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ABSTRACT
Community detection has been one of the fundamental problems in
network analysis. Past studies mainly focused on detectingcom-
munities in undirected networks. However, several real networks
are directed, e.g. World Wide Web, paper citation networks and
Twitter’s follower-followee network. Although some studies pro-
posed algorithms for directed networks, few of them considered
that nodes play two different roles, source and terminal, ina di-
rected network. In this paper, we adopt a novel concept of commu-
nities,directional components, and propose a new algorithm based
on Markov Clustering to detect directional components in a di-
rected network. We then compare our algorithm, Dual R-MCL, on
synthetic networks with two recent algorithms also designed for de-
tecting directional components. We show that Dual R-MCL cande-
tect directional components with significantly higher accuracy than
the two other algorithms. Additionally, Dual R-MCL is 3x~25x
faster than the two other algorithm on networks with ten thousand
nodes when achieving high accuracy. The results show that Dual
R-MCL is robust with noise and can efficiently detect directional
components.

Categories and Subject Descriptors
G.2.2 [Graph Theory]: Graph algorithms

Keywords
Directional Component

1. INTRODUCTION
Many real world problems can be effectively modeled as com-

plex relationship in networks (graphs) where nodes represent en-
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tities of interest and edges mimic the interactions or relationships
among those nodes. The study of such complex relationship net-
works, recently referred to as network science, can provideinsight
into their structures and properties [14]. One particularly interest-
ing area in studies of network structures is searching for important
sub-networks which are usually called communities. A commu-
nity in a network is typically characterized by a group of nodes
that have more edges (links) connected within the communitythan
connected to out of the community [8]. Community detection is
in growing attention not only because it leads to understanding of
the complex network structure, but also it allows further analysis
such as studies on information flows on in networks, evolution of
networks and visualization of networks.

However, this typical definition of communities may not dis-
cover real groups of nodes in a directed network. A recent study
[19] shows that nodes with similar out-links nodes (nodes which
the current nodes point to) and in-link nodes (nodes which point to
the current nodes) tend to have similar properties, and using such
out-link and in-link similarity might form more meaningfulcom-
munities than the typical communities. Therefore, different defini-
tions of communities might also discover nodes with similarprop-
erties in a directed network.

In many practical applications, there is a large number of net-
works that are directed in nature, such as the World Wide Web,
Tweeter’s follower-followee network, and paper citation networks.
Even though a few algorithms developed for undirected networks
can be extended to apply on directed networks [6, 8, 5], the notion
of community in undirected networks cannot be simply translated
to the directed ones. A common approach to handle directed net-
works is symmetrizing the adjacency matrix by removing direction
of edges and treating the resulted matrix as from an undirected net-
work. However, it is not uncommon to see that ignoring the direc-
tion of edges results in abnormal communities [13].

The aim of the present work is to develop efficient community
detection algorithms that explicitly incorporate the direction of links.
Compared with in-depth studies of community structures in undi-
rected networks [6, 8, 5], community detection in directed networks
has not been as fruitful. One particular difficulty in studying the
structure of directed networks is the lack of a clear definition of
the connectivity between each pair of nodes. As a result, it is hard
to define communities due to the asymmetry nature of the edges.
An existing work [10] points out the importance of recognizing



the dual roles, source and terminal of edges, which nodes play in
a directed network. In this paper, we concentrate on directly in-
corporating directed edges in analysis and we start with a novel
definition of community, directional component, which contains a
source part and a terminal part based on the connectivity between
nodes following a path of the edges in alternative directions. A re-
cent study [9] has reported that several existing communitydetec-
tion algorithms for a directed network, such as Infomap [16]and
DI-SIM [15], cannot effectively detect directional components.

