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ABSTRACT
Exploiting autocorrelation for node-label prediction in net-
worked data has led to great success. However, when deal-
ing with sparsely labeled networks, common in present-day
tasks, the autocorrelation assumption is difficult to exploit.
Taking a step beyond, we propose the coinciding walk kernel
(cwk), a novel kernel leveraging label-structure similarity –
the idea that nodes with similarly arranged labels in their
local neighbourhoods are likely to have the same label –
for learning problems on partially labeled graphs. Inspired
by the success of random walk based schemes for the con-
struction of graph kernels, cwk is defined in terms of the
probability that the labels encountered during parallel ran-
dom walks coincide. In addition to its intuitive probabilistic
interpretation, coinciding walk kernels outperform state-of-
the-art kernel- and walk-based methods on the task of node-
label prediction in sparsely labeled graphs. We also show
that computing cwks is faster than many state-of-the-art
kernels on graphs. We evaluate cwks on several real-world
networks, including cocitation and coauthor graphs, as well
as a network of interlinked populated places extracted from
the dbpedia knowledge base.

1. INTRODUCTION
The study of structure in networked data has led to great

developments and success in graph-based and collective learn-
ing [14]. In this work, we concern ourselves with learning
tasks defined on labeled graphs, when only a subset of the
nodes’ labels are known. The most straightforward problem
is using the available labels to predict those on the remain-
ing nodes. The main hypothesis behind most approaches
for node-label prediction is that the labels of instances are
autocorrelated [13]. This stems from the homophily assump-
tion, that same-labeled nodes are more likely to link to each
other.

Hypothesis 1 (Autocorrelation, homophily).

Nodes that are close in the graph are likely to have the
same label.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
Eleventh Workshop on Mining and Learning with Graphs. Chicago, Illinois,
USA
Copyright 2013 ACM 978-1-4503-2322-2 ...$15.00.

Exploiting this assumption is often profitable, provided that
within a small neighbourhood of each unlabeled node, we
have a sufficient amount of label evidence to make confident
predictions. Due to the enormous size of present-day net-
works, however, it is common to have only very few labeled
nodes, resulting in having too few observations near many
unlabeled nodes to effectively apply Hypothesis 1. In turn,
classification gets increasingly more difficult. When data are
sparsely labeled, we therefore have to do more than exploit-
ing closeby relations to accurately predict class labels. Pre-
vious work in this direction has introduced latent graphs by
adding additional edges [15, 4], run multiple random walks
with restarts [11], and suggested schemes for active learn-
ing [6].

Here we propose an alternative approach. We move be-
yond the straightforward homophily assumption, to say that
not only are nearby nodes likely to have the same label,
but also nodes with similar local structure, where we de-
fine “structure” to be “the arrangement and connectivity of
labels on nearby nodes.”

Hypothesis 2 (Label-structure similarity).

Nodes with similarly arranged labels in their local
neighbourhoods are likely to have the same label.

In this work, we encode the “label structure” surrounding a
node by the sequences of labels encountered during random
walks from that node. The main contribution is a new ker-
nel, the coinciding walk kernel (cwk), that uses these walks
to quantify how similarly the labels surrounding each node
are arranged. A similar approach to one presented here,
also incorporating local structure similarity, is introduced in
[2]. In this relaxation labeling approach a similarity measure
based on parallel rws with constant termination probability
is used. Besides having more free parameters and a higher
space complexity, cwks outperform this method on various
datasets as we will show in our experimental evaluation.

Random walks (rws) in general enjoy huge popularity in
graph-based learning and have proven a powerful tool both
for defining kernels on graphs (defined between nodes of a
graph) and graph kernels (where graphs are themselves in-
puts to the kernel).1 A common idea in the graph kernel
community is to measure the similarity of two labeled graphs
by analyzing the labels encountered during random walks
on the respective graphs [5, 7, 12]; the last reference used
this idea to design a kernel among partially labeled graphs.

