
Spanning edge betweenness

Andreia Sofia Teixeira
INESC-ID at Lisbon

IST, Tech Univ of Lisbon
steixeira@kdbio.inesc-id.pt

Pedro T Monteiro
INESC-ID at Lisbon

ptgm@kdbio.inesc-id.pt

João A Carriço
IMM, Fac of Medicine,

Univ of Lisbon
jcarrico@fm.ul.pt

Mário Ramirez
IMM, Fac of Medicine,

Univ of Lisbon
ramirez@fm.ul.pt

Alexandre P Francisco
IST, Tech Univ of Lisbon

INESC-ID at Lisbon
aplf@ist.utl.pt

ABSTRACT
We present a new edge betweenness metric for undirected
and weighted graphs. This metric is defined as the fraction
of minimum spanning trees where a given edge is present
and it was motivated by the necessity of evaluating phy-
logenetic trees. Moreover we provide results and methods
concerning the exact computation of this metric based on
the well known Kirchhoff’s matrix tree theorem.

Categories and Subject Descriptors
G.2.1 [Discrete Mathematics]: Combinatorics—counting
problems; G.2.2 [Discrete Mathematics]: Graph The-
ory—graph algorithms, network problems; G.2.3 [Discrete
Mathematics]: Applications; H.2.8 [Database manage-
ment]: Database Applications—Data mining

General Terms
Theory, Measurement, Algorithms

Keywords
Edge Centrality, Minimum Spanning Trees, Network Anal-
ysis, Graph Algorithms

1. INTRODUCTION
Centrality measures are important in a large number of

graph applications, from search and ranking to social and
biological network analysis. Most of this measures are calcu-
lated upon the nodes/vertices. With node centrality we can
measure the relative importance of nodes within a graph [1]
but sometimes our interest is to study the importance of
links/edges on a network. A first approach was done by Gir-
van and Newman [15] where they define edge betweenness,
generalizing Freeman’s betweenness centrality [12] to edges,
as the number of shortest paths between pairs of vertices
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that run along it, with a direct application on the identifica-
tion of community structures in networks. There are how-
ever other problems where alternative definitions of edge
centrality are demanded, as is the case with phylogenetic
trees statistical evaluation.

The use of trees for phylogenetic representations started
in the middle of the 19th century. One of their most popu-
lar uses is Charles Darwin’s sole illustration in ”The Origin
of Species” [4]. The simplicity of the tree representation
still makes it the method of choice today to easily convey
the diversification and relationships between species. Many
different methods have been proposed to reconstruct phy-
logenies, mostly concerned with recovering evolutionary re-
lationships over long time periods [9]. However, at shorter
timescales and with limited diversity, which are conditions
encountered in population genetics and microevolutionary
studies of a single species, the assumptions made by these
methods may not be equally valid [7] and a number of other
methods have been used when analyzing this data. Each
algorithm or method used to infer and draw a tree, makes
a series of implicit or explicit assumptions that conditions
the types of trees generated. This variability has important
repercussions that frequently go unappreciated by those who
use them.

Minimum Spanning Trees (MSTs) are becoming increas-
ingly used for representing relationships between strains in
epidemiological and population studies of bacterial patho-
gens. Although MST computation is a classical mathemati-
cal problem and its application to evolutionary studies had
already been suggested more than a decade ago [7], it wasn’t
until recently, with the advent of multilocus sequence typing
(MLST) [20], that they gained popularity has an alternative
to eBURST [8]. One appeal of MSTs is the simplicity of
their assumptions that reflect the concept of minimal evo-
lution. MSTs simply link together the more closely related
individuals in the population, generating a single tree repre-
senting all individuals. The Steiner trees [23] generated by
the more classical methods for phylogenetic inference, place
individuals exclusively in branch tips. By allowing individu-
als to be placed at interior nodes, spanning trees and MSTs
in particular, better convey the peculiarities of short-term
intraspecific evolution [7].