In order to discover dense directional components in a directed
network, we begin at focusing on a stochastic-flow based algo-
rithms, Markov Clustering (MCL) [7]. MCL and its variant, R-
MCL [17, 20], are a class of simple yet elegant algorithms based on
the natural phenomenon of flow or transition probabilities and have
been successfully deployed for community discovery in a wide va-
riety of networks [3, 2, 4]. Beyond their simplicity and strong math-
ematical basis, these algorithms are known to be robust to noise and
can handle the unique topological challenges posed by scale-free
networks [3]. MCL detects communities by grouping nodes with
the same attractor as a cluster. Although the communities MCL de-
tects are according to the traditional definition, with suitable manip-
ulating flows and attractors, MCL can be used to detect directional
components. The new algorithm,Dual R-MCL, can successfully
detect group of nodes play the source role and terminal role sepa-
rately, and more importantly, match the nodes playing source roles
to nodes playing terminal roles to form directional components.

We test Dual R-MCL on synthetic networks with gold standard
directional communities. In our preliminary result, Dual R-MCL is
compared with two recent algorithms which are also designedfor
detecting directional components. The experimental results show
that Dual R-MCL can achieve higher accuracy in any noise levels.
Additionally, Dual R-MCL can more efficiently process a moder-
ately large network than the other two algorithms, achieving 3x~25x
speed when the accuracy is high.

2. DIRECTIONAL COMPONENT
The nodes and edges in a directed network are often presented

by a graphG = (V,E), whereV is the set of nodes,E is the set
of directed edges, andn = |V |. Each edge from nodevi to vj is
denoted by(vi, vj). w((vi, vj)) is the weight of an edge(vi, vj).
Let A be then by n adjacency matrix of the network such that
A(j,i) = w((vi, vj)). Note that hereA is the transpose of the
usual definition of an adjacency matrix in order to be consistent
with the definition of the flow matrix in Markov Clustering, which
is introduced in Section 3.1.

Two types of connectivity between nodes have been studied in
the literature of directed networks.Weak connectivitydefines two
nodess and t (s, t ∈ V ) as weakly connected if they reach each
other through a pathe1 , e2,...,el, regardless of the directions of
edges in the path. Meanwhile,strong connectivitytakes in account
of the directions of the edges in the path and claims nodess andt
are strongly connected only if the path (e1, e2,...,el) also satisfies
vs(e1) = s, vt(el) = t, vt(ek) = vs(ek+1), k = 1, ..., l − 1,
wherevs(e) andvt(e) are the source node and destination node of
the edgee respectively.

DEFINITION 1. Two nodess and t are D-connected, denoted
bys → t, if there exists a path of edges (e1,...,e2m1),m is a positive
integer, satisfyingvs(e1) = s, vt(e2m1) = t and

{

vt(e2k−1) = vt(e2k) (common terminal nodes)
vs(e2k) = vs(e2k+1) (common source nodes)

for k = 1, 2, ...,max{m− 1, 1}.
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Figure 1: A toy example of directional components. The red
circles are two maximal directional components.

D-connectivity follows the edges in alternating directions, one
forward and then backward. We call this sequence of edges a D-
connected path. Figure 1 provides an illustration of D-connectivity.
B → C via the sequence of edges (e3 , e2 , e1). D-connectivity
recognizes the two different roles of nodes, sources and terminals,
which leads to a new type of community structure, directional com-
ponent:

DEFINITION 2. A directional component (DC) consists a source
node setS and a terminal node setT (S, T ⊂ V ) and∀s ∈ S and
∀t ∈ T , s → t. We callS andT the source part and terminal part
of the directional component and denoteDC ≡ (S, T ).

DEFINITION 3. A maximal directional component is a direc-
tional component in whichS and T are the maximal subsets of
nodes such that any pair of nodes(s, t), s ∈ S, t ∈ T , are D-
connected (s → t).

