
Comparing two Algorithms for Clustering Aligned Pattern
Clusters

Sanderz Fung
Systems Design Engineering

University of Waterloo
Waterloo, Canada

s3fung@uwaterloo.ca

En-Shiun Annie Lee
Systems Design Engineering

University of Waterloo
Waterloo, Canada

annie.lee@uwaterloo.ca

Andrew K.C. Wong
Systems Design Engineering

University of Waterloo
Waterloo, Canada

akcwong@uwaterloo.ca

ABSTRACT
Advances in high-throughput bioinformatics have provided
a large influx of novel sequences, thus making the analysis
of the sequences crucial. Proteins sequences are composed
of amino acid alphabets; network clusters of protein regions
can be analyzed to reveal inherent biological knowledge. The
important protein regions are represented by frequent se-
quence patterns in protein families, which we represent with
Aligned Pattern Clusters (APCs). When two conserved pro-
tein regions occur simultaneous in one protein, this implies
that they interact within the protein. This co-occurrences
is used to cluster APCs into APC Clusters. The purpose of
this paper is to compare two clustering algorithms for find-
ing these APC Clusters: 1) maximum spanning tree with
minimal cut and 2) k-means clustering. We compare the
two clustering algorithms by performing three sets of ex-
periments: synthetic dataset, two biological case studies,
and a large-scale biological study. The biological results
are further confirmed by their correspondence to the three-
dimensional structure of the protein. We conclude that k-
means clustering performs better than MST with minimal
cut due to faster runtime, global optimization and consis-
tence of the final results. Our method and results are cur-
rently being verified by important proteins crystallized from
an experimental lab in immunology.

Categories and Subject Descriptors
H.3.3 [Information Storage and Retrieval]: Information
Search and Retrieval—Relevance feedback ; J.3 [Life and
Medical Sciences]: Biology and Genetics

General Terms
Measurement, Experimentation

Keywords
Sequence, Clustering, Ubiquitin, Triosephosphate isomerase,
Co-occurrence, Pattern, MST Clustering, K-means cluster-
ing

1. INTRODUCTION
Proteins are involved in complex biological process respon-
sible for life. One specific protein sequence is comprised
of amino acids from a twenty letter alphabet. The linear
sequence of amino acids folds up into a three-dimensional
structure. A family of proteins all have the same function,
which implies similar three-dimensional structure; however,
the protein structure is the same while the protein’s se-
quences may vary. We assume that protein regions of im-
portance within the protein will maintain their conserved
segments (i.e. sequence patterns). In this manner, two pro-
tein regions of importance that function together will have
conserved patterns in the co-evolution process.

Finding protein regions of importance will help identify struc-
tural and functional relationships within the protein. There
are several approaches for identifying protein regions: database
searches and motif-finding. Several databases store the pat-
tern confirmed by experts. In particular, PRINTS [1] pro-
vides protein fingerprints found in protein families. Because
PRINTS results are comparable to ours, we were able to use
PRINTS to verify our patterns. However, some protein fam-
ilies studied, like triosephosphate isomerase, were not stored
in the PRINTS database. Other methods incorporate addi-
tional biological information to motif finding for finding pro-
tein regions. For example, Kinjo and Nakamura [7] finds pro-
tein function by comparing patterns of the three-dimensional
structure, and Francisco et. al [6] find DNA binding sites
using motifs and clustering their co-occurrences. However,
these methods use additional information that is difficult to
acquire without additional weblab technology. We use se-
quence data only. To confirm our capability, we use existing
protein family data acquired from pFam.

To examine the relationship between two or more protein
regions, we find APC clusters using two possible clustering
algorithms. For comparison, we devise a method with three
parts. The first two parts of our method is based on our
previous works [12, 8], to discover, cluster and align similar
sequence patterns into Aligned Pattern Clusters, APC [8].
The third part is to determine highly co-occurring APCs on
the same proteins using two different clustering algorithms:
maximum spanning tree with minimal cut, and k-means
clustering. The biological results the clustering are impor-
tant for interpreting biological knowledge and are confirmed
computationally by the protein’s three-dimensional struc-
ture. Furthermore, they are currently being verified through
experiments on an biological application in immunology.



