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ABSTRACT

Community detection has been one of the fundamental prabiem
network analysis. Past studies mainly focused on detecting:
munities in undirected networks. However, several realvosts
are directed, e.g. World Wide Web, paper citation netwomd a
Twitter's follower-followee network. Although some stegi pro-
posed algorithms for directed networks, few of them conside
that nodes play two different roles, source and terminah ifi-
rected network. In this paper, we adopt a novel concept ofeom
nities, directional componentsnd propose a new algorithm based
on Markov Clustering to detect directional components ini-a d
rected network. We then compare our algorithm, Dual R-MGL, o
synthetic networks with two recent algorithms also desigoede-
tecting directional components. We show that Dual R-MCLae&n
tect directional components with significantly higher aecy than
the two other algorithms. Additionally, Dual R-MCL is 3x~25
faster than the two other algorithm on networks with ten Hzma
nodes when achieving high accuracy. The results show that Du
R-MCL is robust with noise and can efficiently detect direntil
components.

Categories and Subject Descriptors
G.2.2 [Graph Theory]: Graph algorithms

Keywords

Directional Component

1. INTRODUCTION

Many real world problems can be effectively modeled as com-
plex relationship in networks (graphs) where nodes reptese-
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tities of interest and edges mimic the interactions or i@haships
among those nodes. The study of such complex relationship ne
works, recently referred to as network science, can pravisight
into their structures and properties [14]. One particylarterest-
ing area in studies of network structures is searching fqoirtant
sub-networks which are usually called communities. A commu
nity in a network is typically characterized by a group of esd
that have more edges (links) connected within the commuhity
connected to out of the community [8]. Community detectien i
in growing attention not only because it leads to understandf
the complex network structure, but also it allows furthealgsis
such as studies on information flows on in networks, evotuab
networks and visualization of networks.

However, this typical definition of communities may not dis-
cover real groups of nodes in a directed network. A recemtystu
[19] shows that nodes with similar out-links nodes (nodesctvh
the current nodes point to) and in-link nodes (nodes whiéhtpo
the current nodes) tend to have similar properties, andyusich
out-link and in-link similarity might form more meaningfabm-
munities than the typical communities. Therefore, diffeérdefini-
tions of communities might also discover nodes with sinmlap-
erties in a directed network.

In many practical applications, there is a large number ¢f ne
works that are directed in nature, such as the World Wide Web,
Tweeter’s follower-followee network, and paper citatiatworks.
Even though a few algorithms developed for undirected nedsvo
can be extended to apply on directed networks [6, 8, 5], thiemo
of community in undirected networks cannot be simply tratesl
to the directed ones. A common approach to handle directed ne
works is symmetrizing the adjacency matrix by removing clign
of edges and treating the resulted matrix as from an undident-
work. However, it is not uncommon to see that ignoring thedhr
tion of edges results in abnormal communities [13].

The aim of the present work is to develop efficient community
detection algorithms that explicitly incorporate the dtren of links.
Compared with in-depth studies of community structuresnidi-u
rected networks [6, 8, 5], community detection in directetivorks
has not been as fruitful. One particular difficulty in stutlyithe
structure of directed networks is the lack of a clear debnitdf
the connectivity between each pair of nodes. As a resulf,hard
to define communities due to the asymmetry nature of the edges
An existing work [10] points out the importance of recogni



the dual roles, source and terminal of edges, which nodgsipla
a directed network. In this paper, we concentrate on direntl
corporating directed edges in analysis and we start withvelno
definition of community, directional component, which ains a
source part and a terminal part based on the connectivityeset
nodes following a path of the edges in alternative direstighre-
cent study [9] has reported that several existing commudetgc-
tion algorithms for a directed network, such as Infomap [46d
DI-SIM [15], cannot effectively detect directional compants.

In order to discover dense directional components in a tdicec
network, we begin at focusing on a stochastic-flow based-algo
rithms, Markov Clustering (MCL) [7]. MCL and its variant, R-
MCL [17, 20], are a class of simple yet elegant algorithmeHdam
the natural phenomenon of flow or transition probabilitied have
been successfully deployed for community discovery in sewiat
riety of networks [3, 2, 4]. Beyond their simplicity and stgomath-
ematical basis, these algorithms are known to be robustse aod
can handle the unique topological challenges posed by-fresle
networks [3]. MCL detects communities by grouping nodeshwit
the same attractor as a cluster. Although the communitiek e
tects are according to the traditional definition, withahie manip-
ulating flows and attractors, MCL can be used to detect dieat
components. The new algorithDual R-MCL, can successfully
detect group of nodes play the source role and terminal Bpa-s
rately, and more importantly, match the nodes playing sountes
to nodes playing terminal roles to form directional compuse

We test Dual R-MCL on synthetic networks with gold standard
directional communities. In our preliminary result, DuaMCL is
compared with two recent algorithms which are also desidgoed
detecting directional components. The experimental tesllow
that Dual R-MCL can achieve higher accuracy in any noisel$eve
Additionally, Dual R-MCL can more efficiently process a mode
ately large network than the other two algorithms, achig@r~25x
speed when the accuracy is high.