The concept of directional components provides a potentialway
to partition a directed network into smaller communities. First, a
nodev in a directional component may belong to either the source
partS or the terminal partT or both. Second, in a directed network
that contains multiple directional componentsDC1, DC2, ..., DCk

any nodev ∈ V can only belong to one of the source setS. In other
words, the source partsS1, ..., Sk are disjoint and the same holds
for T1, ..., Tk. However, it is possible thatv ∈ Si andv ∈ Tj and
i 6= j. Figure 1 indicates a directed network with two (maximal)
directional components,DC1 = (S = A,B, T = B,C,D) and
DC2 = (S = D,E, T = F,G,H). Note that node D belong to
two directional component and node B belong to both source part
and terminal part ofDC1. This two-way partition of nodes respects
the asymmetric property of the directed network.

Finding maximal directional components can be achieved through
a simple searching algorithm of computational complexityO(|V |+
|E|). Identification of one maximal directional component is done
by iterations of adding nodes into the source part and the terminal
part. Starting with picking one node with positive out-degree as a
member of a source part, the algorithm iterates between steps:
1. For each node in source part, add all nodes pointed to by this
node to the terminal part;
2. For each node in terminal part, add all nodes pointing to this
node to the source part;
The iteration runs until no more nodes need be added in either
source part or terminal part.

Once the iteration is terminated, one may remove all edges ofthe
identified directional component from the original networkand re-
peat the iteration to identify another directional component on the
reduced network. One drawback of this direct searching algorithm
is that it usually detects only a few large but sparse directional com-
ponents, even when the network has much finer community struc-
tures. This phenomenon is due to fact that it is unrealistic to ex-
pect absolutely no edges between those small but dense directional



Algorithm 1 R-MCL
Input: The canonical flow matrixMG, the balance parameterb,

the inflation parameterr.
Output: A set of clustersC and their corresponding attractors.
1: M = MG //InitializeM
2: repeat
3: MR = RegularizationMatrix(M,MG, b)
4: M = M ∗MR //Regularize operation
5: M = M.r //Inflate: Raise each entry to the power ofr.
6: M = Prune(M) //Remove insignificant values.
7: until M converges //iter-time execution of R-MCL
8: InterpretingM as clustering result.

components, as it is unrealistic to expect no edges between tradi-
tional communities in an undirected network. For example, adirect
search on the Cora citation network1, which presents bibliographic
citation between papers in computer science, leads to one giant di-
rectional component that covers all nodes. However, a closelook
at the dataset suggests that there are much more citations between
papers in a similar field and much less between papers in differ-
ent fields. In other words, many smaller sized communities exist,
but the algorithm is too strict to detect them. Therefore, weneed
consider more flexible algorithms that may detect dense directional
components with existence of a small number of external edges. In
such directional components, nodes in the source part sharesimilar
out-link nodes and nodes in the terminal part share similar in-link
nodes. Thus, we propose an algorithm which can efficiently cluster
nodes based on out-link similarity and in-link similarity separately,
and very efficiently match the found source part and terminalpart.

3. METHODS

3.1 Terminology of MCL
A column stochastic matrixM is an by n matrix which can be

interpreted as the transition probabilities of a random walk (or a
Markov chain) defined on the network. Specifically,M(i,j) repre-
sents the probability of a transition fromvj to vi. We also refer
to the transition probability fromvi to vj as the flow fromvi to
vj . Given an adjacency matrixA, a corresponding canonical flow
matrixflow(A) = MG is column-normalizeA, i.e.,

MG(i,j) =

{

A(i,j)∑
n
x=1 A(x,j)

if
∑n

x=1 A(x,j) > 0

0 otherwise

3.2 Prior work: R-MCL
MCL and R-MCL are community detection algorithms based on

a simulation of stochastic flows on the network. MCL consistsof
two operations on a stochastic matrix:Expandand Inflate. The
Expand operation is simplyM = M ∗ M , and the Inflate opera-
tion raises each entry in the matrix M to the inflation parameter r
(r > 1, and typically set to 2) followed by re-normalizing the sum
of each column to 1. These two operations are applied in alternation
iteratively, starting withM = MG, whereMG = flow(A + I).
The addition of self-loops to the adjacency matrix avoids depen-
dence of the flow distribution on the length of the random walk
simulated in MCL, besides ensuring at least one non-zero entry per
column. In R-MCL, Expand is replaced byRegularize, which is
M = M ∗ MG. The Regularize step updates a node flow to the
weighted average of the node’s neighbors’ (or the node’s out-link