2. METHOD
Our methodology combines three algorithms: the first two
from our existing published work and the final algorithm
is the main focus of this paper. First, we use a pattern
discovery algorithm [12] to discover and locate significant
sequence patterns from a protein family while pruning the
redundant ones. Next, we apply an APC Algorithm [8] to
obtain a list of condensed APCs with variations. Finally,
we cluster the discovered the APCs into APC clusters using
two different types of clustering algorithms (Fig. 1).

Figure 1: The overall process of our methodology
is a combination of three algorithm: 1) the pattern
discovery algorithm, 2) the APC algorithm, and 3)
the APC clustering algorithm.

2.1 Pattern Discovery
First we discover sequence patterns from the family of pro-
tein sequences using a previously developed pattern discov-
ery algorithm [12]. Sequence patterns are statistically sig-
nificant amino acid association defined as an interdepen-
dent ordered sequence of symbols p = s1s2...sn from the
alphabet Σ. The pattern p has length n, and the ith sym-
bol that appears in the sequence is si. The list of pat-
terns resulting from the pattern discovery algorithm are
P = {pi|i = 1, ..., |P|} = {p1, p2, . . . , p|P|−1, p|P|}. This re-
sulting list of patterns is pruned of redundant patterns.

2.2 Aligned Pattern Clustering
An APC describes a set of aligned similar sequence patterns
with variations. Algorithmically as defined in [8], it is a
set of patterns where gaps and wildcards are added to the
patterns in order to maximize the similarity between the
patterns. Let a set of APC be defined as [8],

C = {Cl|l = 1, ..., |C|} = {C1, C2, . . . , C|C|−1, C|C|}

and let an APC be defined as,

Cl = ALIGN(Pl), (1)

=


s11 s12 . . . s1n
s21 s22 . . . s2n
...

...
...

...
sm1 sm2 . . . smn


m×n

=


p1

p2

...
pm

 , (2)

=
(
p1 p2 . . . pm

)
. (3)

where sij ∈ Σ ∪ {−} ∪ {∗} is an pattern pi with a newly

column index j. Each of the |Pl| = m patterns in the rows
of Cl is of length |Cl| = n.

2.3 APC Clustering
Co-existence of patterns in different locations of the same
protein may indicate that they are functionally related and
important for the protein family. In APC clustering, we first
find the co-occurrence between APCs using a co-occurrence
score. Treating the co-occurrence score between APCs as
a similarity measure, we apply clustering algorithm to ob-
tain clusters of APCs with high occurrence score. We con-
sider two clustering algorithms: the first is a graph algo-
rithm that discovers the maximum spanning tree and cut
the minimal edge; the second is the k-means clustering al-
gorithm. In each clustering algorithm, we find the optimal
number of APC clusters using five clustering indicators. Af-
ter finding the APC clusters, we confirm the results in the
three-dimensional structure by taking the APC clusters with
high co-occurrence score and compare the locations of their
APCs in the aligned protein sequence with the correspond-
ing three-dimensional structure

2.3.1 Co-occurrence Score
First, we try to find the APCs with the highest co-occurrence
on same protein sequences. We first compare all possi-
ble APC pairs, using a co-occurrence score to evaluate the
similarity between them. The co-occurrence scores quanti-
fies how often two APCs appear together on the same se-
quence. To calculate the co-occurrence score, Jaccard index
is adopted [9]:

