure is identified. In [3], PCA on set of graphs is ap-
plied where a graph in the set is a concept graph. Nodes
in the concept graph are concept words. Relation between
two concepts stand for an edge in the concept graph. [3]
identified the structure of the first PC’s and relation be-
tween the concepts. In the present work, we apply PCA
on set of graphs constructed from the network traffic data
and analyze the resulting PCs which we term as principal
component graphs (PCGs).

PCA found diverse applications in the network traffic anal-
ysis literature. In [11], two distinct backbone network’s
complete origin destination (OD) flow time series data is
analyzed through PCA. The key contribution is in ana-
lyzing the complete OD flow. Though the number of OD
flows are large, authors identify that majority of the net-
work traffic variability is captured by a few eigenflows (PCs).
Through the eigenflows, the network traffic structure is iden-
tified through periodic, short lived and noisy flows. In [10,
2], PCA is applied to identify anomalies in the network traf-
fic data. Daniela et al. discuss the problems that arise
when PCA is applied for anomaly detection, reasons for the
identified problems and incorporate time information while
applying PCA.

There is a large literature on network traffic analysis from
traffic classification to anomaly detection. An interested
reader may look at the surveys for various techniques that
exist for traffic classification based on machine learning and
otherwise [13, 4]. As mentioned earlier, traditional traffic
classification techniques are based on either port-based de-
tection, payload inspection, statistical analysis of packet-

level features, and host behavior in a network. In the recent
times, using graphs to represent the network-level interac-
tions of hosts is gaining popularity for network monitoring,
traffic analysis, and traffic classification [6, 5]. TAGs help
not only in visualization of network interactions but also
in effectively identifying the signatures of different applica-
tions in terms of the host-level interactions. It is observed
that TAGs can serve as a powerful tool for traffic analysis
and the techniques based on these are robust against port
masquerading or obfuscation and polymorphic blending of
features [5].

6. SUMMARY

In this work, we developed a technique that uses PCA on
a set of generic TAGs for network traffic analysis and clas-
sification. The generic TAG set includes application flows
from different locations and time intervals of observation
which overcomes the issues related to portability in the pre-
vious approaches based on TAGs. A unified view of the
TAG set is obtained through PCGs. PCGs are subject to
further inference yielding encouraging results from the per-
spective of network flow classification. Experimental results
demonstrated that the proposed technique is highly accu-
rate in traffic flow classification and is also portable across
traces and time of observation. The applicability of PCGs
for traffic analysis thoroughly analyzed in this work and we
hope that this would lead to development of graph-based
approaches for network analysis.

7. REFERENCES

[1] B. Aydin, G. Pataki, H. Wang, E. Bullitt, and J. S.
Marron. A principal component analysis for trees. The
Annals of Applied Statistics, 3(4):1597-1615, 2009.

[2] D. Brauckhoff, K. Salamatian, and M. May. Applying
PCA for traffic anomaly detection: Problems and
solutions. In IEEE INFOCOM, 2009.

[3] C. Butts and K. Carley. Multivariate methods for
inter-structural analysis. Technical report, Department
of Social and Decision Sciences, Center for
Computational Analysis of Social and Organizational
Systems, Carnegie Mellon University, 2001.

[4] A. Dainotti, A. Pescape, and K. Claffy. Issues and
future directions in traffic classification. IEFEE
Network Magazine, pages 35-40, January 2012.

[5] M. Iiofotou, B. Gallagher, T. Eliassi-Rad, G. Xie, and
M. Faloutsos. Profiling-by-association: A resilient
traffic profiling solution for the Internet backbone. In
Proceedings of the ACM CoNEXT, 2010.

[6] M. liofotou, P. Pappu, M. Faloutsos,

M. Mitzenmacher, S. Sing, and G. Varghese. Network
monitoring using traffic dispersion graphs (TDGs). In
Proceedings of the Tth ACM SIGCOMM conference on
Internet measurement, 2007.

[7] Y. Jin, P. Haffner, S. Sen, and Z.-L. Zhang. Can’t see
forest through the trees? understanding mixed
network traffic graphs from application class
distribution. In Proceedings of the Workshop on MLG,
2011.

[8] Y. Jin, E. Sharafuddin, and Z.-L. Zhang. Unveiling
core network-wide communication patterns through
application traffic activity graph decomposition. In
Proceedings of the ACM SIGMETRICS, 2009.

[9] I. T. Jolliffe. Principal Component Analysis. Springer
Verlag, 2010.

[10] A. Lakhina, M. Crovella, and C. Diot. Diagnosing
network-wide traffic anomalies. In Proceedings of the
200/ conference on Applications, technologies,
architectures, and protocols for computer
communications, SIGCOMM ’04, pages 219-230, New
York, NY, USA, 2004. ACM.

[11] A. Lakhina, K. Papagiannaki, M. Crovella, C. Diot,
E. D. Kolaczykp, and N. Taft. Structural analysis of
network traffic flows. In SIGMETRICS, 2004.

[12] Y.-D. Lin, C.-N. Lu, Y .-C. Lai, W.-H. Peng, and P.-C.
Lin. Application classification using packet size
distribution and port association. Journal of Network
and Computer Applications, 32(5):1023-1030, 2009.

[13] T. T. Nguyen and G. Armitage. A survey of
techniques for internet traffic classification using
machine learning. Commun. Surveys Tuts.,
10(4):56-76, Oct. 2008.

[14] X. Wu, K. Yu, and X. Wang. On the growth of
Internet application flows: A complex network
perspective. In Proceedings of the IEEE INFOCOM,
2011.