1http://www.cs.umass.edu/~mccallum/code-data.html
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Figure 2: An example illustrates how the flow in R-MCL and
Dual R-MCL goes in a directed network. The color of each
node represent node A’s current flow: White represents 0 and
darker blue represent a larger value.

nodes’ in a directed network) current flowM . MG(i, j) can be
considered as the weight of nodej when updating nodei’s flow.
The Expand and Regularize operations spread the flow out of a
vertex to potentially new nodes. This has the effect of enhancing
within-cluster flows as there are more paths between two nodes that
are in the same cluster than between those in different clusters. At
the start of this process, the distribution of flows out of a node is
relatively smooth and uniform; as more iterations are executed, all
the nodes within a tightly-linked group of nodes will start to flow to
one node within the group. This allows us to identify all the nodes
that flow to the sameattractor nodeas belonging to one cluster.
Note that it is not necessary for an attractor to be containedby its
representing cluster. [20] additionally introduce a balance parame-
ter into R-MCL. Whenb is larger, the flow to a node which already
attracts a large number of nodes would be inhibited, so the result-
ing clusters are more balanced in size. The pseudo code is shown
in Algorithm 1. For a complete description of MCL and R-MCL,
the reader is referred elsewhere [7, 17, 20].

3.3 Dual R-MCL
If R-MCL is executed on directed network, the flow follows the

direction of each edge. The attractor tends to be a node without out-
link, and the attractor’s representing cluster mainly contain nodes
strongly connecting to the attractor, no matter how far the node is
from the attractor. However, as stated earlier, nodes play the role
of source and terminal in a directed network, and in some directed
networks, a node shares similar property only with other nodes in
a dense directional component. In order to detect dense directional
components in a directed network, we propose Dual R-MCL.

The main intuition of Dual R-MCL is (1) to cluster nodes sep-
arately based out-link similarity and in-link similarity to obtain
source parts and terminal parts respectively and (2) to efficiently
match the clusters from each clustering result to form directional
components. We first note that our previous study propose an algo-
rithm which can cluster nodes in a directed network based on their
neighborhood similarity [18]. In order to detect source parts and
terminal parts in a network, we can simply modify that algorithm
to construct an out-link similarity matrix and an in-link similarity
matrix, and then cluster nodes separately based on the two matri-
ces by any clustering algorithm. However, this procedure cannot
effectively match these two parts into directional components. We



Algorithm 2 Dual R-MCL
Input: The adjacency matrixA, the balance parameterb, the in-

flation parameterr.
Output: A set of directional components.
1: Mout

G = flow(A)
2: M in

G = flow(AT )
3: MoutSim

G = flow(AT ∗ A)
4: S = RMCL(MoutSim

G , b, r) but initializeM to Mout
G //ob-

tain the set of source parts
5: M inSim

G = flow(A ∗AT )
6: T = RMCL(M inSim

G , b, r) but initializeM toM in
G //obtain

the set of terminal parts
7: for all S ∈ S do
8: FindT ∈ T such thatattractor(S) ∈ T .
9: if attractor(T ) ∈ S then

10: Add a new directional componentDC = (S, T ) to the
result.

find that, in R-MCL, if the flow is manipulated via D-connected
paths, it is possible to easily match the source parts and terminal
parts according to the attractors of them. Specifically, when clus-
tering nodes based on out-link similarity to find source parts, we
can manipulate a node A’s flow, letting it always point to nodes
which A is D-connected to. Therefore, when the flow matrix is
converged, node A’s attractor is likely to be a node in the corre-
sponding terminal part. Similarly, when clustering nodes based on
in-link similarity to find terminal parts, we can manipulatea node
B’s flow, letting it always point to nodes which are D-connected to
B. Therefore, when the flow matrix is converged, node B’s attractor
is likely to be a node in the corresponding source part.