J =
|C1

seq ∩ C2
seq|

|C1
seq ∪ C2

seq|

where

C1
seq = sequences that contain patterns from APC C1

C2
seq = sequences that contain patterns from APC C2

The APC pairs are ranked in the descending order of their
co-occurrence scores. When two or more APC pairs have the
same co-occurrence score, the size union of the two APCs
(|C1

seq ∪ C2
seq|) is used as a secondary ranking criteria. An

APC pair with a higher union size indicates that it cov-
ers more sequences, and hence, should be ranked higher. A
special rule that prevents clustering any APC pair that over-
laps each other in any sequence. For example, assume C1

is ”CAT” and C2 is ”ATM”. If in any of the sequences, the
pattern ”CATM”, appears, our algorithm would automati-
cally return a co-occurrence score of 0 because of the overlap
of AT by the two APCs, despite the fact that there might
be other sequences where the two APCs appear together
without overlapping. This special rule was applied because
overlapping showed that two APCs are similar in both com-
position and location, and should be joined together as one
APC.

Jaccard index was compared to Sørensen coefficient [11] and
Mountford’s index of similarity [11]. As discussed in [11],
Mountford’s is a flawed index, and finding that Jaccard in-



dex had the same rankings as Sørensen’s and not Mount-
ford’s convinced us that Jaccard index is a good fit as the
co-occurrence score.

2.3.2 Clustering Algorithms
Next, a set of closely related APCs called APC clusters
is found using co-occurrence scores as the similarity mea-
sure (or a distance measure in reverse) between two APCs.
Two clustering algorithms are considered, maximum span-
ning tree with minimal cut, and k-means clustering.

Maximum Spanning Tree with Minimal Cut. For the
first clustering algorithm, a graph algorithm is considered.
Let G = (V,E) be a relationship graph of the APCs. Let
each vertex v be an APC and let each edge e be the rela-
tionship between two APCs, in this case the co-occurrence
score between two APC vertices. A maximum spanning tree
(MST) is built using Prim’s algorithm and cut the minimal
edge of the MST to separate the vertices, which are APCs,
into two co-occurrence clusters.

Algorithm 1 Maximum Spanning Tree (based on Prim’s
Algorithm)

Input: A set of APCs C as vertices V , and the co-
occurrence scores between all pairs of APCs as edges E
Output: A set of |C| = |V | edges for the maximum span-
ning tree edges EM = {e1, e2, ..., e|V |−|components|}
repeat

Add any edges e that connects to v to edge list,
making sure that the other vertices connected to that
edge is not already seen
if edge list is not empty, then

get the maximum edge from list
Let the vertex that is connected by the maximum
edge but currently not in MST be the new v
Add the maximum edge to MST edge list
Add the vertex to the seen vertices list

else if edge list is empty then
Find a random vertex that is not seen yet in the seen
vertices list to be the new vertex

end if
until all vertices are seen

Algorithm 2 Automatically Optimize Minimal Cut

Input: A set of APCs C as vertices V , and the maximum
spanning tree edges EM

Output: APC clusters K1...Kk, where each K is an APC
cluster that contains a set of APCs C
repeat

Compute cluster indicators for all MST edges
Sort the cluster indicators
Select the edge with the optimal cluster indicator
Cut the edge if the current cluster indicator is better
than the previous cluster indicator

until optimal clustering is reached: current cluster indi-
cator is worst than the previous cluster indicator

K-Means Clustering. For the second clustering algorithm,
k-means clustering algorithm is modified [9] to cluster APCs.

The algorithm uses centroids, a central point that represents
a cluster. Firstly, APCs are used as centroids, since calcu-
lating a centroid with only co-occurrence between APC is
difficult. Secondly, the algorithm is modified to prevent an
APC from being clustered with a centroid to which it is not
connected [10]. For example, it is possible for APCs not
to be connected if they do not co-occur on any sequences,
thus causing these two APCs to be in separate APC cluster,
where each cluster is fully connected but is isolated from the
other. Without additional variables others than the cluster
size, only one solution is found for each cluster size. This is
different from MST with minimal cut, as the latter depends
on clustering indicators also.