1We make this distinction between “kernels on graphs” and
“graph kernels” throughout.



cwks are inspired by the construction of these graph ker-
nels; however, they define a kernel among the nodes of a
graph and hence can be used for learning tasks like node-
label prediction in partially labeled networks. Common ker-
nels on graphs include the diffusion kernel [8], the p-step
random walk kernel [17], and the Moore–Penrose pseudoin-
verse of the Laplacian, L+, [3] which is a limiting case of
the regularized Laplacian kernel. All of these kernels have
random-walk interpretations; however, none of them consid-
ers known labels during their computation, and as a result,
they cannot take advantage of Hypothesis 2.

We view known node labels as providing valuable infor-
mation that should be considered in the construction of a
kernel used for node-label prediction. More precisely, par-
tially absorbing random walks (parws), where, with some
probability, the walks stop progressing once they hit a la-
bel, give the known labels influence over the walk process
[21, 19]. The cwk uses this idea to define a kernel between
nodes of a partially labeled graph. We consider the distri-
bution over sequences of labels encountered during a parw
from a node as encoding its“label structure.” To address Hy-
pothesis 2, we then define the cwk between two nodes to be
the probability that parallel parws leaving from those nodes
coincide, that is, hit the same label at the same time. By
lifting the random walk from being on the nodes of a graph
to being on its labels, two nodes can be similar even if they
are very distant from each other in the graph, or even on
disconnected graphs. On the other hand, two parws could
encounter similar label sequences simply by virtue of hav-
ing left from nearby nodes in the graph, so the cwk is also
compatible with Hypothesis 1.

Most rw-based approaches, absorbing or not, only anal-
yse the walks’ steady-state distributions [21, 19, 3, 8, 11].
However, rws using the graph’s adjacency matrix as the
transition matrix converge to a constant steady-state dis-
tribution. Thus, the idea of early stopping was successfully
introduced in power iteration methods for clustering [10] and
node-label prediction [18]. The insight here is that the inter-
mediate distributions obtained by the rws during the con-
vergence process are extremely interesting. In this paper, we
adopt this idea as well and use the entire evolution of labels
encountered during partially absorbing rws up the a given
length as representing local structure, rather than only us-
ing the limiting distribution. cwks therefore substantially
leverage inference by aggregating label predictions based on
different walk lengths.

The distribution of labels encountered during parws clearly
depends on the locations and labels of previously observed
nodes, making the cwk a data-dependent kernel. Data-
dependent kernels are widely used in semi-supervised learn-
ing [16, 9], where the kernels are for example constructed
from the Laplacian of a graph modeling the data geome-
try. Approaches like semi-supervised support vector ma-
chines (see [1] for an extensive comparison and review) then
try to enforce smoothness of predictions along a manifold
defined by the data in feature space, typically by modifying
the optimization objective. In this paper, however, we in-
vestigate kernel construction for plain graph data where no
feature information on the nodes is given, in contrast to the
standard semi-supervised learning setting. However, both
approaches could complement each other under the right
circumstances.

To summarize, cwks combine the benefits of kernel meth-

ods and inference approaches in networked data. As our ex-
tensive experimental results demonstrate, this can consider-
ably improve node-label prediction – especially in sparsely
labeled graphs.
The main contributions of this paper are:

• introducing the coinciding walk kernel, that is,

• developing the first kernel on graphs leveraging label
information in kernel construction, and

• providing a method for node-label classification that
intertwines inference and kernels on graphs.

We proceed as follows. We start off by defining the main in-
gredient of coinciding walk kernels, namely partially absorb-
ing random walks. After introducing the coinciding walk
kernel, we discuss its probabilistic interpretation and show
its positive definiteness. Before concluding, we present ex-
perimental results on several state-of-the-art graph datasets.