In order to manipulate the flow as above, when clustering nodes
based on out-link similarity, the initial flow matrix is set toflow(A),
so the initial flow directly points to each node’s out-link nodes.
When iteratively regularize the flow matrix, a node’s flow should
not be updated to the weighted average of the node’s out-linknodes’
flow as in R-MCL, since this step causes the flow to follow the
strong connectivity. Instead, in order to let the flow followthe
D-connectivity, a node’s flow should be updated to the weighted
average of the node’s out-link-similar nodes’ flow, and the weight
is proportion to the out-link similarity,AT ∗ A. Since the sum
of weight should be 1, the new Regularize step becomesM =
M ∗ flow(AT ∗ A). Note that here the initial flow matrix does
not contain self-loop, so a node’s flow does not point to itself and
thus after regularize step, a node’s flow always points to nodes
which this node is D-connected to. Figure 2 shows an example.
In R-MCL the initial flow and the canonical flow both contain self-
loops, and the flow simply follows the strong connectivity. As a
result, the flow will spread to nodes which should not be in the
same directional component but strongly connected to. However,
in Dual R-MCL, A is out-link-similar to B since they share two
common out-link nodes, C and D. Therefore, during Regularize
step, A’s flow is updated to the weighted average of A’s current
flow and B’s current flow, and the resulting flow after the first
Regularized step is shown in the right bottom network. Similarly,
when clustering nodes based on in-link similarity, the initial flow
matrix is set toflow(A′) and the new Regularize step should be
M = M ∗ flow(A ∗ AT ). After obtaining the set of source parts
and the set of terminal parts, we can simply match a source part S
to a terminal partT if the attractor ofS is inT and also the attractor
of T is in S. Algorithm 2 is the pseudo code of Dual R-MCL.

Figure 3 shows a simple example how Dual R-MCL matches
source parts and terminal parts. The red rectangle in the bottom
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Figure 3: An example illustrates how Dual R-MCL can iden-
tify directional components. The wider arrow in the network
represents higher weight. White entries in the matrix mean
zero flow as a darker entry represents larger flow. The red and
green rectangles in the bottom matrices indicates a source part
S = {A,B,C,D} and a terminal part T = {E, F,G} respec-
tively, and they can be matched to form a directional compo-
nent.

left matrix indicates a source part{A,B,C,D} with an attractor
E, and the green rectangle in the bottom right matrix indicates a
terminal part{E,F,G} with an attractorA. Since this source
part’s attractor is contained by the terminal part and also this ter-
minal part’s attractor is contained by the source part, thistwo parts
are matched together to form a directional component. Similarly,
we can construct two other directional componentsDC2 = (S =
{E,F,G}, T = {H, I}) andDC3 = (S = {I}, T = {D}).

4. PRELIMINARY RESULTS

4.1 Experiment Setting
We performed our experiments on synthetic networks generated

by LFR [11]. LFR can randomly construct a power-law network
with various tunable parameters. In this study, we set|V | = 10000
nodes whose in-degrees follow a power law with decay rateτ1 =
−2 and maximal out-degree 200. The size of the original gold
standard communities follow a power law with a decay rateτ2 =
−1 and belong to the range[40, 200]. We then tune the proportion
of external edges (noise level)µ for all nodes from 0.2 to 0.6 with
an interval 0.1 (All algorithms can achieve very high accuracy when
µ < 0.2), and set the average out-degreedegavg to 10 or 20.

