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ABSTRACT
Since Kronecker Product Graph Model (KPGM) was intro-
duced, it has been widely used to model real networks. The
characteristics of the model specially its single fractal struc-
ture have made KPGM one of the most important algorithm
of the last years. However, the utilization of a single fractal
structure decreases the potential of KPGM by limiting the
graph space covered by the model. In this paper, we propose
a new generalization of KPGM, called block-KPGM. This
new model expands the graph space covered for KPGM uti-
lizing multiple fractal structures, generating networks with
characteristics not generated by previous Kronecker mod-
els. We evaluate the block-KPGM by comparing it against
two types of Kronecker models. We compare the cumula-
tive distribution functions over three characteristics to show
that block-KPGMs are able to produce networks that more
closely match real-world graphs, reducing the multidimen-
sional Kolgomorov-Smirnov distance between 11% to 63%.

Keywords
Statistical graph models, Kronecker models, block-KPGM,
fractal structure.

1. INTRODUCTION
Since Kronecker Product Graph Model (KPGM) was in-

troduced in 2005-2007 [5, 7], it has been widely used to
model different type of networks. KPGM is intuitively ap-
pealing for its small number parameters, elegant fractal struc-
ture, fast sampling algorithms (i.e., O(|E|)), and its paral-
lelism. These characteristics have positioned KPGMs as one
of the most important generative models in last years, being
even chosen to create graphs for the Graph500 supercom-
puter benchmark1.

This popularity has led to several empirical and mathe-
matical studies of their properties. For example, the degree
distribution has often been claimed to be power-law [6], with
some lognormal characteristics [4], or it can be expressed as

1http://www.graph500.org/Specifications. html
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a mixture of normal distributions [2]. Moreover, recently
it has been demonstrated that it is most accurately charac-
terized as fluctuating between a lognormal distribution and
an exponential tail [11]. Other studies also include the re-
lation of core number with the initial parameters [11] and
the relation of the graph properties with the original pa-
rameters [8]. However, most important properties are given
by its elegant stationary fractal structure, generated by the
Kronecker product of a set of parameters with itself, that
generates networks with heavy-tailed distributions for in-
degree, out-degree, eigenvalues, and eigenvectors [5]. These
characteristics are among the most important network prop-
erties, allowing KPGM to match several real graphs.

Unfortunately, although probabilistic in nature, the uti-
lization of a single fractal structure reduces the potential of
KPGM, limiting the graph space covered by KPGM. Even
though the single fractal structure allows to generate matri-
ces of probabilities that are used to sample different adja-
cency matrices, networks that do not have this single fractal
structure cannot be modeled by KPGM. For this reason, we
analyzed a way to take advantage of the KPGM strengths
and relax its single fractal structure. The idea is to model
different parts of the graph using multiple KPGMs, then we
replicate the entire network by attaching the blocks gener-
ated by each of the previous learned KPMGs. This does not
necessarily imply that graphs are connected through other
graphs since a block represents edges that are in different
parts of the network. Moreover, the use of multiple fractal
structure will allow us to model real world networks that
show complex patterns and cannot be model by a single
KPGM structure. For example, in [1], it is described that
complex networks, such as the world wide web, consist in
multiple fractal structure connected through a skeleton.

In this work, we propose a new generalization of KPGM
to capture the non stationarity fractal structure observed
in some real world networks, the block Kronecker Prod-
uct Graph Model (block-KPGM). block-KPGM expands the
graph space covered for KPGM by introducing multiple frac-
tal structures to model a network. Specifically, block-KPGM
utilizes multiple independent KPGMs to model different parts
of a network, which are joined to model the entire graph.
Thanks to the multiple fractal structures, block-KPGM gen-
erates networks with characteristics that previous Kronecker
models cannot generate. For example, our initial experi-
ments show that block-KPGM increases the clustering coef-
ficient of the generated networks and reduces the number of
isolated nodes.

The remainder of the paper is organized as follows. Sec-



tion 2 describes KPGM and mixed KPGM algorithm (an-
other KPGM generalization [10]). Section 3 explains the
new block-KPGM with its respective algorithm. Section 4
shows an empirical comparison and modeling of real net-
works. Section 5 has the conclusions and future works of
this new model.