2. PARALLEL AND PARTIALLY ABSORB-
ING RANDOM WALKS

As the main ingredient of coinciding walk kernels – the
label-structure similarity of nodes in a graph – is modeled
by the probability that parallel rws coincide, we will now
review Markov random walks on graphs. Further, we will
explain how we model label-structure similarity by partially
label-absorbing random walks.

Before developing the technical details, let us first pro-
vide an intuition. Consider a particle traveling from node
to node via the edges of a graph such that the decision of
where to go next only depends on its current location. This
is a Markov random walk on a graph. We can modify this
behaviour by introducing absorbing states – when reaching
an absorbing state, our particle is not able to continue its
walk, but is instead caught in a loop staying at that node.
The absorbing states could for example be chosen as the
subset of the nodes having observed labels, a natural choice
in our paradigm. Further, we can define partially absorbing
random walks, where absorbing nodes only activate with a
given probability. Now, we will give the technical defini-
tions needed for defining and understanding coinciding walk
kernels.

2.1 Absorbing Random Walks
Consider a graph G = (V,E) with |V | = n vertices and

a set of edges E specified by a weighted adjacency matrix
A ∈ Rn×n. A random walk on G is a Markov process
X = {Xt : t ≥ 0} on V = {1, 2, ..., n} with a given initial

state X0 = i. We will also write X
(i)
t to indicate the walk

began at i. The probability that the walk jumps from i to j,
i.e. the transition probability Tij = P (Xt+1 = j | Xt = i),
only depends on the current state Xt = i. These one-step
transition probabilities for all nodes in V can be easily repre-
sented by the row-normalized adjacency or transition matrix
T = D−1A, where D = diag(

∑
j Aij).

Let S ⊆ V be a set of nodes. Given T and S, we define
an absorbing random walk to have the modified transition
probabilities T̂ , defined as

T̂ij =

 0 if i ∈ S and i 6= j
1 if i ∈ S and i = j
Tij else,

(1)

The nodes in S are “absorbing” in that the walk never leaves



a node in S after it is encountered.
Now, consider a partially labeled graph G = (V,E, `)

where V = VL ∪ VU is the union of labeled and unlabeled
nodes, respectively, ` : V → [k] is a label function with
known values for the nodes in VL, and k is the number of
available labels. We will describe how we can monitor the
distribution of labels encountered during absorbing rws on
G. Let the matrix P0 ∈ Rn×k give the prior label distribu-
tions of all nodes in V. If node i ∈ VL is observed with label
`(i), then the ith row in P0 is the Kronecker delta distribu-
tion concentrating at `(i), i.e., (P0)i = δ`(i). We initialize
the label distributions for the unlabeled nodes VU with some
prior, for example a uniform distribution.2 The ith row of P0

now gives the probability distribution for the first label en-

countered, `(X
(i)
0 ), for an absorbing rw starting at i. Now,

It is easy to see by induction that by iterating the map

Pt+1 ← T̂Pt, (2)

(Pt)i similarly gives the distribution over `(X
(i)
t ).

If we define the absorbing states to be the labeled nodes,
S = VL, then the label propagation algorithm introduced
in [20] can be cast in terms of simulating absorbing rws
with transition probabilities as given in Eq. (1) until con-
vergence, then assigning the most probable absorbing label
to the nodes in VU . For the rest of this paper we will refer
to this “label-absorbing” random walk just as an absorbing
random walk.

2.2 Partially Absorbing Random Walks
Recall that our main goal is to define a kernel on a graph to

perform learning tasks like node classification in sparsely la-
beled networks based on autocorrelation and label-structure
similarity. Utilizing rws with fully absorbing states at the
labeled nodes as defined above, however, is somewhat re-
strictive towards this goal – only the first label encountered
will have any impact on the evolution of a particular rw.
This is compatible with the homophily hypothesis, but not
very useful for capturing the structure of surrounding labels.
Hence, we have to soften the definition of absorbing states.
This can be naturally achieved by employing partially ab-
sorbing random walks (parws) [19].