2. DIRECTIONAL COMPONENT

Figure 1: A toy example of directional components. The red
circles are two maximal directional components.

D-connectivity follows the edges in alternating direcipione

forward and then backward. We call this sequence of edges a D-
connected path. Figure 1 provides an illustration of D-@mtirity.
B — C via the sequence of edges; (, ez , e1). D-connectivity
recognizes the two different roles of nodes, sources andirnais,
which leads to a new type of community structure, directicoan-
ponent:

DEFINITION 2. Adirectional component (DC) consists a source
node setS and a terminal node sét (S,7 C V) andVs € S and
Vvt € T,s — t. We callS andT the source part and terminal part
of the directional component and dendd = (S, 7).

DEFINITION 3. A maximal directional component is a direc-
tional component in whictb and T" are the maximal subsets of
nodes such that any pair of nodés,t), s € S, t € T, are D-
connected{ — t).

The concept of directional components provides a potewtgl
to partition a directed network into smaller communitiestst a
nodew in a directional component may belong to either the source
partS or the terminal parf” or both. Second, in a directed network
that contains multiple directional componef€’,, DCs, ..., DC},
any nodev € V can only belong to one of the source Setn other
words, the source parts, ..., Sy are disjoint and the same holds

The nodes and edges in a directed network are often presentedor 71, ..., Ti.. However, itis possible that € S; andv € T; and

by a graphG = (V, E), whereV is the set of nodes? is the set
of directed edges, and = |V|. Each edge from node; to v, is
denoted by(v;, v;). w((vs,v;5)) is the weight of an edgév;, v;).
Let A be then by n adjacency matrix of the network such that
Ay = w((vi,vs)). Note that hered is the transpose of the
usual definition of an adjacency matrix in order to be coesist
with the definition of the flow matrix in Markov Clustering, e

is introduced in Section 3.1.

i # j. Figure 1 indicates a directed network with two (maximal)
directional componentdpC, = (S = A,B,T = B,C, D) and
DCy = (S=D,E, T = F,G, H). Note that node D belong to
two directional component and node B belong to both source pa
and terminal part oD, . This two-way partition of nodes respects
the asymmetric property of the directed network.

Finding maximal directional components can be achievemliin
a simple searching algorithm of computational complegiyV' |+

Two types of connectivity between nodes have been studied in |£])- Identification of one maximal directional component is elon

the literature of directed network§Veak connectivitgefines two
nodess andt (s,t € V) as weakly connected if they reach each
other through a path; , es,...€;, regardless of the directions of
edges in the path. Meanwhilstrong connectivityakes in account

of the directions of the edges in the path and claims nedewd¢

are strongly connected only if the paih ( ez,..., e;) also satisfies
vi(e1) = s, vi(e)) = t, vi(er) = vi(ers1) k = 1,..,01 — 1,
wherev® (e) andv’(e) are the source node and destination node of
the edgee respectively.

DEFINITION 1. Two nodess andt¢ are D-connected, denoted
bys — t, if there exists a path of edges (...,e2m1), m is a positive
integer, satisfying®(e1) = s,v'(eam1) = t and

{ v'(ear—1) = v*(ear)

v°(e2r) = v°(e2k+1)

(common terminal nodes)
(common source nodes)

fork =1,2,...,max{m — 1,1}.

by iterations of adding nodes into the source part and tmeibed

part. Starting with picking one node with positive out-degias a
member of a source part, the algorithm iterates betwees:step

1. For each node in source part, add all nodes pointed to by thi
node to the terminal part;

2. For each node in terminal part, add all nodes pointing i® th
node to the source part;

The iteration runs until no more nodes need be added in either
source part or terminal part.