2. BACKGROUND
This section describes the Kronecker Product Graph Model

(KPGM) and its training algorithm based on maximum like-
lihood estimation (MLE) [7]. We also describe the mixed
Kronecker Product Graph Model (mKPGM) and its training
algorithm based on simulated method of moments (SMM) [10].

2.1 Kronecker Product Graph Model
Let Θ be a b × b initiator matrix of parameters, where
∀i,j θij ∈ [0, 1]. Then the KPGM algorithm generates a
graph GK = (VK ,EK), where VK and EK are the set of
nodes and edges respectively, as follows. First, the model
computes the Kth Kronecker power of the initiator matrix
Θ via K−1 Kronecker products of Θ with itself. This pro-
duces a bK × bK matrix PK , where PK(i, j) represents the
probability of an edge existing between nodes i and j. PK is
used to generate a graph GK with |VK | = bK , by sampling
each edge independently from a Bernoulli(PK(i, j)) distri-
bution (i.e., if the trial is successful, the edge eij is added to
EK).

Given an observed training network G? = (V∗,E∗), the
MLE learning algorithm finds the parameters Θ that maxi-
mizes the likelihood of the observed graph given a permuta-
tion (σ) of the rows and columns of the adjacency matrix [7].
The KPGM likelihood of the graph is:

P (G?|Θ, σ) =
∏

(i,j)∈E∗
PK(σi, σj)

∏
(i,j)/∈E∗

(1− PK(σi, σj)) (1)

Here σi denotes the new position of node i according to
the permutation σ. In practice, the true permutation is un-
known and the learning algorithm uses a Metropolis-Hastings
sampling approach to search over the factorial number of
possible permutations of the network. The algorithm then
uses a gradient descent approach to update the parameters
Θ, where the derivative of the likelihood is approximated
given the current σ and Θ.

2.2 Mixed Kronecker Product Graph Model
The mKPGM is a generalization of the KPGM, which uses

parameter tying to capture the clustering and natural vari-
ation observed in real-world networks more accurately [10].
The marginal probabilities of edges in PK are preserved but
the edge probabilities are no longer independent.

Specifically, given Θ, K, and a parameter ` ∈ [1, · · · ,K]
that specifies the level of parameter tying, the mKPGM
generation process samples a network of size bK as follows.
First, the model uses the standard KPGM algorithm with
initiator matrix Θ to calculate a probability matrix P` and
sample a graph G` and its respective adjacency matrix A`.
Then, a subsequent Kronecker product is computed to pro-
duce a new probability matrix P`+1 = G` ⊗Θ. The process
of sampling a graph before computing subsequent Kronecker
products produces dependencies among the sampled edges.
Thus a graph G`+1 is sampled from P`+1 for further Kro-
necker products. This process is then repeated K−`−1 times
to generate the final network GK . For more details see [10].

The parameter ` controls the level of tying and thus im-
pacts the variance and clustering of the model. Lower val-
ues of ` produce larger dependencies among the edges and
greater clustering among the nodes. When ` = K the model
is equivalent to the KPGM model and this produces lower
clustering and lower variance.

The mKPGM likelihood has two parts: the untied part is
calculated as in the original KPGM, while the tied part is
based on the K−` Kronecker products where edges share pa-
rameters and adjacency matrix A` generated from G`. The
mKPGM likelihood of the graph, given a permutation σ, is:

P (G∗|Θ, σ) =

P (G∗` |θ, σ`)

 ∏
eij∈E∗

A`

(⌊
i− 1

bK−`

⌋
,

⌊
j − 1

bK−`

⌋)K−`∏
k=1

θikjk

∏
eij /∈E∗

(
1−A`

(⌊
i− 1

bK−`

⌋
,

⌊
j − 1

bK−`

⌋)K−`∏
k=1

θikjk

) (2)

Unfortunately, even though the mKPGM likelihood (Eq.
2) is similar to that of KPGMs (Eq. 1), it can not easily be
used as an objective function to estimate the parameters of
the model. However, a new learning algorithm for mKPGM
was developed in [9], which is based on the simulated method
of moments (SMM). The strength of this approach is that
it is permutation invariant—thus it avoids the difficulty of
search over permutation space. The SMM learning algo-
rithm searches for parameters Θ that minimize the following
objective function:

f(Θ,F∗) =

|F|∑
i=1

(
F ∗i − E[Fi|Θ]