Algorithm 3 Modified k-means clustering

Input: A set of APCs C, and the co-occurrence scores
between all pairs of APCs J , final number of clusters the
k-means clustering is k
Output: APC clusters K1...Kk

Initialize centroids M1...Mk, where each M1 represent the
center of APC cluster Ki

Find number of components
Select first APC from each component as the centroid
for i = |components|+ 1 to k do

Identify the APC that forms the lowest co-occurrence
score with known centroids
Assign this APC as a new centroid

end for
repeat

for all APCC ∈ C do
Assign C to closest centroid Mj such that C and Mj

are from the same component
end for
for all clusterKi ∈ {K1...Kn} do

Update centroid Mi by selecting APC that maximizes
co-occurrence within all APCs in Ki

end for
until convergence
return {K1...Kk}

2.3.3 Clustering Indicators
Finally, to ensure clustering provides the best possible re-
sults, five clustering indicators were computed to determine
the optimal final number of clusters to be adopted for the
APC clustering. All five cluster indicators follow the prin-
ciple that the average co-occurrence score within a cluster
should be maximized and the average co-occurrence score
between clusters should be minimized. In addition, addi-
tive smoothing was applied to several indicators to prevent
division by zero thus causing an indicators values from be-
coming infinity. The variables and indicators are defined as
follows:

k =number of clusters

s(Ki) =average co-occurrence score in cluster i

s(Ki,Kj) =average co-occurrence score between cluster i
and j



Average Score ∑k
i=1 s(Ki)

k

Intra / Inter

k +
∑k

i=1 s(Ki)

k +
∑k

x=1

∑k
y=x+11 s(Kx,Ky)

Intra - Inter

k∑
i=1

s(Ki)−
k∑

x=1

k∑
y=x+11

s(Kx,Ky)

Dunn index [4]

2−max1≤x,y≤k:x6=y s(Kx,Ky)

2−min1≤i≤k s(Ki)

Davies-Bouldin index [3]

1

k

k∑
i=1

max
1≤x,y≤k:x 6=y

4− s(Ki)− s(Kj)

3− s(Ki,Kj)

For both the Dunn and Davies-Bouldin indexes, the differ-
ence of the co-occurrence score (1− s(Ki)) was taken as the
distance between two clusters, as required by the indexes’
definition. In order to find the optimal cluster count, the
minimum of the Davies-Bouldin index and the maximum of
the other four indicators was computed, and selected.

2.3.4 Runtime Comparison
MST with minimal cut takes O(n4) to find the optimal clus-
ter count. The maximum spanning tree algorithm takes
O(n2) (Algorithm 1), as it is based on Prim’s Algorithm. Af-
terwards, in Algorithm 2, we take O(n2) to calculate cluster-
ing indicator for each MST edge. Since we need to calculate
the clustering indicator for all MST edges, which would have
a maximum of n−1 edges at each iteration. Computing clus-
ter indicators for all MST edges would take O(n3). Finally,
since for each of the outer loop one edge is removed, there is
a maximum of n − 1 iterations. Hence, finding the optimal
cluster count for MST with minimal cut takes O(n4).

K-means clustering algorithm takes O(n3) to find the opti-
mal cluster count. Clustering using k-means clustering with
a given cluster count k takes O(n2). For each iterations, k-
means clustering first takes O(kn) to compare each APC to
each centroid, then takes O(n2) (if there exist a cluster that
includes most of the APCs) compare each APC to all other
APCs in the same cluster to update centroids. Since k ≤ n,
each iteration takes O(n2). K-means algorithms will quickly
converge, hence the necessary iteration tends to be small can
be considered to be linear [9]. Hence k-means clusters will
take O(n2). However, similar to Algorithm 2, we want to
find to find the optimal cluster count, and hence will run
k-means clustering a maximum of n times, with each run
also calculating the cluster indicators, which takes O(n2).
Hence, the whole algorithm takes O(n3) in the worst-case
scenario.