The simplest way to define parws, in the setting of label-
absorbing rws considered here, is to extend our graph G by
adding a special node for each label in [k] and adding edges
from each labeled node i ∈ VL to its respective label node.
We then make these auxiliary nodes absorbing states and
vary the transition probabilities from the labeled nodes to
them. The transition probabilities in this graph G̃ = (V ∪
[k], Ẽ) are given by T̃ having the following block structure:

T̃ =

 TU,U TU,L 0

(1− α)TL,U (1− α)TL,L α δL

0 0 I

 , (3)

where α ∈ [0, 1] is the absorbing probability. Note that by
setting α = 1 we can exactly model the fully absorbing rws
defined previously. On the other hand, by setting α = 0
we get a simple power iteration with constant steady-state
distribution. When using the latter setting for learning it
is crucial to apply some kind of early termination in order

2This prior could also be the output of an external classifier
built on available node attributes.

to learn meaningful clusters or class labels [18, 10]. We will
utilize parws for our coinciding walk kernel on graphs by
combining both techniques, partial label propagation and
early stopping, into a measure for local structure similarity
of the nodes in a graph.

2.3 Parallel Absorbing Random Walks
The final ingredient we need are parallel3 random walks,

as they allow one to refer to the sequences of states of two or
more random walks of the same length. Co-occurring rws
can be used to describe the similarity of either entire graphs
or nodes in a graph based on the structure of the local neigh-
bourhood of the nodes. These similarities will be the basis
of the coinciding walk kernel defined in the next section. Let
us now give a formal definition of parallel random walks. A
parallel random walk of length tmax among a set of nodes S

is given by the sequences {X(i)
t }0≤t≤tmax of tmax states vis-

ited by the random walks starting at the respective nodes
i ∈ S. Parallel partially absorbing random walks are given
by straightforwardly combining the according definitions.

3. COINCIDING WALK KERNEL
Now, we can define the coinciding walk kernel, which is

the main contribution of our work. The intuition underlying
cwks is simple: parws on partially labeled graphs encode
both label and structure similarity. Thus, cwks can exploit
Hypotheses 1 and 2 for learning tasks on graphs. Before we
show that Kcw is a valid kernel, we discuss its probabilistic
interpretation as well as some interesting properties.

The coinciding random walk kernel on a graph G = (V,E)
is defined as

Kcw =
1

tmax + 1

tmax∑
t=0

PtP
>
t , (4)

where the matrices of label probabilities Pt ∈ Rn×k are ob-
tained by replacing T̂ by T̃ in Eq. (2) and considering the
respective entries in the extended label probability matrix
P̃t, i.e.,

Pt = (P̃t)i∈V , and (5)

P̃t+1 ← T̃ P̃t. (6)

Note that P̃t ∈ Rn+k×k is simply the probability matrix
Pt extended by a k × k identity matrix. By using finite-
length parws Kcw has two kernel parameters: the absorbing
probability α, and the maximum walk length tmax, where α
controls trade-off between the homophily and label-structure
similarity assumptions.

(Pt)i(Pt)
>
j can be interpreted as the probability that par-

allel parws leaving from i and j are on nodes with the same

label at time t, that is, that `(X
(i)
t ) = `(X

(j)
t ). Hence, cwks

have the following intuitive random walk interpretation: the
value of the coinciding walk kernel for two nodes i and j is
the probability that parallel parws of length tmax starting
from i and j encounter the same label at any given time
0 ≤ t ≤ tmax.

Theorem 1.

Kcw as defined in Eq. (4) is positive-semi definite (i.e., is a
valid Mercer kernel).