It was also recently pointed out that the optimal imple-
mentation of the BURST rules in goeBURST results in a
set of disjoint MSTs [10]. These trees group sequence types
(STs) that differ by a maximum threshold number of alleles
from at least one other ST of the group. In fact, goeBURST



addresses maximum weight problems that, together with
MSTs, are particular cases of graphic matroids [10]. But,
as is well known, MSTs are in general not unique for a given
network and this fact has been also observed in the context
of phylogenetic trees [7, 22]. The fact that a single tree is
reported from a multitude of possible and equally optimal
solutions and that no statistical metrics exist to evaluate
them, justified a recent heuristic approach to address these
issues [22]. The authors suggest a method based on a mark-
recapture approach to estimate the number of possible trees
and a bootstrap procedure to evaluate tree credibility.

Here, we present an improvement to this approach by in-
troducing a new edge centrality metric and showing how
to determine exactly the number of possible trees and pro-
portion of this universe that includes each of the possible
links/edges through an expansion of the Kirchhoff’s matrix
tree theorem [16, 17].

2. PROBLEM
Let G = (V,E) be a connected, undirected and weighted

graph, with weight function w : E → IR, where V is the
set of vertices and E ⊂ V × V is the set of edges. A Min-
imum Spanning Tree (MST) T = (V,E′) is a subgraph of
G that is a tree and contains all the vertices of G, i.e., that
spans over all vertices in V , with |E′| = |V | − 1, and such
that

∑
e∈E′ w(e) is minimum among all spanning trees. It

is clear that we can have more than one MST for a given
graph G and we would like to count how many MSTs exist
in G. The solution to this problem is provided by the Kirch-
hoff’s matrix tree theorem [16] for unweighted graphs and
by Eppstein [6] for weighted graphs, where the Kirchhoff’s
matrix tree theorem is still used but only after some graph
transformations.

However, in this paper we are interested in a slightly dif-
ferent question. Given an edge e ∈ E we want to know the
fraction δG(e) of MSTs where e occurs. The value δG(e) is
what we call the spanning edge betweenness for e and it is
formally defined as

δG(e) =
τG(e)

τG
, (1)

where τG is the number of different MSTs for G and τG(e)
is the number of different MSTs for G where e occurs. Note
that τG(e) may be zero whenever an edge e is not present
in any MST, causing δG(e) to be zero. In what follows we
write δ(e), τ(e) and τ whenever G is clear from the context.

Therefore, the problem addressed in this paper is how to
compute, as efficiently as possible, the spanning edge be-
tweenness τG(e) for a given e ∈ E, where G = (V,E) is a
connected, undirected and weighted graph.

3. METHODS AND RESULTS
We will start by showing how to compute τG(e) and δG(e)

when G = (V,E) is a connected, undirected and unweighted
graph, with n = |V | vertices and m = |E| edges. Note
that in this case the number τ of MSTs in G is equal to
the number of spanning trees in G and it can be computed
directly from the Kirchhoff’s matrix tree theorem [17]. Then
we will extend our result to weighted graphs and present
some experimental results.

3.1 Unweighted graphs

Let F ∈ {−1, 0, 1}n×m be the incidence matrix for G such
that Fi,e = 1 and Fj,e = −1, for e = (i, j) ∈ E. Let us also

consider the reduced incidence matrix F (i) obtained from F
by deleting row i. Note that we have both rank(F ) = n− 1

and rank(F (i)) = n− 1, since G is connected and rows in F
are linearly dependent (the row sum at each column is zero
and, hence, any row can be expressed as a linear combination
of other rows). Moreover, the determinant for any square

submatrix of F (i), for any i, is either 0, −1, or 1. A more
interesting observation due to Kirchhoff is that a submatrix
(n−1)× (n−1) of F (i), for any i, is non-singular if and only
if its columns correspond to the edges of a spanning tree.

Theorem 1 (Kirchhoff [17]). The spanning trees of
a connected and undirected graph G with n vertices are the
non-singular (n − 1) × (n − 1) submatrices of the reduced

incidence matrix F (i), for any i, and the determinants of
the submatrices are all ±1.

Hence, by using the Cauchy-Binet theorem on determinants,
the number of spanning trees τ is given by the Kirchhoff’s
well known formula

τ = det(L(i)) (2)

=
∑
S

det(F
(i)
S )det(F

(i)
S

>
) (3)

=
∑
S

det(F
(i)
S )2, (4)

where S ranges over the subsets of E with size n − 1, L =
FF> is the Laplacian matrix for G, and L(i) denotes the
matrix obtained from L by deleting row and column i.

We extend this result to compute τ(e), for e ∈ E, as
follows.

