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ABSTRACT

The recent proliferation of location-based social network ser-
vices has resulted in an abundance of spatial-temporal data
on user mobility. Understanding individual and collective
mobility patterns is important for many applications. In
this study, we examine the similarity of users based on the
venues they have visited in the past. In contrast to the
previous approaches that measure user similarity based on
co-location patterns, here we first cluster venues in some la-
tent (lower-dimensional) space, which allows us to capture
the similarity between two users who have not necessarily
visited the exact same venues in the past. We validate our
approach on real-world data and demonstrate an improved
performance over previous methods.

Categories and Subject Descriptors

H.1.1 [Systems and Information Theory]: [Information
theory]; H.2.8 [Database Applications]|: [Data mining,
Spatial databases and GIS]

Keywords

Location Based Social Networks, Clustering, Information
Bottleneck

1. INTRODUCTION

Despite the efforts of social scientists, understanding hu-
man mobility patterns remains a challenging problem. As
sensors become more ubiquitous with accelerometers and
GPS embedded in cell phones, computer scientists are able
to analyze movements on a more fine-grained level. The
emergence of location based social network services take the
potential even further. Large scale data covering wide ar-
eas over long timescales is coupled with detailed information
about users’ online interactions.

Location Based Social Networks (LBSN) bear unique fea-
tures. Many of the application interfaces now enable users
to select the location they would like to check into from an

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.

Eleventh Workshop on Mining and Learning with Graphs. Chicago, Illinois,
USA

Copyright 2013 ACM 978-1-4503-2322-2 ...$15.00.

Greg Ver Steeg
Information Sciences Institute
4676 Admiralty Way
Marina del Rey, CA 90292

gregv@isi.edu

Aram Galstyan
Information Sciences Institute
4676 Admiralty Way
Marina del Rey, CA 90292

galstyan@isi.edu

automatically generated list. Often the lists are displayed by
tracking the GPS coordinates of a current user and searching
for nearby candidates. If the name of the location is not pro-
vided by the service, the user can add it for future visitors.
This feature is remarkable in this area of studies in that the
exact location can be pin pointed using the labels attached
to each of the check-ins. The noise of GPS coordinates can
be filtered easily using these labels. This enables us to col-
lect the users who have visited specific venues during a given
time period.

Another unique feature in LBSN is the sharing of user lo-
cations with friends. On popular social networking sites like
Facebook, users can pinpoint where their friends are and
where they have been in the past if they have checked-in.
This creates on-line influence which is the social network
equivalent of word-of-mouth influence. Each check-in cre-
ates a visible reminder that may induce friends to return to
a location or visit for the first time. In this sense, network
structure may have major implications in this area of study.

Understanding and modeling individual movement has many

applications. By understanding each movement and the re-
lationship between users, service providers could recommend
some venues to a group of users with potential interest. In a
broader context, human mobility models also impact predic-
tion of the spread of disease, controlling traffic congestion,
business marketing, and urban analysis.

Yet another huge impact on other fields of study comes
from the fact that the venues comprise not only the geo-
coordinate information but also other useful information
when combined with the profile of users who have visited
it. This may provide information about the behavior pat-
terns associated with a venue or the groups which frequently
visit the venue. For instance, based on the location, timing,
and composition of a group, it could be possible to infer the
activity as ‘studying’ with high probability. This intuition
suggests that venues see similar patterns of activity based
on the users who visit.

In this work, we use the network structure information to
cluster venues so that a venue’s group reflects its function-
ality. This coarse representation of venues may be useful
in many ways but we focus on two concrete benefits. First,
through clustering the venues, we may be able to have a bet-
ter understanding of what venues represent as a whole. For
instance, the venues connected to schools, libraries, book-
stores could be may be related to activities like ‘studying’.
Second, with coarse representation of venues the unknown
relationships among users can be inferred based on the set
of venues two users have visited. Using LBSN dataset, we



found that many of the actual friends show similar check-in
patterns, but some of the pairs had no overlap at all. We
show that through clustering venue types our model can cor-
rectly infer relationships even between pairs of users with no
overlap of venues.

We present network infused agglomerative information bot-
tleneck, which is an extension of agglomerative information
bottleneck [11]. This simple non-parametric method allows
us to cluster venues utilizing the network information. As
mentioned previously, we show two advantages: categoriz-
ing venues and edge prediction using these clustered venues.
However, for ease of validation, we mainly focus on edge
prediction in this work and show how coarse representation
performs better than using the raw venue data. We also
show how our clustering performs better relative to other
methods of dimensionality reduction.