Figure 2: Section of synthetic data 2, showing the
character sequences and the two APCs obtained
from the sequences.

Therefore, k-means clustering has better runtime of O(n3)
than MST with minimal cut, O(n4), for finding the optimal
cluster count. In addition, k-means just needs to run once,
O(n2), if given the cluster count. This is better than MST
with minimal cut, which still needs to calculate clustering
indicators for each MST edge before cutting. That takes
O(n3). Hence, unless MST with minimal cut provides better
results, k-means clustering should be used instead, due to its
better running time.

3. RESULTS
To compare the two clustering algorithms, MST with mini-
mal cut and K-Means clustering, we applied the algorithms
to 3 synthetic dataset, and to protein sequences obtained
from Pfam [5]: triosephosphate isomerase, ubiquitin and
other proteins. Each dataset consists of a list of character
sequences. Figure 2 displays a section of second synthetic
dataset. For biological datasets, each character represent
an amino acid, each sequence represent a protein and all se-
quences in the dataset are from the same protein family. We
also verified the results from biological dataset with Protein
Data Bank (PDB) [2] structure, observing any characteris-
tics shared between the APCs found, especially the struc-
tural distance between the APCs.

3.1 Synthetic Dataset
Three synthetic dataset were created to evaluate the two
APC clustering algorithms before applying them to biolog-
ical data. The first two datasets have clean APC clusters
and the last dataset have less clean APC clusters.

The first dataset consists of five APCs, constructed so that
two clean APC clusters are formed after applying APC clus-
tering. The two APC clusters are as follows: 1) three APCs
with a co-occurrence of 1 for all pairs 2) two APCs with
co-occurrence of 1. There are no co-occurrence between the
APC pairs no of the same cluster. For the first dataset, both
APC clustering algorithms indicated that the two clusters
configuration is optimal, as intended. Also, as shown in Fig-
ure 3, both APC clustering algorithms had the same value
for each clustering indicators, showing that both clustering
algorithm provided the same solution to this dataset.

Building on the first dataset, the second synthetic dataset
added an additional cluster and created co-occurrence be-
tween APC pairs not of the same APC cluster. In par-
ticular, one of the APC in an APC cluster that has a co-
occurrence score with an APC not of the same APC cluster
(with score just under 0.5). The intended solution is three
clusters, but the addition of the co-occurrence edge men-
tioned above makes it harder for the clustering algorithm
to find the correct answer. While k-means was able to find
the correct optimal cluster count for all five clustering indi-



Figure 3: Scatter plot of the clustering indicator
values between the two co-occurrence cluster algo-
rithms on synthetic data 1. The line represent the
when the two APC clustering algorithms has the
same value, which every points lies on.

Figure 4: Scatter plot of the clustering indicator val-
ues between the two cluster algorithms on synthetic
data 2. The line represent the when the two APC
clustering algorithms has the same value. The plot
shows a positive relationship between the results of
the two algorithms.

cators, two of five clustering indicators failed to obtain an
optimal cluster count of three for MST with minimal cut.
This example showed that k-means clustering performs bet-
ter at finding the optimal cluster count. Figure 4 plots the
clustering indicators scores between the two clustering al-
gorithms under different cluster counts. The figures show
that while there are differences, or deviations, between the
two clustering indicators, the overall relationship between
the results of the two algorithms are still quite consistent.

The third synthetic dataset consists of 7 APCs, with each
having similar co-occurrence score with two other APCs,
forming a circle-like shape between the APCs, hence making
clustering the APCs difficult. The purpose of this dataset
is not to test the correctness of the algorithms but rather
to test them in unknown or unclear situations. By a major-
ity of 3-to-2 clustering indicators, k-means calculated that
the three is the optimal cluster count; MST with minimal
cut calculated two as the optimal count by a majority of
3-to-2 clustering indicators. The difference in results shows
that given a less clear dataset, the two algorithms will de-
viate in results. And unlike the first dataset, MST with
minimal cut will start providing different answers depend-
ing on the clustering indicator used even if the cluster count
is the same. However, despite the differences in results, both
algorithms were able to provide the same results, highly con-

Figure 5: Scatter plot of the clustering indicator
values between the two cluster algorithms on syn-
thetic data 3. The plot shows a positive relationship
between the results of the two algorithms.

