
Interactive Recommendation

Yang Yang and Jianfei Wang
Deparment of Computer Science and Technology, Tsinghua University

{y-yang-11, jf-wang12}@mails.tsinghua.edu.cn

1. INTRODUCTION
In some web applications, users’ needs are vague. They do not

know what exactly they want to retrieve. Some methods like rec-
ommendation methodologies aim to solve this issue. In this work,
we aim to help users identify their needs by asking them as few as
possible “Yes or No” questions, e.g., “Are you looking for a shop-
ping mall?”, “Do you prefer to have your internship in a software
company or not?”, etc. Ideally, each question divides the hypothe-
sis space in half and find the target object. We call this methodology
as interactive recommendation as it requires the user’s response and
need to interact with the user during the progress.

On the other hand, for some mobile-end users, entering a query
costs their operations and is not so convenient. As an example,
when one is in a bus and is looking for a football game result of last
night, instead of typing “Barcelona” to the search engine, he or she
may prefer to click just few radio buttons (“Yes” or “No”) and get
the answer.

2. PROBLEM DEFINITION
We introduce some necessary definitions and then formulate the

problem. Consider we have n objects and m tags, and the user’s
target object is t. We first define a tag matrix as

Definition 1. Tag matrix. A tag matrix X ∈ {0, 1}n×m gives
the relation of the objects and tags, where xij = 1 stands for object
i has tag j.

Next we formulate the questions which interact with the user and
are used to partition the hypothesis space:

Definition 2. Yes/No question. A Yes/No question can be re-
garded as a two-tuple (k, r), where k is a tag and r ∈ {0, 1} stands
for the user’s answer. r = 1 if the target object t has tag k, other-
wise r = 0.

Given a a tag matrix X and a target object t, our goal is to iden-
tify t in as few Yes/No questions as possible.

3. APPROACH

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
Copyright 20XX ACM X-XXXXX-XX-X/XX/XX ...$10.00.

3.1 Framework
We use a vector W as the weights of all objects. All weights are

initialized to 1. After the t-th round of Yes-No question, a weight
w

(t)
i will be multiplied by a discounter γ (γ < 1) if the correspond-

ing object i does not “match” the question, i.e., if object i has the
tag j but the user answers “no” or vice versa. The details of the
framework can be found in Algorithm 1.

Next we will introduce two algorithms for finding the tag used
for each question.

3.2 Greedy Algorithm
We first introduce a greedy algorithm. The basic idea is to choose

the tag used in the question to maximally decreases
∥∥W t

∥∥
1

regard-
less of the answer. To achieve the goal, we first define the expected
value of each tag j as

E(j) =
∥∥wt∥∥−1

1

∑
j∈Item

Xijw
t
j (1)

Based on this, we can also calculate each tag’s variance:

var(j) =
∥∥wt∥∥−1

1

∑
j∈Item

wtj(xij − E(j))2 (2)

As the tags are binary, we can loosely interpret each tag as a
Bernoulli random variable. It can be proved

∥∥W t
∥∥
1

will drop
largely when we select tag k with the maximum variance.

3.3 Heuristic Search
Next we propose an algorithm based on heuristic search. By con-

structing the heuristic function carefully and applying the heuristic
search method to the procedure of searching for the tag questions,
we can improve the performence of the interactive recommenda-
tion.

We first show how we design the heuristic function for the case
where we search for k tag questions in one iteraton.

Suppose in each search step we consider k questions used to ask
the user one by one. Our goal is to reduce the ‖W‖1 largely in the
worst case, which is similar to the greedy algorithm.

We let these k question tags be Qk = {q1, q2, . . . , qk}, and let
the answers to these question tags be l = l1l2 . . . lk ∈ {0, 1}k
where 1 stands for “yes” and 0 stands for “no”.

Assume that after answering the m-th question tag, the weight
for the i-th item isw(m)

i , and the answer for the (m+1)-th question
is “yes”, then after answering the (m + 1)-th question the weight
for the i-th item becomes

w
(m)
i γ1−xi(m+1) ; (3)

If the answer is "no", after answering the (m + 1)-th question

Input:
a tag matrix X , the maximum number of questions T, and the
discounter γ.
Output:
a updated weight vector W (T).