F ∗i

)
(3)

Here Fi is a function over a network G = (V,E) that cal-
culates a statistic of the graph, e.g., for number of edges:
F = |E|. Then, F∗ = {F ∗1 , F ∗2 , · · · , F ∗m} corresponds to a
set of m sample moments of the training network G? and
E[Fi|Θ] is the expected value of those statistics (i.e., distri-
butional moments) given particular values of Θ. The SMM
learning algorithm [9] can utilize any moments that can be
estimated from the generated networks. However, the au-
thors suggests five moments: (i) the number of edges per
nodes, (ii) average cluster coefficient, (iii) average geodesic
distance, (iv) size of the largest connected component, and
(v) nodes with degree greater than zero. These moments
were selected because their can be estimated in linear time
(approximating the geodesic distance) and are distinctive
values for most networks.

3. BLOCK KRONECKER PRODUCT GRAPH
MODEL

This section describes block-KPGM and its generation
process. The description is complemented with a pseudo
code, an example of the algorithm and a graphical compar-
ison of generated networks.

The block-KPGM is a new generalization of KPGM that
relax the stationary fractal structure of KPGMs by using
multiple independent KPGM to model a network. Specifi-
cally, multiple KPGMs are utilized to model different part



Θ[·] POSXY

Θ[1] 1 1

Θ[2] 1 9

Θ[3] 9 1

Θ[4] 9 9

Figure 1: block-KPGM generation process. Four block are generated independently according to Θ[·] (left).
The four independent blocks are put together generating the final network (middle), according to the matrix
POSXY (right).

of a network and then they are joined to recreate the en-
tire network. This process extends the space graph covered
by KPGM and keeps the elegant fractal structure of the
model. Moreover, our initial experiments with this model,
show that block-KPGMs generate networks with higher clus-
tering coefficient, lower number of isolated nodes, and larger
connected components in comparison to previous Kronecker
models such as KPGM and mKPGM.

Formally, we can define the generative mechanism as fol-
low. Consider the set of parameters Θb = {Θ[1], · · · ,Θ[Nb]},
where Nb corresponds to the number of blocks, and the vec-
tors b = {b1, · · · , bNb} and K = {K1, · · · ,KNb} which cor-
responds to the initial size of the parameters and the num-
ber of Kronecker multiplication for each Θ[i] from Θb. With
these parameters, the algorithm iterates over Θ[i] generating
a block of size bKi

i according to KPGM. Specifically, given

Θ[i], the algorithm calculates the Kronecker product of Θ[i]

with itself Ki−1 times to generate a probability matrix Pki

of size bKi
i . From Pki, every edge is sampled using a bino-

mial distribution with probability Pki[u, v] generating the
block structures Bli. Note, that we call block rather than
network, because Bli corresponds to a part of the final ad-
jacency matrix with a specific fractal structure, rather than
a set of nodes and edges.

Algorithm 1 block-KPGM generation algorithm

Require: Θb, b, K, XY
1: Nb = |Θb|
2: for i = 1; i+ +; i ≤ Nb do
3: Generate block Bli using KPGM with Θ[i], bi, and Ki

4: for i = 1; i+ +; i ≤ Nb do
5: Update adjacency matrix ABl, joining the block Bli

according to PosXY (i, 1) and PosXY (i, 2)
6: Return ABl

When each block Bli has been generated, the algorithm
continues with the joining process of the Nb blocks. The al-
gorithm starts placing each block Bli in the final adjacency
matrix ABl according to the matrix PosXY which determine
the exact position of every block. PosXY is a Nb×2 matrix
with the coordinates of every block in the final adjacency
matrix. For example, the block Bli should be put in the po-
sition {PosXY (i, 1), PosXY (i, 2)}. Once that all blocks are

correctly positioned, the updated adjacency matrix ABl is
returned by the algorithm. A pseudocode of this generation
algorithm can be observed in algorithm 1.