Once the iteration is terminated, one may remove all edgésof
identified directional component from the original netwarld re-
peat the iteration to identify another directional compuaren the
reduced network. One drawback of this direct searchingrilgo
is that it usually detects only a few large but sparse dioeeticom-
ponents, even when the network has much finer community-struc
tures. This phenomenon is due to fact that it is unrealistiex-
pect absolutely no edges between those small but denséatirzdc



Algorithm 1 R-MCL
Input: The canonical flow matrix\/, the balance parametér
the inflation parameter.
Output: A set of cluster€ and their corresponding attractors.
1: M = Mg /lnitialize M
2: repeat
3: Mg = RegularizationMatriz(M, Ma,b)
4: M = M x Mg //Regularize operation
5
6
7
8

M = M." [lInflate: Raise each entry to the powerrof
M = Prune(M) //Remove insignificant values.

: until M converges fiter-time execution of R-MCL

. InterpretingM as clustering result.

components, as it is unrealistic to expect no edges betwadn t
tional communities in an undirected network. For examphiirect
search on the Cora citation netwdykvhich presents bibliographic
citation between papers in computer science, leads to amé dj-
rectional component that covers all nodes. However, a dtuse
at the dataset suggests that there are much more citatibmedre
papers in a similar field and much less between papers inrdiffe
ent fields. In other words, many smaller sized communitiést.ex
but the algorithm is too strict to detect them. Therefore,nsed
consider more flexible algorithms that may detect densetitreal
components with existence of a small number of externaledge
such directional components, nodes in the source part shilar
out-link nodes and nodes in the terminal part share simitdink
nodes. Thus, we propose an algorithm which can efficientigtet
nodes based on out-link similarity and in-link similarigparately,
and very efficiently match the found source part and ternpaé.

3. METHODS
3.1 Terminology of MCL

A column stochastic matri®/ is an by n matrix which can be
interpreted as the transition probabilities of a randomkwal a
Markov chain) defined on the network. Specifically; ;, repre-
sents the probability of a transition fromy to v;. We also refer
to the transition probability fromy; to v; as the flow fromw; to
v;. Given an adjacency matrif, a corresponding canonical flow
matrix flow(A) = Mg is column-normalized, i.e.,

it > Awy >0
otherwise

A
Mg(i’j) = OE;-Lzl Az,

3.2 Prior work: R-MCL

MCL and R-MCL are community detection algorithms based on
a simulation of stochastic flows on the network. MCL consists
two operations on a stochastic matri¥xpandand Inflate The
Expand operation is simply// = M * M, and the Inflate opera-
tion raises each entry in the matrix M to the inflation paranet
(r > 1, and typically set to 2) followed by re-normalizing the sum
of each column to 1. These two operations are applied imaitiem
iteratively, starting with\M = M¢, whereMg = flow(A + I).
The addition of self-loops to the adjacency matrix avoidpete
dence of the flow distribution on the length of the random walk
simulated in MCL, besides ensuring at least one non-zery pat
column. In R-MCL, Expand is replaced WBegularize which is
M = M % Mg. The Regularize step updates a node flow to the
weighted average of the node’s neighbors’ (or the node'diokt

http://www.cs.umass.edu/~mccallum/code-data.html

R-MCL

Inmal flow After 1st Regularize step

Dual R-MCL

InltlaI flow
Figure 2: An example illustrates how the flow in R-MCL and
Dual R-MCL goes in a directed network. The color of each

node represent node A’s current flow: White represents 0 and
darker blue represent a larger value.

After 1st Regularize step

o,e (®
e‘a Q

nodes’ in a directed network) current flalv. M3, j) can be
considered as the weight of nogevhen updating nodé's flow.
The Expand and Regularize operations spread the flow out of a
vertex to potentially new nodes. This has the effect of eoiman
within-cluster flows as there are more paths between twoshie
are in the same cluster than between those in differenteckisAt
the start of this process, the distribution of flows out of deds
relatively smooth and uniform; as more iterations are ebeztLall
the nodes within a tightly-linked group of nodes will starflow to
one node within the group. This allows us to identify all tleeles
that flow to the samattractor nodeas belonging to one cluster.
Note that it is not necessary for an attractor to be contaiyeits
representing cluster. [20] additionally introduce a bataparame-
ter into R-MCL. Wherb is larger, the flow to a node which already
attracts a large number of nodes would be inhibited, so thaltre
ing clusters are more balanced in size. The pseudo codewsisho
in Algorithm 1. For a complete description of MCL and R-MCL,
the reader is referred elsewhere [7, 17, 20].