The gold standard communities of LFR adopts the traditional
definition of communities, i.e., nodes in the same communityare
highly weakly connected, so it ignores the direction of edges. In or-
der to construct gold standard directional component, the original
gold standard communities are considered as gold standard source
parts. Then, the destination indices of all edges are randomly shuf-
fled, and the original gold standard communities are also shuffled
with the same permutation, becoming gold standard terminalparts.
Therefore, each node belong to exactly one source part and one
terminal part . For example, if LFR originally generates three
gold standard communities{A,B,C}, {D,E} and{F,G} in a
7-nodes network, and the destination indices are randomly shuf-
fled: (A,B,C,D,E,
F,G) is replaced by(C,D,E,A,G,B,H) respectively, then, ev-
ery edge’s destination node should be replaced by the new index,



Table 1: Comparison of Dual R-MCL, L0-harvesting and EN-harvesting. The left value is NMI and the right value is the execution
time in seconds. All values are the average among ten networks generated by LFR.degavg = 10

Algorithm µ = 0.2 µ = 0.3 µ = 0.4 µ = 0.5 µ = 0.6
Dual R-MCL .9897 / 20 .9710 / 35 .8673 / 53 .2624 / 85∗ .0031 / 115∗

L0-harvesting .8658 / 842 .7442 / 1043 .5995 / 1020 .1350 / 943 .0032 / 930
EN-harvesting .7004 / 234 .5743 / 217 .0865 / 197 .0229 / 160 0 / 185
*b = 2.0 is used.

Table 2: Comparison of Dual R-MCL, L0-harvesting and EN-harvesting. The left value is NMI and the right value is the execution
time in seconds. All values are the average among ten networks generated by LFR.degavg = 20

Algorithm µ = 0.2 µ = 0.3 µ = 0.4 µ = 0.5 µ = 0.6
Dual R-MCL .9997 / 34 .9988 / 51 .9946 / 62 .9876 / 94∗ .7536 / 171∗

L0-harvesting .9800 / 896 .9884 / 942 .9786 / 1034 .9664/ 1336 .6635 / 1047
EN-harvesting .9982 / 270 .9975 / 280 .9840 / 271 .8365 / 282 .1463 / 193
*b = 2.0 is used.

and three directional componentsDC1 = (S = {A,B,C}, T =
{C,D,E}), DC2 = (S = {D,E}, T = {A,G}), DC3 = (S =
{F,G}, T = {B,H}) are constructed. The advantage of this pro-
cedure is that the distribution of in-degree and out-degreeare kept
so the network is still a power-low network. A drawback is that
and the size of source part and terminal part of each directional
component are the same, but this should not affect the measure of
accuracy of execution time much. The experiments were performed
on a machine with Intel core i5 650 and 16GB of main memory.

4.2 Comparison against Harvesting algorithms
We compare Dual R-MCL with two recent algorithmsL0-harvesting

and EN-harvesting[9], which are also designed for detecting di-
rectional component. We have tested other algorithms designed for
detecting traditional communities, but none of them can generate
meaningful clusters. For example, LinkCommunity [1] is a well-
known algorithm to detect overlapping clusters in an undirected
network. After ignoring the direction of edges and shufflingthe
destination indices of all edges, LinkCommunity is unable to detect
any significant cluster even ifµ is small, showing that the partition
density [1] is 0. L0-harvesting and EN-harvesting are regularized
Singular Value Decomposition (SVD) based algorithms whichse-
quentially identify dense directional components. The difference
between L0-harvesting and EN-harvesting is the penalty type for
SVD. The former adopts a L0 norm type of penalty and the latter
adopts an Elastic-net type of penalty. In Dual R-MCL, the default
parameter values of R-MCL (b = 0.5 and r = 2) are adopted
unless otherwise noted.