A graphical example of this generation algorithm can be
observed in figure 1. In this example, a final matrix with 16
nodes is generated using Nb = 4 different blocks of size 23

(Θb = {Θ[1], · · · ,Θ[4]}, b = {2, · · · , 2}, and K = {3, · · · , 3}).
Once that all networks are generated (left part of the figure),
the join process begins where Bl1 is positioned at (1,1), Bl2
at (1,9), Bl3 at (9,1), and Bl2 at (9,9). This generates the
final adjacency matrix of size Nv = 24 that can be observed
in the right part of the figure.

The effect of the multiple fractal structure in block-KPGM
can be seen in Figure 2. The figure shows network gener-
ated by KPGM, mKPGM and block-KPGM. While KPGM
and mKPGM uses the same Θ, block-KPGM utilizes differ-
ent Θ in each block to show different fractal structures. To
avoid unfair comparison, the expected number of edges in
all networks are the same for the three models, however the
blocks have different densities among them. The networks
sampled from KPGM and mKPGM exhibit the same frac-
tal structure, being the main difference the group of edges
obtained by mKPGM. On the contrary, block-KPGM shows
three different fractal structures. The upper left block shows
the same fractal structure than KPGM and mKPGM, the
upper right block shows all edges disperse uniformly on the
block, and the lower right show a high number of edges in
the main diagonal.

4. EXPERIMENTS
This section compare block-KPGM against KPGM and

mKPGM. We analyzed the graph space covered by these
model in smaller networks and we show that block-KPGMs
can model some real networks that are impossible to be
model by previous kronecker models. We also demonstrate
that block-KPGM can model some real networks better than
previous Kronecker models.

4.1 Empirical analysis
We perform an empirical analysis to investigate the char-

acteristics that can be generated from the three different
models (KPGM, mKPGM and block-KPGM), showing an
approximation of the graph space covered by each model on
the selected characteristics. To realize the empirical anal-



Figure 2: Generated networks of 28 nodes for different Kronecker product graph models: KPGM (left),
mKPGM ` = 5 (center), and block-KPGM (right).

ysis, we generated networks over a wide range of parame-
ter values in Θ and measured the characteristics of the re-
sulting graphs. For KPGM and mKPGM, we considered
22,060 different values of Θ for initial matrices of size b = 2.
The parameters were generated considering every possible
combination of Θ, such as θ11, θ12 ∈ {0.01 : δ : 1.00},
θ12 = θ21, θ22 ∈ {θ11 : δ : 1.00} and 2.1 ≤ SΘ ≤ 2.4(
SΘ =

∑
ij

θij

)
. We utilized δ = 0.015 and θ14 starting

from θ11 to avoid repetition of the parameters with respect
a permutation of Θ. For each Θ setting, we generated 75
undirected networks with K = 9 from KPGM (` = K)
and mKPGM (` = 6). For block-KPGM, we considered
Nb = 4, b = {2, 2, 2, 2}, K = {8, 8, 8, 8}, and posXY =
{(1, 1), (1, 28+1), (28+1, 1), (28+1, 28+1)} which generated
four block of 28 nodes. Once that the block are joined, the
final networks have Nv = 29 nodes. We considered 112,176
different values of Θb. The parameters of the first and forth
block (Θ[1] and Θ[4]), which correspond to undirected net-
works, were generated with every possible combination of
Θ, such as SΘ ≥ 2, θ11, θ12, θ22 ∈ {0.01 : δ : 1.00} and
θ12 = θ21 with δ = 0.245. Meanwhile, the parameters of the
second and third blocks (directed networks) were generated
by SΘ ≥ 1.5, θij ∈ {0.01 : δ : 1.00} ∀ i, j ∈ {1, 2} with
δ = 0.245. Given that the final network is undirected, the
third block is actually replaced by the transposed network
generated by the second block. The final set Θb consists in
all possible combinations of the parameters generated over
each block, such as the expected number of edges in the final
network will be between [2.19, 2.49] (the expected number of
edges for KPGM and mKPGM). From the final set Θb, we
generated 75 networks for each set of parameters.