Algorithm:
initialize weights w(0)

i = 1 for all i;
t = 0 ;
while t < T do

q = QuestionSelectionAlgo(X , W t, γ);
Ask the user if q is present in the target object;
if the answer is "yes" then

w
(t+1)
i = w

(t)
i γ1−xiq for all i

else
w

(t+1)
i = w

(t)
i γxiq for all i

end
t = t+ 1

end
Return W (T)

Algorithm 1: The interactive recommendation framework.

the weight becomes

w
(m)
i γxi(m+1) (4)

In summary, assume that the answer is l ∈ {0, 1}, after answering
the (m+ 1)-th question the weight becomes

w
(m)
i γl⊕xi(m+1) (5)

Therefore after answering all these k question tags, the weight
for the i-th item is:

wi

k∏
j=1

γlj⊕xij (6)

Hence the total cut weight is

W [Q|l] =
∑
i

wi(1−
k∏
j=1

γlj⊕xij) (7)

And since l ∈ {0, 1}k, and l can be any 0-1 string with k entries,
it follows that there are in total 2k different answer strings, i.e., 2k

different l’s may appear as the answer string of the user. Thus our
question should be selected as:

Q∗ = argmax
Q

min
l∈{0,1}k

{
∑
i

wi(1−
k∏
j=1

γlj⊕xij)} (8)

We call a heuristic search algorithm to find Q∗. With the opti-
mization of calculate the heuristic function for each possibleQ, the
time complexity of this algorithm can be proved as O(mk × C),
where C = maxj{

∑
iXij}.

The point is that, even though we search for k tag questions in
one iteration, we only pick one of them as the tag question and
present it to the user. Thus in each iteration the user still answers
one question.

If we let q1, q2, . . . , qt be the sequence of questions that user
answers, and after answering qt the algorithm stops, we will have
α as the lower bound of the ratio of the cut weight for all these tag
questions during the procedure of searching for the target object,

namely

α = min
1≤j≤t

min
l∈{0,1}

W (j)

w
(j)
i (1− γl⊕xi)

Then we have the following theorem:

Theorem 1 : Let p be the probability that the user answers
incorrectly, and γ be the discounter. Also we use a string of ran-
dom variables yi to denote whether the user answers incorrectlyl
in the i-th iteration. If the user answers incorrectly in the i-th
iteration, yi = 1, otherwise yi = 0. Namely

Pr[yi = 1] = p

Let Yt =
∑t
i=1 yi.

Then if t and Yt meet the condition that

t(ln(γ)
Yt
t
− ln[1− α(1− γ)]) = y > 0

Then the target object will be surely in top L objects with highest
weights where n ≥ L ≥ n

ey
.

Moreover, if we have

p ≤ γ

Then in expection, the target object will be surely in top L objects
with highest weights where n ≥ L ≥ n(1−α(1−γ)

1−p(1−γ))
t

Proof :
Since in t iterations the user answers Yt questions incorrectly, the

weight of the target object is γYt . We know that at the t-th iteration,
the total weight W (t) is no greater than W (0)(1 − α(1 − γ))t =
n[1 − α(1 − γ)]t, because at least α(1 − γ)W (i−1) vainishes at
the i-th iteration.

Since y > 0, we have ey > 1. Let n ≥ L ≥ n
ey

, then y ≥
ln(n)− ln(L). The the condition becomes

t(ln(γ)
Yt
t
− ln[1− α(1− γ)]) ≥ ln(n)− ln(L)

⇒L× γYt ≥ n[1− α(1− γ)]t

Therefore we have

L× γYt ≥ n[1− α(1− γ)]t ≥W (t)

which indicates that the weight of the target object is at least the L-
th highest. Therefore the target object is in the top L objects with
the highest weight.

When we have

p ≤ γ

We have

1− α(1− γ)
1− p(1− γ) ≤ 1

Thus when n ≥ L ≥ n(1−α(1−γ)
1−p(1−γ))

t, in expectation we have

E[L× γYt] = L× E[γYt]

= L×
t∏
i=1

E[γyi]

= L× [1− (1− γ)p]t

≥ n[1− α(1− γ)]t

≥W (t)

Table 1: The performance of different algorithms in Arnet-
Miner data set.

Probability of lying IHS SHS Greedy
0.00 34.24 34.08 35.08
0.02 27.54 26.98 27.16
0.04 28.88 27.86 31.1
0.06 37.87 36.8 38.8
0.08 35.18 35.2 34.32
0.10 43.8 40.9 43.14

4. EXPERIMENTS
We perform experiments on 3 data sets to compare the perfor-

mance of our approach (IHS), greedy, and static heuristic search
(SHS). To show the power of interaction with the user, we propose
the third algorithm SHS. The question selection method of this al-
gorithm is the same as IHS, but it only interacts with the user every
2 rounds, in one iteration we search for k = 2 question tags, use
both of them as question tags and present them sequentially to the
answerer. Note that during these 2 iterations, the system doesn’t
have any interaction with the user, i.e., the answer of the user in the
first iteration doesn’t infect how the system choose the question tag
in the second iteration.