2. RELATED WORK

There have been a number of studies [2, 4, 8, 13] using
geo-spatial dataset for modeling mobility patterns in so-
cial networks. For instance, Ref. [13] defined mobile ho-
mophily based on visitation frequencies, and used this mea-
sure to infer social interactions. The difference between our
approach and the prior work relies on measuring the ho-
mophily. Namely, our method first projects venues onto la-
tent space, and then finds similar users in this space. Thus,
our approach can yield high similarity for a pair of users
who have never visited the same venue, provided that they
have visited similar venues. This is very different from ap-
proaches that use, for instance, distances between locations
for link prediction.

As we mentioned above, we intent to compress the check-
in data into a coarser representation. There are many ex-
isting approaches for dimensionality reduction. Latent Se-
mantic Analysis (LSA) [7] and Latent Dirichlet Allocation
(LDA) [1] were originally introduced in NLP to discover hid-
den concepts/topics characterizing document data using the
term-document matrix. Probabilistic Matrix Factorization
(PMF) [9, 10] that was developed for collaborative filter-
ing works by decomposes the rating matrix two matrices
and works well on predicting missing rates. Spectral Co-
Clustering [5] simultaneously clusters row and column using
spectral graph partitioning.

We would like to note that, similar to our work, Ref. [6]
used LDA to cluster venues, although they did not use the
obtained clusters for link prediction. Furthermore, in con-
trast to [6] ( and the dimensionality reduction methods
listed above) the approach proposed here is a supervised
method as it uses information about known social ties.

3. DATA DESCRIPTION

We use Gowalla dataset [2] in this work. Gowalla is a
location based social network (LBSN) service where each
user can post their current location and share it with its
friends. The ‘check-in’ consists of the node id(user), the
actual date and time, and coordinate with the location id
provided by Gowalla. Location ID becomes useful when two
locations which are close or have the same coordinates but
located on different building levels need to be distinguished.
To distinguish from previous works using geo-space dataset,
we use venues which is a location with ID in LBSN; instead

of locations, which were mostly based on cell towers using
cell phone data.

The majority of the users in the dataset show sparse ac-
tivity in ‘check-in’s, which makes the modeling difficult. We
observe that 20% of the most-active users were responsi-
ble for 80% of all check-ins. For the experiment, we use
the check-in data of users from three major cities in USA,
which includes San Francisco, Austin, and New York. For
each city, the check-in data is encoded as an |V| x |U| ma-
trix, where V is the set of venues and U is the set of users.
The (4,7)-th entry indicates the number of visits of user j
to the venue 7. The dataset also contains node-node friend-
ship matrix, which is an unweighted and undirected graph.
We use the check-ins of users who showed active histories in
those three cities.

Measuring Similarity.

In previous work [13], one of the measure used to compute
mobile similarity was cosine similarity between two vectors
of the given users. Each user had occurrence vector, where
the i-th component of the vector counts the number of the
visits to location 7 of the given user. Cosine similarity is an
inner product of two ls-norm vectors, which measures the
cosine of angle between them:
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Another measure of similarity is Kullback-Leibler (KL) di-
vergence (defined below). Our results indicate that KL di-
vergence achieves better inference on friendships than cosine

similarity !. Hence we use KL divergence as a metric of mea-
suring similarity of check-in histories.

SIMeos(A, B) =

4. NETWORK-INFUSED AGGLOMERATIVE

INFORMATION BOTTLENECK

Our objective in this work is to capture the unknown edges
using the similarity between the users in some latent space.
Our approach is based on a variation of the Information Bot-
tleneck (IB) method [12]. This method ttys to find a com-
pressed representation X of the original data X so that X
still contains useful information about some relevance vari-
able Y. In other words, IB tries to find the features of
the original dataset that are most useful for predicting the
relevance variable Y, while discarding the features (via com-
pression) that are not.

To make this intuition more formal, let us recall the defini-
tion of the mutual information between two random variable
X and Y:

) = x p(,y)
I(X;Y) = Ie;yjeyp( ,y)log(p(w)p(y)) (2a)
= > pu)DrLp(ly)lp(x) (2b)

where in the second equation we have introduced the Kullback-
Leibler (KL) divergence:

Dkw(pllq) = ZP ) log %) (3)

I'We believe this is mainly due to the l; normalization. [
norm is sensitive to the scaling factor especially when dealing
with high dimensional vectors, where as l1 vectors shows
more robustness [3].