We compare the models plotting the five different network
characteristics utilized in the mKPGM training algorithm
(1) number of edges per nodes, (2) average cluster coeffi-
cient, (3) average geodesic distance, (4) number of non iso-
lated nodes and (5) size of the largest connected component.
The number of edges per nodes corresponds to the average
degree of the nodes, where the degree di is simply the num-
ber of nodes in the graph that are connected to node i. The
average clustering coefficient is the average of the clustering

coefficient calculated over every node i as: ci = 2|∆i|
(di−1)di

,

where ∆i is the number of triangles in which the node i par-
ticipates and di is the number of neighbors of node i. The
average geodesic distance corresponds to the average over
nodes geodesic distance, which is calculated as the average
distance to reach the rest of the nodes in the network. The

number of non isolated nodes corresponds to the number of
nodes with at least one edge. Finally, the size of the largest
connected component corresponds to the highest number of
nodes linked in the network which analyze the connection
in block-KPGM networks and determine if it generates mul-
tiple isolated components. We plot these characteristics to
observe the behavior of block-KPGM in comparison to high
number of isolated nodes generated by KPGM.

The results of this experiment can be observed in figure
3, where the first column corresponds to KPGM, the second
column to mKPGM and the third column to block-KPGM.
The first row of the figure shows the average geodesic dis-
tance against the number of nodes in the network. The
number of edges, for all models, varies between [2.19, 2.49];
confirming a fair comparison among the models, where the
results are not biased based on the number of edges. As
can be appreciated in figure 3(c) block-KPGM has the low-
est geodesic distance among the three models. Even though
this could be something negative, most social networks have
a small geodesic distance according to the small world phe-
nomena [12, 13]. In contrast, KPGM and mKPGM gener-
ate networks with small number of edges and large geodesic
distances. These types of networks correspond to multiple
nodes connected as a chain, which do not resemble the struc-
ture of actual real world networks.

The second row shows the average geodesic distance against
the clustering coefficient. Figure 3(f) shows that block-
KPGM generates the highest cluster coefficient among the
three models. It is even surprising the high cluster coeffi-
cient generated by block-KPGM networks, which duplicate
the clustering coefficient generated by the other models.

The last row shows the number of isolated nodes against
the size of the largest connected component. we can ob-
serve that block-KPGM reduces considerably the number
of isolated nodes and at the same time, most of the nodes
are connected 3(i). In average, for block-KPGM, only 7%
of the nodes are isolated in comparison to the 13% or 29%
of KPGM and mKPGM respectively. Similarly, the aver-
age sizes of the largest connected component are 468, 428
and 307 nodes for block-KPGM, KPGM and mKPGM re-
spectively. These measures become more surprising when
extreme values are considered. As is show in figures 3(g)
and 3(h), KPGM and mKPGM may generate networks with
more than 50% of isolated nodes or several disconnected net-
works, where the largest connected component has a size
below five.

Even though, we analyzed over 22,060 different Θ’s for
KPGM and mKPGM, and 112,176 different set of param-



(a) KPGM number of edges VS
geodesic distance

(b) mKPGM number of edges VS
geodesic distance

(c) block-KPGM number of edges
VS geodesic distance

(d) KPGM cluster coefficient VS
geodesic distance

(e) mKPGM cluster coefficient VS
geodesic distance

(f) block-KPGM cluster coeffi-
cient VS geodesic distance

(g) KPGM non isolated nodes VS
connected component

(h) mKPGM non isolated nodes
VS connected component

(i) block-KPGM non isolated
nodes VS connected component

Figure 3: Variation of graph properties for synthetic networks for KPGM, mKPGM and block-KPGM.

eters for block-KPGM, there are still other networks that
can be generated reducing the value of δ and/or increasing
the range of expected number of edges in the network. For
example, reducing the value of δ = 0.245 in block-KPGM,
it is possible to obtain over millions of new parameters to
analyze, that will extend the graph space covered by block-
KPGM.

4.2 Modeling real networks
We compare the ability of block-KPGM to model real

networks with respect to KPGM and mKPGM. To assess
whether the generated networks capture the properties we
observe in real network populations, we use evaluation mea-
sures and visual comparisons of the properties of networks
generated from the models over two real networks. The re-
sults indicate that Block-KPGM can model some real net-
work that are not covered by previous Kronecker models.