Table 1: APCs discovered in triosephosphate iso-
merase protein sequences from Pfam.

APC ID Sequence

C1 IAYEPVWAIGTG
C2 IGHSERR
C3 ILYGGSV
C4 WAIGTGK
C5 LVGGASL
C6 GNWKM

nected APC clusters, the cluster that has the highest aver-
age co-occurrence score between its members. Figure 5 plots
the clustering indicators scores between the two clustering,
which shows the linear relationship, indicating closely sim-
ilar values in the clustering indicator variables between the
two algorithm’s results despite the differences between the
two algorithms.

3.2 Biological Case Studies
Triosephosphate isomerase and ubiquitin are used as biolog-
ical protein datasets to compare and analyze the results of
both APC clustering algorithms.

3.2.1 Triosephosphate isomerase
With triosephosphate isomerase, we show that k-means clus-
tering is again more preferable than MST with minimal cut.
Table 1 lists the six APCs obtained from pattern discovery
and pattern alignment on triosephosphate isomerase protein
sequences.

Using co-occurrence scores of APC pairs as the similarity
measure between APCs, both MST with minimal cut and
k-means clustering algorithm were used to cluster the APCs.
Each of the the five clustering indicators were used sepa-
rately to obtain the optimal number of clusters (Table 2).
According to results tabulated in Table 2, all five cluster-
ing indicators lead to the same optimal cluster number of
two. However, the composition of the clusters returned
from K-means and MST algorithms are obtained by these
algorithms are ({C1,C2,C3}, {C4,C5,C6}) and ({C1,C2,C5},
{C3,C4,C6}) respectively. They are different. In addition, k-
means outperformed for all clustering indicators aside from
Dunn index for cluster count of two. Hence we, decide to use
the highly connected APC cluster from k-means clustering



Figure 6: Three-dimensional structure of a
triosephosphate isomerase protein found in E. coli
(Escherichia coli, PDB ID 4iot). YGGSV is a sub-
pattern of C3. Inspecting both the spatial distance
and the structure, the three selected APCs are close
together.

Table 3: APCs discovered in ubiquitin protein se-
quences from Pfam.

APC ID Sequence

C1 DQQ[RK]LI[FY][AS]GKQLED
C2 ESTLHLVLRL
C3 DYNIQKE
C4 VKAKIQ
C5 KTLTGK
C6 KEGIP
C7 SSDTI
C8 VLRLR

{C1,C2,C3} for verification.

A three-dimensional structure of triosephosphate isomerase
(PDB ID 4oit) was used to verify the APC pair (Figure 6).
Not only did the APCs appear in the structure, the APCs
are close to one another in spatial distance, all less than the
average distance of 22.35 Å(11.63 Å, 14.22 Åand 7.37 Å).

3.2.2 Ubiquitin
Using ubiquitin to compare the two clustering algorithms
provides another example to show that k-mean is superior
to MST. Table 3 lists the APCs obtained from pattern dis-
covery and pattern alignment on ubiquitin protein sequences
from Pfam. Using co-occurrence score as similarity measure
between APCs, we obtained the optimal APC clustering re-
sults as tabulated in Table 4.

Similar to results obtained from the triosephosphate iso-
merase, both clustering algorithm rendered the same clus-
ter count but they provided different cluster composition.
In particular, MST with minimal cut provided two different
cluster components for different cluster indicators, with clus-
tering indicators Average Score and Intra-Inter returning a
different cluster component than the other three indicators.
In addition, shown in Table 4, those other the three cluster-
ing indicators used for MST with minimal cut returned the
same results as k-means clustering. Since eight out of ten
clustering indicators agree that the optimal answer is two
cluster with the results from k-means, we will use the highly
connected cluster {C7, C4} to verify the three-dimensional
structure of ubiquitin (PDB ID 1ubq) in Figure 7. Similar
to triosephosphate isomerase, the distance between the two
APCs (10.74 Å) is less than the average distance of 14.83 Å.