Theorem 2. Given G = (V,E) an undirected and con-

nected graph, let e = (i, j) ∈ E and L(ij) denote the matrix
obtained from L by deleting rows i and j and columns i and

j. Then, det
(
L(ij)

)
is the number of spanning trees τ(e)

that contain e.

Proof. As discussed above, the total number of spanning
trees is given by det(L(i)), for any i. Let G′ be the graph
where we remove the edge (i, j) and L′ be the Laplacian
for G′. Hence, the total number of spanning trees for G′ is
given by det(L′(i)), for any i, and the number of MSTs that

contain (i, j) is simply given by det(L(i))−det(L′(i)). Let us

show that det(L(ij)) = det(L(i))−det(L′(i)) or, equivalently,

that det(L(i)) = det(L′(i))+det(L(ij)). We have that L(i) =

F (i)F (i)> and L(ij) = F (i,j)F (i,j)>, where F (i,j) is obtained
from F by removing rows i and j, and, using Cauchy-Binet’s
formula, we can show instead that∑

S

det
(
F

(i)
S

)2
=
∑
S′

det
(
F ′

(i)

S′

)2
+
∑
S∗

det
(
F

(i,j)
S∗

)2
(5)

where F ′ is the incidence matrix for G′, S ranges over the
subsets of E with size n − 1, S′ ranges over the subsets of
E \ {(i, j)} with size n − 1, and S∗ ranges over the subsets
of E with size n − 2. Since S′ ranges over the subsets of
E \ {(i, j)}, we can replace F ′ by F in previous equation.



Note also that∑
S∗

det
(
F

(i,j)
S∗

)2
=

∑
S∗∪{(i,j)}

det
(
F

(i,j)
S∗ ×±1

)2
(6)

=
∑

S∗∪{(i,j)}

det
(
F

(i)

(S∗∪{(i,j)})

)2
(7)

because adding edge (i, j) to S∗ and considering F (i) instead

of F (i,j) just adds a term ±1 to each matrix determinant.
Therefore,∑

S

det
(
F

(i)
S

)2
=
∑
S′

det
(
F

(i)

S′

)2
+

∑
S∗∪{(i,j)}

det
(
F

(i)

(S∗∪{(i,j)})

)2
(8)

which is an equality as the first term on the right side ranges
over all subsets of E with size n−1 that do not contain (i, j)
and the second term ranges over all subsets of E with size
n− 1 that do contain (i, j).

Hence, using both results, we can easily compute δ(e)
for any e ∈ E. Note also that the same is true for multi-
graphs, graphs that allow multiple edges between the same
pair of vertices, as both results above hold with the follow-
ing changes in the Laplacian matrix L [19]: if vertex i is
adjacent to vertex j in G, then Lij is equal to the number of
edges between i and j; when counting the degree of a vertex,
all loops are excluded.

3.2 Weighted graphs
Let G = (V,E) be a connected, undirected and weighted

graph, with weight function w : E → IR. We can compute
a MST for G by using the Kruskal’s algorithm [18]:

1. sort E with respect to w in increasing order;

2. create a forest M where for each u ∈ V , ({u}, {}) is a
tree of the forest;

3. iterate over E in increasing order and, for each (u, v) ∈
E, if u and v are in different trees, add (u, v) to M
combining both trees as single tree;

4. return M .

Note that we may get different MSTs by changing the order
obtained in step 1, where we can exchange positions of edges
with the same weight. In particular, since it is well known
that the sorted list of edge weights is the same for any MST,
changing the order allow us to obtain all different MSTs.

We can take a step further. Let e ∈ E and let M ′ be the
forest obtained by the Kruskal’s algorithm after processing
all edges e′ ∈ E such that w(e′) < w(e). Let also G′ be a
graph where each tree in M ′ is a vertex and where we add
all edges in E with weight w(e). Note that G′ may be a
multigraph and, since all edges have the same weight, we
may look at it as an unweighted multigraph. Moreover, if
we consider the connected component C of G′ that contains
edge e, using results from the previous section, we can com-
pute the number τC of spanning trees for that component
and also the number τC(e) of spanning trees for that com-
ponent where e occurs. The key observations are that we
can use this approach to compute the number of spanning
trees in G and that δG(e) = δC(e).