3.3 Dual R-MCL

If R-MCL is executed on directed network, the flow follows the
direction of each edge. The attractor tends to be a node withad-
link, and the attractor’s representing cluster mainly aonhodes
strongly connecting to the attractor, no matter how far theenis
from the attractor. However, as stated earlier, nodes playdle
of source and terminal in a directed network, and in somectiick
networks, a node shares similar property only with otheresdd
a dense directional component. In order to detect densetidinal
components in a directed network, we propose Dual R-MCL.

The main intuition of Dual R-MCL is (1) to cluster nodes sep-
arately based out-link similarity and in-link similarity tobtain
source parts and terminal parts respectively and (2) toieffiy
match the clusters from each clustering result to form tiveel
components. We first note that our previous study proposégan a
rithm which can cluster nodes in a directed network basedhein t
neighborhood similarity [18]. In order to detect sourcetpand
terminal parts in a network, we can simply modify that algon
to construct an out-link similarity matrix and an in-linkglarity
matrix, and then cluster nodes separately based on the twé ma
ces by any clustering algorithm. However, this procedureoa
effectively match these two parts into directional compuseWe



Algorithm 2 Dual R-MCL
Input: The adjacency matrix, the balance parametér the in-
flation parameter.

Output: A set of directional components.

D ME™ = flow(A)

D ME = flow(AT)

. MéutSim flow(AT *A)

'S = RMCL(M&"5™ b,r) but initialize M to M&** //ob-
tain the set of source parts

D MES™ = flow(A x AT)

: T = RMCL(M&®"™,b,r) butinitialize M to Mg" /lobtain
the set of terminal parts

ENFAN NI

ou

7: forall S € Sdo

8: FindT € T such thauttractor(S) € T'.

9: if attractor(T) € S then

10: Add a new directional componeflC = (S,T) to the

result.

find that, in R-MCL, if the flow is manipulated via D-connected
paths, it is possible to easily match the source parts amcdiriat
parts according to the attractors of them. Specifically, wtles-
tering nodes based on out-link similarity to find source gpante
can manipulate a node A’ flow, letting it always point to node
which A is D-connected to. Therefore, when the flow matrix is
converged, node As attractor is likely to be a node in theeor
sponding terminal part. Similarly, when clustering nodasdal on
in-link similarity to find terminal parts, we can manipulaeode
B’s flow, letting it always point to nodes which are D-conreztto
B. Therefore, when the flow matrix is converged, node B'sator
is likely to be a node in the corresponding source part.

In order to manipulate the flow as above, when clustering s.ode
based on out-link similarity, the initial flow matrix is set flow(A),
so the initial flow directly points to each node’s out-linkdes.
When iteratively regularize the flow matrix, a node’s flow slib
not be updated to the weighted average of the node’s outitidks’
flow as in R-MCL, since this step causes the flow to follow the
strong connectivity. Instead, in order to let the flow folldiae
D-connectivity, a node’s flow should be updated to the weidht
average of the node’s out-link-similar nodes’ flow, and treght
is proportion to the out-link similarityA” % A. Since the sum
of weight should be 1, the new Regularize step becoMes=
M x flow(AT % A). Note that here the initial flow matrix does
not contain self-loop, so a node’s flow does not point to fitart
thus after regularize step, a node’s flow always points toesod
which this node is D-connected to. Figure 2 shows an example.
In R-MCL the initial flow and the canonical flow both contairifse
loops, and the flow simply follows the strong connectivitys A
result, the flow will spread to nodes which should not be in the
same directional component but strongly connected to. Meue
in Dual R-MCL, A is out-link-similar to B since they share two
common out-link nodes, C and D. Therefore, during Regutariz
step, As flow is updated to the weighted average of A's curren
flow and B's current flow, and the resulting flow after the first
Regularized step is shown in the right bottom network. Sinhjl
when clustering nodes based on in-link similarity, theiahiflow
matrix is set toflow(A’) and the new Regularize step should be
M = M * flow(A x AT). After obtaining the set of source parts
and the set of terminal parts, we can simply match a sourdeSpar
to a terminal parf” if the attractor ofS is in 7" and also the attractor
of T'isin S. Algorithm 2 is the pseudo code of Dual R-MCL.