3Note that we do not use the term “parallel” in the context
of parallel computing.
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Figure 1: Subgraph of the populated-places Dataset. Panels (a) - (c) show a subgraph of the POPULATED-PLACES
graph extracted from DBpedia consisting of the 500 nearest nodes to the node “Atlanta.” The graph layout
algorithm used (OpenOrd) was force-directed; nearby nodes have a high connectivity. The edge colours are
created by perceptual blending of the colours of the incident nodes. Panel (a) shows the class labels (“country”
(green), “administrative region” (light green), “city” (blue), “town” (light blue), “village” (pink)). Panel (b)
illustrates the values of the coinciding walk kernel (row of KCW) for Atlanta, coloured red. Dark blue means
high similarity, i.e., high kernel value, and white represents low similarity. Panel (c) illustrates the values of
L+ for Atlanta. Panels (d) and (e) show scatter plots of the shortest path distance vs. the normalized values
of K(Atlanta, ·) for KCW and L+ respectively, where the colours encode the class labels. Best viewed in colour.

It is obvious that Kcw is a positive-semi definite kernel as it
is the scaled sum of polynomial kernels k(x, y) = (x>y+c)d,
with c = 0 and d = 1, i.e., Kcw(i, j) ∝

∑tmax
t=0 (Pt)i(Pt)

>
j .

The computation of cwk on a graph G with adjacency
matrix A given the initial label distributions P0 and its
parameters is summarized in Algorithm 1. The computa-
tional complexity of the naive calculation is O(k tmax n

2).
However, for most learning tasks it is sufficient to compute
the train–train and train–test fractions of the kernel matrix.
This can be accomplished efficiently by precomputing the
{Pt} and summing only the required outer products. Hence,
the complexity for the kernel computation is O(k tmax |VL|n)
which is significantly lower for sparsely labeled graphs as
|VL| � n.

In Figure 1 we provide an illustration of cwk on a sub-
graph of a labeled graph built from concepts in the dbpedia4

ontology marked as “populated places.” Each concept is
a node in our graph and is backed by a Wikipedia page.
We added an undirected edge between two places if one
of their corresponding Wikipedia pages links to the other.

4
www.dbpedia.org

The dbpedia ontology further divides populated places into
“countries,” “administrative regions,” “cities,” “towns,” and
“villages;” these five labels serve as class labels. This ex-
ample was chosen because the resulting graph does not nec-
essarily exhibit homophily; for example, villages (approxi-
mately half the dataset) are much more likely to link to coun-
tries than to other villages. For our illustration, we built a
graph with |V | = 500 nodes by taking a breadth-first search
from “Atlanta.” We then calculate the pseudoinverse of the
Laplacian kernel (L+) as well as the coinciding walk kernel
(with α = 0.5 and tmax = 10), using a random selection of
20% of the nodes for VL. Atlanta was not among the labeled
nodes. The rows of Kcw corresponding to K(Atlanta, ·) are
illustrated in Figure 1 (b) and (d). One can clearly see that
cwk is able to capture structure similarity as several distant
nodes have high values and nearby nodes including nodes in
the direct neighbourhood of Atlanta show low values. The
rows of L+ are shown in Figure 1 (c) and (e). We can see that
L+ (on average) decreases smoothly with increasing distance
from Atlanta (obeying the homophily assumption); whereas
the value of Kcw also shows some highly correlated far-away



Algorithm 1 cwk computation

Input: max walk length tmax, absorbing rate α, inital label
distributions P0 ∈ Rn×k, adjacency matrix A ∈ Rn×n

Output: coinciding walk kernel Kcw

K ← P0P
>
0

T = D−1A, where D = diag(
∑

j Aij)

T̃ ← constructTrans(T, α) (cf. Eq. (3))
for t← 1...tmax do
P̃t ← T̃ P̃t−1 (one step transition)

Pt ← (P̃t)i, i ∈ {1, .., n}
K ← K + PtP

>
t (add kernel contribution)

end for
Kcw ← 1

tmax+1
K (normalize kernel)

nodes, as well as less correlated nearby nodes. Moreover, the
magnitude of Kcw is highly correlated with the correct label
(“city”) – the highest kernel values are exclusively achieved
by other cities throughout the network, exactly the behavior
desired for predicting Atlanta’s label. It is also interesting
to note that the lowest kernel values are exclusively among
nodes in the “town” class, perhaps due to strikingly different
label structure in their neighbourhoods.