The first network is drawn from the public Purdue Face-
book network. Facebook is a popular online social network
site with over 845 million members worldwide. We consid-
ered a set of over 50000 Facebook users belonging to the
Purdue University network with its over 400,000 wall links
consisting of a year-long period. We selected a single net-
work with 2187 nodes and 5760 edges from the wall graph.

The second network consists of a set of social networks from
the National Longitudinal Study of Adolescent Health (Ad-
dHealth) [3]. The AddHealth dataset consists of survey in-
formation from 144 middle and high schools, collected (ini-
tially) in 1994-1995. The survey questions queried for the
students’ social networks along with myriad behavioral and
academic attributes, to study how social environment and
behavior in adolescence are linked to health and achievement
outcomes in young adulthood. In this work, we considered
a social network with 1155 nodes and 7884 edges.

To initialize the block-KPGM, we utilized Nb = 4 with
b = {2, 2, 2, 2}, K = {10, 10, 10, 10}, posXY = {(1, 1), (1, 210+
1), (210 + 1, 1), (210 + 1, 210 + 1)} and searched for the set

of parameters Θ[·] that reasonably matched to our exam-
ple datasets. To achieve this, we considered an exhaustive
search of the set of possible parameter values for Θ[·] based
on the expected number of edges. From all possible parame-
ters, we picked the closest set of parameters that match the
average clustering coefficient and geodesic distance of the
training network. On the contrary, we trained mKPGM and
KPGM utilizing the methods described in section 2, with
b = 3, K = 7 and ` = 5, to increase the graph space covered
by these models [9]. However, considering that block-KPGM
utilizes 10 different parameters to model real networks, we



Figure 4: Variation of graph properties in generated Facebook networks.

Figure 5: Variation of graph properties in generated AddHealth networks.

also increase the initiator matrix for KPGM to b = 6, 7 for
AddHealth and Facebook respectively (modeling AddHealth
and Facebook with 21 and 28 different parameters respec-
tively).

Our evaluation investigates whether the models capture
three important graph characteristics of real network datasets:
degree, clustering coefficient, and hop plot (number of nodes
that can be reached with h “hops” in the graph: Nh =∑

v Nh(v), where Nh(v) is the number of nodes that are ≤ h
edges away from node v in G). To evaluate the ability of the
models to capture these characteristics, we compare the cu-
mulative distribution functions (CDFs) from 100 networks
generated from the selected parameters to the CDFs of the
original data. We plot each CDF independently and use
those for visual comparison, but we would also like to evalu-
ate the relationships among the distributions of characteris-
tics to determine if the models are able to jointly capture the
characteristics through the network. To measure this quan-
titatively, we utilize the 3D Kolmogorov-Smirnov distance
(KS3D), which measures the maximum distance between
two multidimensional distributions [9]. We also compared
the percentage of non isolated nodes, and largest connected
component with relation to the number of non isolated nodes
over each model. Finally, we generate a network from each
of the model to determine the difference among them.

Figure 4 shows the CDFs for the Facebook data. We
can observe that mKPGM, block-KPGM and KPGM7x7

are the best models for Facebook data. Block-KPGM is
one of the best model to match the degree and clustering
coefficient of the real network, while stills model the hop
plot. KPGM7x7 is the best model to match the hop plot
distribution and degree, however KPGMs do not match the
clustering coefficient. Finally, mKPGM can partially model
the three characteristics but is not able to model the three
characteristics at the same time, as can be determined by
the high KS3D distance (Figure 6 left).

Figure 5 shows the CDFs for the AddHealth data, where

block-KPGM is the best model to match these CDFs. Block-
KPGM is the closest model in the degree distribution, it
has an almost perfect match in the hop plot distribution,
and it is the closest model for the clustering coefficient. By
the contrary KPGMs and mKPGM do not model any of
the characteristics. The low performance of KPGMs and
mKPGM can be explained by the high clustering coefficient
of the network. While KPGMs can not model the cluster-
ing coefficient, mKPGM needs to decrease the value of `,
increasing the variability of the networks; however, we are
not modeling a population of network but a single network.