The objective of IB method is to find a compact represen-
tation X of the original variable X that results in a minimal
loss of information about the relevance variable Y. Introduc-
ing a Lagrange multiplier 3, the above objective is captured
by the following functional:

Llp(&|z)] = I(X; X) — BI(X;Y) (4)

Note that IB can be viewed as a soft clustering algorithm
characterized by the conditional distribution p(Z|z). When
the compressed representation has finite cardinality, then in
the limit 8 — oo, IB reduces to hard clustering [11]. In
this limit, the first term in Equation 4 is discarded, and the
problem reduces to maximizing I(X;Y). We focus on this
scenario from now on.

We adapt a version of IB known as agglomerative Informa-
tion Bottleneck [11], which is essentially a bottom-up hard
clustering method. The agglomerative IB starts with trivial
partition where each data point is in its own cluster. Define
information loss as the decrease in the mutual information
I(X;Y) due to merging, 61, = I(X;Y) — I(X;Y). Then,
at each iteration, the agglomerative IB greedily merges two
clusters that have the minimum mutual information loss.

We now define an objective function inspired by the IB
approach. In our case, the data that we would like to com-
press is the set of all venues, while the relevance variable is
the existing network structure. Then, intuitively, we would
like to compress the venues so that the users who are linked
in the network will be close to each other in the compressed
representation, whereas the users who are not linked in the
network will be further away. Thus, we define

(V) = 3 pu <y>{DKL<p<x|y>\|psy (z))
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where S, denotes the set of friends of user y, and S, denotes
the set of non-friends of user y, and p(x|y) is the probability
of a given user visiting venue x.

The two terms in the objective functions are the results of
combining two types of information - existence and absence
of links between the users. Since our objective is to differ-
entiate the two sets (friend set vs non-friend set) for each
users, we separate the two by penalizing the other term, the
distance to the probability of non-friends. Note also that in-

_ #of edges containing y

stead of p(y), our objective uses pw(y) = Sof edges

which gives more weight to the users that have more edges.

Having defined the above objective, we can use the greedy
bottom-up technique defined above to find hard clustering of
the venues. The following remark is due: Since users do not
visit all the venues, the denominator in the KL divergence
is often zero. To avoid this, below we use Jensen Shannon
(JS) divergence, a symmeterized and smoothed version of
KL divergence:

J(C) =Y wu{JS(pullPS,) — JSMLlPS,)}  (6)

ueU
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_ #of user u visiting cluster k
" #of total check-ins of user u

e (k) (8)

Algorithm 1 Venue Clustering

Size: consider total of |V| venues, |U| users
Input: |V| by |U| co-occurrence matrix X, and
|U| by |U| adjacency matrix Y, which is partially observ-
able
Initialization: Start with |V clusters, each of which con-
tains a venue
repeat
fori,7 =1to C, i<j do
dij = J(C) — J(C)
where C = {C — {ci,¢;}} Uéiy,
and ¢;; is a merge of cluster ¢ and j
end for
Merge:
- Find {a, 8} = argmin, ; d;;
— Merge {ca,cs} = Gij
until mind;; < —e
Output: C by U matrix X¢

In Equation 6 and 8, C represents the set of the current clus-
ters; The component of the probability vector is defined in
equation 8. The overall procedure is shown in Algorithm 1.

S. EXPERIMENTAL RESULTS

For our experiments we focused on Gowalla data from
three major US cities - San Francisco, Austin, and New
York. Those three cities exhibited more active ‘check-ins’
compared to other major cities. For each city, we used
top 20% active users of which the check-ins form 80% of
all check-ins. We also left out the venues with fewer than 10
different visitors during the considered period.

5.1 Venue clustering

In our first set of experiments, we examined whether our
approach yields meaningful clustering of the venues. We run
our algorithm starting with the clusters where each venue
constitutes a separate cluster initially. We merge those clus-
ters following the algorithm 1, until the information loss is
less than a predefined threshold.

For all three cities, we examine the top three clusters that
contain the most venues. Since we are only interested in
what the clusters represents, we use 100% of the edge infor-
mation between the users for the clustering. For each clus-
ter we find the top 10 popular venues. We assume that the
number of unique users in each venue represents the venue
popularity, i.e., the more unique visitors the more popular
it is. Top 10 venues of each clusters with most unique users
are examined.

The name of the venues in top three clusters of San Fran-
cisco are presented in Table 1. We observe that the cluster
C'1 mainly consists of amusement facilities such as theater,
brewery (or bar), and cafe. Cluster C2 mostly has shops
and venues in the shopping district of San Francisco. And
for the cluster C3 we found that most of the venues seem
to be associated with the LGBT (lesbian, gay, bisexual, and
transgender) community. Thus, we see our clustering algo-
rithm is able to capture semantic information about venues
using the friendship network information between the users
who check-in.