The results are measured by the normalized mutual information
(NMI) proposed in [12]. Given a set of gold standard communities
Y, the NMI of a set of generated clustersX is

NMI(X|Y) = 1− (H(X|Y) +H(Y|X))/2,

whereH(X|Y) is the conditional entropy ofX givenY. NMI is be-
tween 0 and 1 and 1 means perfect matching between the generated
clusters and gold standard. This NMI is designed for overlapping
clusters, as a directional component’s source/terminal part might
overlap with another directional component’s terminal/source part.
One assumption of this NMI is thatX andY covers all nodes. Al-
though the results of Dual R-MCL, L0-harvesting and EN-harvesting
might not contain all nodes, it always cover more than 95% nodes
so this NMI can still be adopted. For each LFR parameter setting,
ten networks are generated and the average NMI is calculated.

The results of NMI are shown in Table 1 and Table 2. Clearly,

Dual R-MCL can obtain higher NMI than the other two algorithms,
except the case ofµ = 0.6 anddegavg = 10, in which all algo-
rithms cannot achieve meaningful average NMI. All algorithms al-
ways obtain higher NMI whendegavg = 20 than whendegavg =
10. This is simply because when the average degree is larger,
the information is more abundant, so it is easier for algorithms
to correctly detect each directional component. When the noise
level is higher, the boundary of each directional componentis very
hard to detect, so all algorithms tend to merge some directional
components and to generate smaller number of directional compo-
nents. In the extreme case ofµ = 0.6 anddegavg = 10, all of
these algorithms tend to merge all gold standard directional com-
ponents together and generate only one giant directional compo-
nent. Dual R-MCL can reduce the case by setting a larger value
of balance factorb. A larger b can inhibit the flows going to a
node which already attracts a large amount of nodes, so the gen-
erated directional components tend not to be all merged together.
Therefore, whenµ ≥ 0.5, b = 2.0 is adopted. Moreover, when
degavg = 20 andµ ≤ 0.4, EN-harvesting’s NMI is higher than
L0-harvesting, but whendegavg = 10 orµ ≥ 0.5, EN-harvesting’s
NMI is smaller. This partially follows the observation in [9] that
L0-harvesting is can provide better accuracy when the network is
sparse and EN-harvesting can generate more accurate directional
components when the network is dense. However, when the noise
level is very larger (≥ 0.5), L0-harvesting always achieves higher
NMI, showing that L0-harvesting is more noise-tolerant.

As can be seen in Table 1 and Table 2, Dual R-MCL is more effi-
cient than the other two algorithms. All algorithm consumesmore
time whendegavg = 20 than whendegavg = 10, because more
non-zero values would causes matrix multiplication and SVDex-
ecuting longer. We find that Dual R-MCL consumes longer time
whenµ is larger, because it needs more iterations for the flow ma-
trix to converge. For L0-harvesting and EN-harvesting, theexe-
cution depends on the number of generated directional component
and the noise level. When the noise level is increased, the execution
time of SVD increased; however, since fewer directional compo-
nents are generated as mentioned above, the process of sequentially
identifying directional components is faster (but the result tends
to be incorrect). As generating accurate enough results (NMI>
0.6), Dual R-MCL is much more efficient, achieving 5x~25x and
3x~10x speed than L0-harvesting and EN-harvesting respectively.

5. CONCLUSION
In this study, we adopt a novel definition of communities, di-



rectional component, in a directed network. While the directional
component cannot be detected by traditional community detection
algorithms, we propose Dual R-MCL, which can separately dis-
cover source parts and terminal parts and efficiently match them
into directional components. In the preliminary results, we show
that Dual R-MCL outperforms other two directional component de-
tection algorithms in terms of accuracy and execution time.

In future works, we intend to enhance the scalability of DualR-
MCL. Since the canonical flow matrixflow(A∗AT ) orflow(AT ∗
A) is mush denser than the traditional canonical flow matrix in R-
MCL, Dual R-MCL cannot process a network with more than 1
million nodes and 10 million edges very efficiently. A possible
solution is the network sparsification technique analogousto [19]
or the multi-level coarsening technique similar to [17].
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