Figure 3 shows a simple example how Dual R-MCL matches
source parts and terminal parts. The red rectangle in therhot

of source parts

Final M of terminal parts

Figure 3: An example illustrates how Dual R-MCL can iden-
tify directional components. The wider arrow in the network
represents higher weight. White entries in the matrix mean
zero flow as a darker entry represents larger flow. The red and
green rectangles in the bottom matrices indicates a sourceapt
S = {A, B,C, D} and a terminal part T = {E, F, G} respec-
tively, and they can be matched to form a directional compo-
nent.

left matrix indicates a source paftd, B, C, D} with an attractor
E, and the green rectangle in the bottom right matrix indeate
terminal part{ £, F, G} with an attractorA. Since this source
part’'s attractor is contained by the terminal part and ahi® ter-
minal part’s attractor is contained by the source part,tthésparts
are matched together to form a directional component. Siiyjl
we can construct two other directional componeBts; = (S =
{E,F,G},T={H,I})andDC3s = (S = {I},T = {D}).

4. PRELIMINARY RESULTS

4.1 Experiment Setting

We performed our experiments on synthetic networks geedrat
by LFR [11]. LFR can randomly construct a power-law network
with various tunable parameters. In this study, weBét= 10000
nodes whose in-degrees follow a power law with decay rate-

—2 and maximal out-degree 200. The size of the original gold
standard communities follow a power law with a decay rate=

—1 and belong to the rande0, 200]. We then tune the proportion
of external edges (noise level)for all nodes from 0.2 to 0.6 with
aninterval 0.1 (All algorithms can achieve very high accynahen

1 < 0.2), and set the average out-degtkg.., to 10 or 20.

The gold standard communities of LFR adopts the traditional
definition of communities, i.e., nodes in the same commuaity
highly weakly connected, so itignores the direction of eddse or-
der to construct gold standard directional component, thgnal
gold standard communities are considered as gold standardes
parts. Then, the destination indices of all edges are ratydsiuf-
fled, and the original gold standard communities are alsdfledu
with the same permutation, becoming gold standard terrpauds.
Therefore, each node belong to exactly one source part aead on
terminal part . For example, if LFR originally generatesethr
gold standard communitiegA, B,C}, {D, E} and{F,G} in a
7-nodes network, and the destination indices are randomif s
fled: (A, B,C,D, E,

F, Q) isreplaced b C, D, E, A, G, B, H) respectively, then, ev-
ery edge’s destination node should be replaced by the nesx,nd



Table 1: Comparison of Dual R-MCL, LO-harvesting and EN-harvesting. The left value is NMI and the right value is the exection
time in seconds. All values are the average among ten netwaslgenerated by LFR.degavg = 10

Algorithm n=0.2 n=0.3 w=0.4 w=0.5 w=0.6
Dual R-MCL | .9897/20 | .9710/35 | .8673/53 | .2624/853 | .0031/115
LO-harvesting | .8658 /842| .7442/1043| .5995/1020| .1350/943| .0032 /930
EN-harvesting| .7004 /234| .5743/217 | .0865/197 | .0229/160| 0/185

*h = 2.0 is used.

Table 2: Comparison of Dual R-MCL, LO-harvesting and EN-harvesting. The left value is NMI and the right value is the exection
time in seconds. All values are the average among ten netwaslgenerated by LFR.degavg = 20

Algorithm w=10.2 w=0.3 w=0.4 u=0.5 w=0.6
Dual R-MCL | .9997/34 | .9988/51 | .9946/62 | .9876/94 | .7536/171
LO-harvesting | .9800/896| .9884 /942| .9786 / 1034| .9664/ 1336| .6635 /1047
EN-harvesting| .9982/270| .9975/280| .9840/271 | .8365/282 | .1463/193

*h = 2.0 is used.

and three directional component®”; = (S = {4, B,C},T =
{OvaE})7DO2 = (S = {DvE}vT = {AvG})vDO3 = (S =
{F,G},T = {B, H}) are constructed. The advantage of this pro-
cedure is that the distribution of in-degree and out-degreekept
so the network is still a power-low network. A drawback isttha
and the size of source part and terminal part of each direatio
component are the same, but this should not affect the meea$ur
accuracy of execution time much. The experiments were pagd

on a machine with Intel core i5 650 and 16GB of main memory.

4.2 Comparison against Harvesting algorithms

We compare Dual R-MCL with two recent algorithin@-harvesting
and EN-harvesting9], which are also designed for detecting di-
rectional component. We have tested other algorithms deditpr
detecting traditional communities, but none of them caregate
meaningful clusters. For example, LinkCommunity [1] is dlwe
known algorithm to detect overlapping clusters in an urcdee
network. After ignoring the direction of edges and shufflihg
destination indices of all edges, LinkCommunity is unabldétect
any significant cluster even jf is small, showing that the partition
density [1] is 0. LO-harvesting and EN-harvesting are ragnéd
Singular Value Decomposition (SVD) based algorithms wiseh
quentially identify dense directional components. Thédediénce
between LO-harvesting and EN-harvesting is the penaltg fgp
SVD. The former adopts a LO norm type of penalty and the latter
adopts an Elastic-net type of penalty. In Dual R-MCL, theadéf
parameter values of R-MCLb(= 0.5 andr = 2) are adopted
unless otherwise noted.