Figure 1 shows the actual mapping of the venues. It is
seen that the venues that belong to the same cluster are not



Table 1: Top 3 largest clusters in San Francisco

C1

Metreon(movie,video game, city target)

Amendment Brewery

Mint Plaza

SEFMOMA

Moscone Center North

San Francisco Ferry Bldg

‘Whole Food Market

Thirsty Bear Brewery

Sightglass(coffee)

Bloodhound (bar)

Apple store

Union Square Park

Westfield San Francisco Centre(shopping mall)

Moscone West (exhibition hall)

Powell st (cable car turntable)

Flood Building (powell st shopping district)

Transamerica pyramid

(small shop)

Lucca Delicatessen(italian deli brocery)

Macy’s

Cs

Rainbow World Fund(friends community)

Toad Hall (bar)

Building (rainbow flag)

Sunflower Cafe

(unknown, moved out)

QBar (rainbow flag)

Moby Dick (bar, rainbow flag)

440 Castro (underwear night, rainbow flag)

closed property (rainbow flag)

Exclusive club
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Figure 1: Geo plot of three clusters Ci(red),
C>(green), Cs(blue)

necessarily geographically close to each other. Instead, the
closeness is in the induced latent space. We also observe
that C3 is more localized geographically compared to other
clusters. This is because many of the venues in this cluster
are located in a prominent LGBT neighborhood in the city.

5.2 Reconstructing Edges

In the next experiment we use the coarse-grained repre-
sentation of the venues to predict social links among the
users. In the San Francisco dat set, there were 3,360 edges
out of 706,266 pairs. Furthermore, out of 1,680 edges, 565
(more than third) had no common venues between the two
at all. The New York dataset has 1,205 active users with
1,051 venues, with 1, 781 edges from 725,410 pairs. And for
the Austin datset, there were 1,920 active users with 9,126
edges.

For the experiment, we use fraction of the existing edges
to cluster the venues using our algorithm. We then try to
recover the remaining edges based on the venue clusters they
have visited.

As our algorithm uses available network information in
venue clustering, we expect to achieve better accuracy with
more network information. To examine this effect, we con-
trol the observable edge ratio to 25%,50%, and 75% and
infer the 75%,50%, and 25% of edges respectively. Due
to the limited space, we only present the results from the
San Francisco data (the results were similar for the remain-
ing two datasets). In Figure 2 we show the ROC curve for
different approaches, together with the corresponding AUC
scores. We see that measuring user similarity based on clus-
ters of venues results in more accurate link prediction. In
other words, the induced latent categories of the venues are
a better measure of similarity than the individual venues
themselves.

We also compare our algorithm to other baselines de-
scribed in Section 2. All of the baselines uses reduced di-
mensional representations of venues for finding similarities
between users. For the experiment, we used 50% of the edge
information for our algorithm, and validated with the other
50% of the data as a test set assuming the edge information
is unknown. With the same test set, we inferred the edges
between users using other baseline methods and compared
it to ours. As shown in Figure 3, our method (IB) outper-
forms other baselines. (topic: LDA, co-clustering: Spectral
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Figure 2: ROC curve for link prediction using JS-
divergences. The results are shown for the infor-
mation bottleneck (red) and unclustered original
venues (blue) on varying size of training set (25%
of whole data, 50% and 75%). We also show the
corresponding AUC scores.

co-clustering). We note, however, that direct comparison
of the methods is a little unfair, since our method makes
use of additional (social network) information for cluster-
ing the venues, whereas the baselines above are fully un-
supervised. Nevertheless, our results clearly indicate that
information about social interactions is indeed relevant for
clustering venues.

ROC curve JS (50% training)
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topic
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Figure 3: ROC curve using JS-divergence compared
to other baselines. The AUC is for the red plot (IB)
only. IB denotes our model, where as the venue
denotes the edge reconstruction using the unclus-
tered venues. topic: LDA and co-cluster: Spectral
co clustering are the baseline we have introduced
previously

6. CONCLUSIONS

Finding similar users or friends in LBSN is important for
better understanding user mobility patterns. Though there
are many venues in a city, only a small number of venues are
visited by individual users. The mobility patterns (i.e., the
venues that a user frequently checks-in) exhibit the charac-
teristics of each user. Conversely, we can predict the venues
that the users might be interested based on our inference.
Reaffirming many previous studies, the social network plays
a great role in inferring the characteristics of users. In this
work, we focused on reconstructing the social network based
on other observable network and the check-ins of users. We
showed that when the venues are merged using our algo-
rithm, we achieve better predictions about the social net-
work. We also validated that our cluster contains meaning-
ful representation by examining the name of the venues and
the actual locations on geo-space.
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