4. EXPERIMENTS
Our intention here is to investigate the power of coin-

ciding walk kernels for the task of node-label prediction in
sparsely labeled graphs. We compare their performance to
existing methods from the kernel and collective inference
community. The two main questions to answer here are
whether cwks are able to utilize both autocorrelation and
structure similarity for node-label classification and whether
employing cwks improves over state-of-the-art graph-based
learning methods.

4.1 Experimental Protocol
We compare the classification accuracy in several real-

world graphs of the following methods:

• cwk: coinciding walk kernels

• lp: label propagation [20]

• rl: relaxation labeling using structure similarity [2]

• diff: diffusion kernel [8]

• l+: Moore–Penrose pseudoinverse of the Laplacian
kernel [3].

lp is the obvious baseline approach. Further, we choose diff
and l+ to represent existing successful kernels on graphs,
and rl as it is currently the most accurate method in the
area of collective classification, c.f. results in [2]. rl is the
closest approach to cwks, also incorporating local structure
similarity. The used similarity measure is based on parallel
rws with constant termination probability in a relaxation
labeling algorithm.

The following graph datasets are used for evaluation:

• dblp5 (connected coauthor graph extracted from the
dblp database)

• webkb6 (cocitation graph of webpages from computer
science departments of four universities)

5
www.cs.illinois.edu/homes/mingji1/DBLP_four_area.zip

6
www.netkit-srl.sourceforge.net/data.html

Table 1: Dataset properties. PP-xk is short for
POPULATED-PLACES-xk, where x is 1, 3, or 5. The
last column indicates the percentage of the most fre-
quent class.

properties

dataset # nodes # labels % of most frequent class

dblp 1 711 4 36%
webkb 1 462 6 28%
cora 2 708 7 30%
citeseer 3 264 6 21%
pp-xk x 5 49% (avg)

• cora7 (citation network of scientific papers)

• citeseer7 (citation network of scientific papers)

• populated-places (link graph extracted from
dbpedia, described above).

The properties of the datasets are summarized in Table 1.
For webkb we used the cocitation networks of all four uni-
versities (Cornell, Texas, Washington, and Wisconsin), com-
bined into one (disconnected) graph. For the populated-
places dataset, we created graphs of varying sizes by per-
forming a breadth-first search from the first node in the
graph (Alabama).

We focus on sparsely labeled graphs and use 20 randomly
generated test splits for 1% up to 15% labeled nodes. The
test sets are the same for each method and all reported clas-
sification accuracies are an average over the results on the
respective 20 test sets. The classification performance of all
kernel-based methods is evaluated by running c-svm classi-
fications using libSVM.8 Parameter learning of all compared
methods is done by the following protocol. For each method
we train all parameters (including the svm cost parameter
of the kernel-based methods) jointly via grid search on 10
randomly generated training splits having 5% and 10% la-
beled nodes, respectively. Again, the training sets are the
same for each method. For prediction we use the first set of
parameters (trained for 5% labeled data) for training per-
centages from 1% to 7% and the second set of parameters for
all scenarios with more than 7% labeled data. The following
parameter values were tested:

• cwk: tmax ∈ {0, 1, . . . , 10, 20, . . . , 200},
α ∈ {0, 0.05, 0.1, 0.2, 0.5, 0.8, 0.9, 0.95, 1}
• rl: N ∈ {1, 2, . . . , 5}, γ ∈ {0.1, 0.3, 0.5, 0.7},
αrl ∈ {0.25, 0.5, . . . , 1.5}, βrl ∈ {0.5, 1.0, . . . , 3.0}
• diff: β ∈ 2{−4,−3,...,7}

• all kernel methods: svm cost C ∈ 2{−4,−3,...,7}.