The results are measured by the normalized mutual infoomati
(NMI) proposed in [12]. Given a set of gold standard commianit
Y, the NMI of a set of generated clustétds

NMIX|Y)=1-(HX|Y)+ H(YX))/2,

whereH (X]Y) is the conditional entropy df givenY. NMl is be-
tween 0 and 1 and 1 means perfect matching between the getherat
clusters and gold standard. This NMI is designed for oveitzagp
clusters, as a directional component’s source/termingl rpaght
overlap with another directional component’s terminaifse part.
One assumption of this NMI is th& andY covers all nodes. Al-
though the results of Dual R-MCL, LO-harvesting and EN-lesting
might not contain all nodes, it always cover more than 95%esod
so this NMI can still be adopted. For each LFR parametemggtti
ten networks are generated and the average NMlI is calculated
The results of NMI are shown in Table 1 and Table 2. Clearly,

Dual R-MCL can obtain higher NMI than the other two algorigim
except the case gf = 0.6 anddegq.y = 10, in which all algo-
rithms cannot achieve meaningful average NMI. All algarithal-
ways obtain higher NMI whedegq., = 20 than whendega.g =

10. This is simply because when the average degree is larger,
the information is more abundant, so it is easier for alpang

to correctly detect each directional component. When ttiseno
level is higher, the boundary of each directional compoienery
hard to detect, so all algorithms tend to merge some dineatio
components and to generate smaller number of directiomapoe
nents. In the extreme case pf= 0.6 anddegavy = 10, all of
these algorithms tend to merge all gold standard diredtioo-
ponents together and generate only one giant directiomapoe
nent. Dual R-MCL can reduce the case by setting a larger value
of balance factoh. A largerb can inhibit the flows going to a
node which already attracts a large amount of nodes, so tie ge
erated directional components tend not to be all mergedtege
Therefore, when, > 0.5, b = 2.0 is adopted. Moreover, when
deg,,, = 20 andp < 0.4, EN-harvesting’s NMI is higher than
LO-harvesting, but whedeg,,,,, = 10 or u > 0.5, EN-harvesting’s
NMI is smaller. This partially follows the observation in][8hat
LO-harvesting is can provide better accuracy when the mitigo
sparse and EN-harvesting can generate more accurateiahiact
components when the network is dense. However, when the nois
level is very larger ¥ 0.5), LO-harvesting always achieves higher
NMI, showing that LO-harvesting is more noise-tolerant.

As can be seen in Table 1 and Table 2, Dual R-MCL is more effi-
cient than the other two algorithms. All algorithm consumese
time whendega., = 20 than whendega.y = 10, because more
non-zero values would causes matrix multiplication and SMbD
ecuting longer. We find that Dual R-MCL consumes longer time
wheny is larger, because it needs more iterations for the flow ma-
trix to converge. For LO-harvesting and EN-harvesting, éRe-
cution depends on the number of generated directional coemto
and the noise level. When the noise level is increased, #neugion
time of SVD increased; however, since fewer directional pom
nents are generated as mentioned above, the process ofiseliyie
identifying directional components is faster (but the lesends
to be incorrect). As generating accurate enough resultsItNM
0.6), Dual R-MCL is much more efficient, achieving 5x~25x and
3x~10x speed than LO-harvesting and EN-harvesting reispéct

5. CONCLUSION

In this study, we adopt a novel definition of communities, di-



rectional component, in a directed network. While the dioeal
component cannot be detected by traditional communityctiete

algorithms, we propose Dual R-MCL, which can separately dis

cover source parts and terminal parts and efficiently matemt
into directional components. In the preliminary resultg show
that Dual R-MCL outperforms other two directional comporze+
tection algorithms in terms of accuracy and execution time.

In future works, we intend to enhance the scalability of Dral
MCL. Since the canonical flow matrifow(AxAT) or flow(A”

A) is mush denser than the traditional canonical flow matrixin R
MCL, Dual R-MCL cannot process a network with more than 1

million nodes and 10 million edges very efficiently. A possib
solution is the network sparsification technique analogou49]
or the multi-level coarsening technique similar to [17].
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