It is clear that an edge e ∈ E can only permute with
another edge e′ ∈ E to form a different MST iff w(e) = w(e′)
and, if a MST M contains e, adding e′ to M leads to a
cycle. Moreover, that cycle can only contain edges with
weight equal or lower than w(e), otherwise M would not
be a MST. If we add all edges with weight w(e) to M and
contract all edges with weight lower than w(e), we obtain
the graph G′ and the product of the number of trees in each
connected component of G′ is the number of ways we can
select edges with weight w(e) for each MST of G. By doing
this for each different weight in G and by multiplying all
values, we obtain the number of MSTs τ for G.

Since a given edge e only has influence on the number
of trees for the component of G′ where it occurs and the
number of trees for all other components and weights remain
the same, it follows that δG(e) = δC(e).

Hence, given a connected, undirected and weighted graph
G = (V,E), with weight function w : E → IR, we can com-
pute the number of MSTs and the spanning edge between-
ness for each edge as follows:

1. sort E with respect to w in increasing order;

2. let H = (V, ∅) and τG = 1;

3. iterate over E in increasing order and, while edges have
the same weights, add them to H;

4. for each connected component C in H, compute τC
using Theorem 1, update τG = τG × τC , and, for each
edge e ∈ C, compute τC(e) using Theorem 2 and δC(e)
using Equation 1;

5. contract all edges in H such that each connected com-
ponent becomes a single vertex;

6. if H has more than one vertex, repeat from step 3,
otherwise return τG.

3.3 Implementation and evaluation
We have implemented our approach in Java as a module

for PHYLOViZ [11] that, given a dataset, allows the user to
compute the number of MSTs for a given phylogenetic graph
and also spanning edge betweenness values for each edge.
Our implementation uses the Colt library1 for linear algebra
operations, including in particular the computation of ma-
trix determinants. Since we are dealing with relatively large
sparse graphs, we use the class SparseDoubleMatrix2D in
Colt. We also use a disjoint-set data structure to track con-
nected components similarly to what is common in Kruskal’s
algorithm implementations [3].

The time complexity of the proposed approach is dom-
inated by the time required to compute the determinants,
since the Kruskal’s runs in O(m logn) time, for a graph with
n vertices and m edges. Computing the determinant for a
n × n matrix can be done in O(n3/2) time [14]. Hence, for
sparse graphs with m = O(n), this method runs in O(n2.5)
time since we have to compute a determinant for each edge.
In practice, it runs faster since connected components are
usually much smaller than the original graph.

We provide in Table 1 details for five different datasets and
the running times to compute spanning edge betweenness
for all edges in phylogenetic trees computed by PHYLOViZ.

1http://acs.lbl.gov/software/colt/



Table 1: Details and running time for some datasets where we compute the spanning edge betweenness for
evaluating phylogenetic trees.

Dataset |V| |E| Edges without ties Number MSTs Time (sec.)
Bacillus licheniformis 16 107 1 78177 0

Staphylococcus epidermis 470 16995 95 1× 10194 84
Enterococcus faecium 797 47717 141 ∞ 1180

Burkholdaria pseudomallei 976 52499 210 ∞ 1252
Candida albicans 1694 57855 312 ∞ 1264

These phylogenetic trees are just MSTs computed for sin-
gle locus variant graphs for each species, where each vertex
denotes a strain and where there is an edge between two ver-
tices whenever strains differ in one single locus [10]. These
experiments were conducted using an Intel i7 processor at
2.3GHz, with 6GB of RAM. The column Edges without ties
represents the number of edges that are always present in
every MST, i.e., no other edges could replace them to build
a new MST. Note also that, for the last three datasets, the
number of MSTs is too large to be represented as a double,
but we can still compute the spanning edge betweenness as
it depends only on the number of MSTs for a given reduced
connected component as described before.

As an illustration for the methods proposed in this paper,
we provide in Figures 1-3 an example with the second largest
connected component in the SLV graph (with edges between
strains with a single locus variation) for the Burkholdaria
pseudomallei dataset, as computed by PHYLOViZ. Note
that, in this case, we have an unweighted graph as all edges
are in the same level. We have the spanning tree selected by
PHYLOViZ in Figure 2 and the spanning edge betweenness
values, as well as the Laplacian matrix, in Figure 3. The use-
fulness of the proposed metric becomes clear when we want
to evaluate the proposed spanning tree, since we can easily
verify that there are edges that only occur in about 50% of
all possible spanning trees and, thus, while analyzing phy-
logenetic trees, we can decide about our confidence in the
proposed tree as a phylogenetic hypothesis. This is of par-
ticular relevance if we take into consideration the fact that
locus variations can be due to recombination and mutation
events, where the evolutionary origin of a given strain may
not be unique. Since a phylogenetic tree is just a possible
explanation for such origin, this kind of analysis allows us to
evaluate how many alternatives the underlying phylogenetic
model can provide for a given phylogenetic link/edge.