4.2 Predictive Performance
The predictive performances for all datasets with 5% and

10% labeled nodes are summarized in Table 2. In the sce-
nario with 5% labeled nodes, cwk performed significantly
better (under a paired t-test with p < 0.05) than the com-
paring methods on four out of seven datasets. On two of
the remaining datasets (cora and pp-3k), cwk achieved
the second-best average accuracy. When considering 10% la-

7
www.cs.umd.edu/projects/linqs/projects/lbc/index.html

8
www.csie.ntu.edu.tw/~cjlin/libsvm/



(a) webkb (b) citeseer (c) pp-1k

Figure 2: Average accuracies (and standard errors) for WEBKB, CITESEER, and PP-1k. Accuracies are averaged
over 20 randomly generated test splits of 1% to 15% labeled nodes for coinciding walk kernel (CWK), label
propagation (LP), relaxation labeling using structure similarity (RL), diffusion kernel (DIFF), and pseudo
inverse of the Laplacian (L+). The error bars indicate standard error over the 20 test sets. The star refers
to a statistically significant difference between CWK and RL; the red dot indicates a statistically significant
difference of CWK and LP (p < 0.05). The dotted lines indicate 5% and 10% training data corresponding to the
results reported in Table 2. Best viewed in colour.

Table 2: Average accuracies (%) for all tested methods on all datasets using 5% and 10% labeled nodes.
Accuracies are averaged over 20 randomly generated test sets. Bold indicates best method and • statistically
significant difference to the respective second best method under a paired t-test (p < 0.05). PP-xk is short for
POPULATED-PLACES-xk.

5% 10%

cwk rl diff l+ lp cwk rl diff l+ lp

dblp 62.9 • 61.7 55.5 59.9 61.2 69.2 67.9 65.4 67.7 69.1
webkb 61.9 • 57.2 47.7 33.4 43.4 63.9 • 61.0 52.7 40.6 45.8
cora 72.1 67.9 70.4 57.1 73.2 • 76.1 73.5 77.1 67.2 78.2 •
citeseer 53.2 • 51.2 50.7 50.0 50.9 58.0 • 55.5 55.4 52.8 54.9
pp-1k 52.8 • 42.6 44.3 45.0 32.8 54.9 • 46.1 50.6 48.4 34.0
pp-3k 59.5 57.7 60.2 51.4 45.6 63.7 59.4 63.1 53.7 50.3
pp-5k 60.9 53.3 59.6 53.3 40.2 63.5 • 59.2 61.7 55.2 40.5

beled nodes, cwk performed better in five out of seven cases,
four of which were statistically significant. Overall, cwk is
performing significantly better than all baseline approaches
according to a McNemar’s test (p < 0.05). Figure 2 shows
plots of the average accuracies of all compared methods for
1% up to 15% labeled nodes for the webkb, citeseer, and
pp-1k datasets. cwk generally outperforms the other meth-
ods. For the webkb dataset in particular, leveraging label-
structure similarity yields a huge benefit, as both cwk and
rl perform considerably better than the other methods. It
is not surprising that lp fails to accurately predict the la-
bels in the populated places graphs, as it relies purely on the
homophily assumption (Hypothesis 1) and fails to leverage
the structure similarity inherent to these networks. Surpris-
ingly, rl does not achieve better results than the compared
kernels on graphs diff and l+ on these datasets either.

5. CONCLUSIONS
In this paper, we introduced a new kernel on graphs, the

coinciding walk kernel, bringing together graph-based label
inference and kernel methods to leverage benefits from both
fields for learning tasks in sparsely labeled networks. The
kernel values of cwks are given by the probability that the
labels encountered during parallel absorbing random walks
on partially labeled graphs coincide. That is, two nodes
have a high kernel value if the labels surrounding each node
are arranged similarly. Our extensive experiments demon-
strated that using cwks, i.e., taking both Hypotheses 1 and
2 into account, considerably improves node-label prediction
in sparsely labeled graphs.
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