We conduct an experiment to compare the performance of our
approach to baselines. The basic setup of the experiment is as fol-
lows: we first select an object as the target. In each turn, given
the tag matrix, the question selection algorithm will present a ques-
tion tag q to the answerer. We then build simulators of answerers.
When the answerer is asked by question q, it will reply “Yes” if tag
q is present in the target object, or “No” otherwise. The interactive
progress continues until the target object ranks in the first place,
and no other object ranks abreast of the target.

The data set consists of 36,371 conferences in computer science
and 1,905,496 papers provided by ArnetMiner1. We then generate
distributions θv for each conference v on 200 topics by ACT [7].
We treat each conference as an item and each topic as a tag. We
set the entity in tag matrix xvz = 1 if θvz > β, where z is a topic
and β is a threshold manually defined. In the tag matrix, each row
contains 21.2 entities with value one on average.

Table 1 shows the the average number of questions need to be
generated to find the target item by different algorithms.

5. PROTOTYPE SYSTEM
We have developed and deployed a web application for interac-

tive user intention understanding based on our approach and Patent
data set in PatentMiner2. Figure 1 shows a screenshot of the pro-
totype system. Users can find suitable companies for job hunting
or business analysis. From experimental results, we can see that
in Patent data set, IHS requires around 14 questions to identify the
target. But in real applications, it uses less questions as the sys-
tem displays top 5 companies during each round, thus the user can
find the target even when it does not rank the first. Throughout
the experiments, we find that the questioner averagely requires 2-3
questions to make an item ranks first from top 5. Also, the sys-
tem allows users to enter a query and search for some candidates
first to limit the size of hypothesis space and reduce the number
of questions required. At present, we’ve started collecting users’
feedbacks from the prototype system to further improve our work.

1http://arnetminer.org/
2http://pminer.org

Figure 1: A screenshot of the prototype system.

6. RELATED WORK
To understand users’ intentions, various issues based on search

engines and recommendation systems were developed.
Link analysis [3, 5] is a data-analysis technique used to evaluate

relationships between nodes in the network. Techniques like this
will help the system find out the popular items, which will in turn
help users search for valuable items and information.

Many recommendation engines were also developed. Typically,
users need to register and tell the recommendation engines their
preferences on some items explicitly, since most of traditional rec-
ommendation methods rely heavily on user logs and feedbacks [4].

In [6], authors make analysis on different item-based recommen-
dation generation algorithm, including the computation of similar-
ities between items and the way of obtaining recommendations.
Meanwhile, they made comparisons between their results and basic
k-nearest neighbor approach [2, 1], which is based on collaborative
filtering and is a popular recommendation system.

However, recommendation engines may not produce meaning-
ful recommendations when users can not express their preferences
accurately or there is no available user logs.

7. REFERENCES
[1] T. Denoeux. A k-nearest neighbor classification rule based on

dempster-shafer theory. Classic works of the Dempster-Shafer theory
of belief functions, pages 737–760, 2008.

[2] S. Dudani. The distance-weighted k-nearest-neighbor rule. Systems,
Man and Cybernetics, IEEE Transactions on, (4):325–327, 1976.

[3] J. M. Kleinberg. Authoritative sources in a hyperlinked environment.
J. ACM, 46(5):604–632, Sept. 1999.

[4] D. Lemire and A. Maclachlan. Slope one predictors for online
rating-based collaborative filtering. In Proceedings of SIAM Data
Mining (SDM’05), 2005.

[5] R. Lempel and S. Moran. Salsa: the stochastic approach for
link-structure analysis. ACM Trans. Inf. Syst., 19(2):131–160, Apr.
2001.

[6] B. Sarwar, G. Karypis, J. Konstan, and J. Riedl. Item-based
collaborative filtering recommendation algorithms. In Proceedings of
the 10th international conference on World Wide Web, WWW ’01,
pages 285–295. ACM, 2001.

[7] J. Tang, J. Zhang, L. Yao, J. Li, L. Zhang, and Z. Su. Arnetminer:
extraction and mining of academic social networks. In KDD’08, pages
990–998, 2008.