4. RELATED WORK
The problem of counting MSTs has been a challenge for

the last decades, namely in what concerns the development
of efficient approaches for counting MSTs in weighted graphs.
As stated before, for unweighted graphs, best solutions rely
on the Kirchhoff’s matrix tree theorem [16, 17]. In what
concerns counting exactly the number of trees where a given
edge occurs, to our knowledge, the method described here
is the first one to be proposed.

For weighted graphs, the problem becomes more complex
and we have seen different approaches. In 1987, Gavril [13]
addressed the problem of counting the number of MSTs by
constructing a treelike recursive structure, the root of which
is the subgraph G′ formed by removing all non-maximum-
weight edges from G, and each subtree of which is con-
structed recursively from the components ofG\G′. The min-

Figure 1: Graph for the second largest component in
the SLV graph for Burkholdaria pseudomallei dataset
as computed by PHYLOViZ.

Figure 2: A spanning tree for the graph in Figure 1.

imum spanning trees of G can then be counted by multiply-
ing together the numbers of spanning trees at each node of
this structure. This method runs in O(nM(n)) time, where



19 x 19 matrix
1 -1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
-1 5 0 0 0 -1 0 0 0 -1 -1 -1 0 0 0 0 0 0 0
0 0 1 -1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 -1 4 -1 0 0 0 0 0 0 0 0 -1 0 0 -1 0 0
0 0 0 -1 6 -1 -1 -1 -1 -1 0 0 0 0 0 0 0 0 0
0 -1 0 0 -1 5 0 0 0 0 0 -1 0 -1 -1 0 0 0 0
0 0 0 0 -1 0 3 0 -1 0 0 0 0 0 0 -1 0 0 0
0 0 0 0 -1 0 0 2 0 -1 0 0 0 0 0 0 0 0 0
0 0 0 0 -1 0 -1 0 2 0 0 0 0 0 0 0 0 0 0
0 -1 0 0 -1 0 0 -1 0 6 0 0 0 0 0 -1 -1 0 -1
0 -1 0 0 0 0 0 0 0 0 4 0 -1 -1 0 0 -1 0 0
0 -1 0 0 0 -1 0 0 0 0 0 2 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 -1 0 2 -1 0 0 0 0 0
0 0 0 -1 0 -1 0 0 0 0 -1 0 -1 4 0 0 0 0 0
0 0 0 0 0 -1 0 0 0 0 0 0 0 0 1 0 0 0 0
0 0 0 0 0 0 -1 0 0 -1 0 0 0 0 0 2 0 0 0
0 0 0 -1 0 0 0 0 0 -1 -1 0 0 0 0 0 4 -1 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 -1 1 0
0 0 0 0 0 0 0 0 0 -1 0 0 0 0 0 0 0 0 1