Figure 6 left shows the KS3D distance over the three mod-
els. In both datasets, block-KPGM obtains the lowest error,
confirming that can model the relation among degree, clus-
tering coefficient and geodesic distance much better than
other Kronecker models. In Facebook data, block-KPGM
obtains a reduction of 11%, 13% and 26% in comparison
to KPGM7x7, KPGM3x3 and mKPGM respectively. These
percentages are increased to 63%, 58% and 55% with respect
to KPGM6x6, KPGM3x3 and mKPGM, when we compare
the KS3D distance in AddHealth data. These results con-
firm the ability of block-KPGM to model new networks in
comparisons to previous Kronecker models.

Figure 6 right shows the percentage of non isolated nodes
and largest connected component over the three models.
block-KPGM is the model with the highest number of non
isolated nodes on Facebook (83%) and it has almost all nodes
with edges on AddHealth (99%). On the contrary, KPGMs
and mKPGM show a higher number of nodes with zero de-
gree on Facebook and AddHealth (except by KPGM6x6).
This implies that an important number of nodes utilized by
KPGM and mKPGM do not have any edge at all. More-
over, block-KPGM generates largest connected components
similar to the expected in real network, in comparison to the
other Kronecker models.

To further investigate the differences among the models,
we plot the network structure itself, for all AddHealth net-



% non isolated nodes Facebook AddHealth
real network 100% 100%
block-KPGM 83% 99%

mKPGM 70% 56%
KPGM3x3 76% 78%
KPGM6x6 −− 100%
KPGM7x7 45% −−

% largest connected component Facebook AddHealth
real network 76% 100%
block-KPGM 85% 100%

mKPGM 84% 77%
KPGM3x3 89% 92%
KPGM6x6 −− 100%
KPGM7x7 93% −−

Figure 6: Left: Three dimensional Kolgomorov-Smirnov distance for Facebook and AddHealth. Right:
percentage of non isolated nodes and size of largest connected component with respect to the non isolated
nodes over the models

(a) AddHealth (b) block-KPGM (c) mKPGM

(d) KPGM3x3 (e) KPGM6x6

Figure 7: Example networks from AddHealth data.

works in Figure 7, where the original network is show in
7(a). The network generated with block-KPGM (7(b)) has
the most similar structure to the original network. Both, the
original and block-KPGM networks, have a great number of
nodes in the middle of the network, and multiple nodes in
the periphery which are connected among them and with
the nodes in the middle of the network. On the contrary,
none of the other Kronecker models show this behavior. In
the case of mKPGM 7(c) and KPGM3x3 7(d), some nodes

are concentrate in the middle of the network, however, most
peripheral nodes are disconnected. Finally, KPGM6x6 7(d)
do not show a high concentration of nodes in the middle and
peripheral nodes are disconnected.

5. CONCLUSIONS
We presented a generalization of KPGM: the block-KPGM.

The block-KPGM is a combination of multiple fractal struc-



tures, which extend the graph space covered by KPGM.
Our empirical evaluation demonstrates that block-KPGM
reduces the number of isolated nodes, increases the aver-
age cluster coefficient and reduces the isolated components
of the generated networks. Moreover, block-KPGM is the
best model to reproduce the characteristics over the two real
networks analyzed in this paper, matching most CDFs, ob-
taining the lowest KS3D, and reproducing similar networks.

There are a few directions to pursue for future work on
block-KPGMs. First, we need to create a learning algo-
rithm for block-KPGM to estimate the parameters from an
observed network. Given that block-KPGM consists of mul-
tiple KPGMs, we need to understand how the separation
of the network in different blocks could affect the structure
of the network. This will allow us to determine if previous
training methods can be utilized to train every block sepa-
rately or if a new invariant permutation training algorithm
should be implemented. Once that the training algorithm as
been developed, we will compare the performance of block-
KPGM against popular generative models.

Second, we need to explore the variability on the structure
when different b′s values are utilized to generate a network.
The number of nodes for KPGM and mKPGM is limited
by the size of the initiator matrix (b) and the number of
kronecker multiplications (K); joining multiple blocks with
different values for b and K, will extend the use of block-
KPGM to networks with any number of nodes, at the ex-
pense of the number of parameters.
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