Det: 61215.99999999997
CC 1 has 6.1216E4 MSTs
Spanning edge betweenness:
74 - 77, level: 1, freq: 100.00% (1E0)
75 - 363, level: 1, freq: 100.00% (1E0)
76 - 345, level: 1, freq: 53.73% (5.373105E-1)
76 - 352, level: 1, freq: 52.38% (5.237846E-1)
76 - 359, level: 1, freq: 59.51% (5.951385E-1)
76 - 360, level: 1, freq: 63.09% (6.309462E-1)
76 - 361, level: 1, freq: 38.06% (3.805541E-1)
76 - 363, level: 1, freq: 55.69% (5.569132E-1)
77 - 345, level: 1, freq: 43.60% (4.359645E-1)
77 - 355, level: 1, freq: 54.67% (5.467198E-1)
77 - 361, level: 1, freq: 53.73% (5.373105E-1)
77 - 537, level: 1, freq: 60.90% (6.089911E-1)
79 - 80, level: 1, freq: 61.08% (6.108207E-1)
79 - 355, level: 1, freq: 61.08% (6.108207E-1)
80 - 345, level: 1, freq: 54.67% (5.467198E-1)
80 - 355, level: 1, freq: 44.33% (4.432828E-1)
80 - 363, level: 1, freq: 56.48% (5.647543E-1)
345 - 357, level: 1, freq: 100.00% (1E0)
345 - 537, level: 1, freq: 60.90% (6.089911E-1)
352 - 360, level: 1, freq: 63.09% (6.309462E-1)
352 - 699, level: 1, freq: 67.85% (6.785154E-1)
355 - 362, level: 1, freq: 56.48% (5.647543E-1)
356 - 362, level: 1, freq: 100.00% (1E0)
358 - 361, level: 1, freq: 100.00% (1E0)
359 - 361, level: 1, freq: 59.51% (5.951385E-1)
361 - 362, level: 1, freq: 55.69% (5.569132E-1)
361 - 699, level: 1, freq: 67.85% (6.785154E-1)

362 - 363, level: 1, freq: 55.62% (5.561945E-1)

Figure 3: Spanning edge betweenness and Laplacian
matrix for the graph in Figure 1.

M(n) is the time required to multiply two n × n matrices.
Later, in 1997, Broder and Mayr [2] improved this bound by
proposing a method based on a generating function that can
be expressed as a simple determinant, where the weights of
the edges appear as exponents of polynomials. This method
proceeds by factoring the determinant and it works for non-
negative integral edge weights. It runs in O(M(n)) time.

Eppstein [6] took a different approach and created the
concept of equivalent graph. Specifically, we construct from
any given edge-weighted graph G an equivalent graph EG
without weights, with a sliding transformation, such that the
minimum spanning trees of G have a one-to-one correspon-
dence with the spanning trees of EG. Having translated the

weighted graph to an equivalent unweighted graph, we can
compute the number of MSTs by just applying the Kirch-
hoff’s matrix tree theorem to the new graph.

Note that most of these approaches aim at generating and
sampling MSTs, an harder problem than just counting the
number of MSTs. Hence, although we use some of their ideas
in our approach, since we are just counting MSTs, we have
a less complex approach and we are able to achieve a better
performance. Moreover, our approach may be applied to the
general case of graphical matroids. Note that the problem of
finding an MST is a particular case of graphic matroids [21]
and, thus, finding a solution for a given graph consists of
solving an instance of graphic matroids [21, 25, 24], which
can be optimally solved with a greedy approach [5]. One
of those greedy approaches is precisely the Kruskal’s algo-
rithm [18]. In the general case of graphic matroids, edges
may not be weighted, which is usually the case. We just
need to define a total order for edges based on some criteria
and this is precisely what we have in general phylogenetic
studies based on trees [10]. Contrary to other methods that
depend on edges being weighted, our approach just depends
on sorting edges in increasing order and, thus, we just re-
quire a total order to be defined.

5. CONCLUSIONS AND FURTHER WORK
We present a new edge centrality metric, the spanning

edge betweenness, defined as the fraction of MSTs contain-
ing a given edge. We also provide the required results and
methods to compute exactly this metric for both unweighted
and weighted graphs. Since our method relies just on the
existence of a total order on edges, it can be used in the
general case of graphical matroids. Although real weighted
graphs may have just a single MST, in many problems, such
as phylogenetic studies, edges have levels assigned or are cat-
egorized accordingly to a set of decision rules which impose
a total order on edges. These are the kind of problems where
the proposed metric and approach becomes useful to eval-
uate MST edges and full MST quality, based either on the
number of possible MSTs or on spanning edge betweenness
statistics.

Since we rely on the Kirchhoff’s matrix tree theorem, thus
needing to compute several determinants for slightly differ-
ent matrices, we plan to investigate how to accelerate these
computations by reusing previous computations and by us-
ing more efficient methods for sparse positive semi-definite
matrices decomposition, such as those based on Cholesky
decomposition.

The comparison between this metric and other well known
centrality metrics should also be investigated in the context
of complex network analysis, as it provides a rather different
approach for evaluating edge relevance or significance.

Finally, we note that this metric is being used with success
to evaluate phylogenetic trees, providing confidence levels
for each selected edge in the proposed tree, as described in
our example.
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