Figure 7: Three-dimensional structure of an ubiqui-
tin protein found in humans (Homo Sapiens, PDB
ID 1ubq), with the 5 APCs highlighted. SDTI is a
subpattern of C7. The two APCs are both close in
three-dimensional and sequential distance.

3.3 Overall Biological Results
Finally, in order to provide further support that our method
using k-means algorithm is produce more accurate results,
we further compared these two clustering algorithms for sev-
eral other protein families.

The results from applying k-means and the MST cluster-
ing algorithm to the protein families is given in Table 5
and Table 6 respectively. The final optimal cluster num-
ber is the statistical mode of optimal cluster numbers from
the 5 clustering indicators. Similar to ubiquitin, while we
were able to find a mode for the optimal cluster count, there
were still variation in the clustering results given the opti-
mal cluster. Due to the consistency of the optimal number
of clusters in k-means, we use the results from k-means for
three-dimensional structure verification. Surprisingly, some
of the results from MST with minimal cut also share the
same highly connected clusters determined from k-means
clustering, adding support to the highly connected clusters
from k-means clustering are important in the protein fam-
ily. Both highly connected clusters found through k-means
clustering for each protein family and the similarity of the
clusters between the two clustering algorithm is in Table 7.

4. DISCUSSION OF ALGORITHM COMPAR-
ISON

4.1 Synthetic Results Comparison
The results from synthetic datasets shows that while there
are differences between the results from both clustering algo-
rithms, they give a positively linearly correlated result. The
results from the first synthetic data shows an exact match of
the clustering indicators between the two algorithms. This
means that their cluster configuration is exactly the same.
However, for the second synthetic dataset, some of the re-
sults for MST with minimal cut indicated that the optimal
cluster count was two, different from the k-means’ and ex-
pected solution of three. While by majority, MST with min-
imal cut still indicated that the optimal cluster count was
three, a few still gave the incorrect optimal cluster count
in the simple dataset. The results from the second dataset
showed that k-means clustering algorithm is more accurate
in finding the optimal cluster count.

However, despite differences in results between MST with
minimal cut and k-means clustering, both algorithms re-



Table 2: Bolded number indicates the optimal cluster number according to each clustering indicator to be
used for clustering on triosephosphate isomerase

Number of Clusters Average Score Intra / Inter Intra - Inter Davies-Bouldin index Dunn index

K-means
2 0.64 1.28 0.73 1.11 0.97
3 0.45 0.95 -0.25 1.34 0.69
4 0.19 0.65 -2.56 1.58 0.65

MST with Minimal Cut
2 0.62 1.26 0.67 1.14 1.00
3 0.48 0.95 -0.24 1.32 0.70
4 0.39 0.76 -1.73 1.45 0.65

Table 4: Bolded number indicates the optimal cluster number according to each clustering indicator to be
used for clustering on ubiquitin

Number of Clusters Average Score Intra / Inter Intra - Inter Davies-Bouldin index Dunn index

K-means Clustering
2 0.35 1.21 0.46 1.19 1.05
3 0.24 1.03 0.10 1.30 0.86
4 0.34 0.98 -0.13 1.27 0.82

MST with Minimal Cut
2 0.41 1.21 0.48 1.19 1.05
3 0.42 1.10 0.39 1.19 1.04
4 0.41 0.98 -0.13 1.24 0.92

Table 5: Optimal cluster count for k-means clustering on each protein family.
Pfam ID Average Score Intra / Inter Intra - Inter Davies-Bouldin index Dunn index Final Size

Size Score Size Score Size Score Size Score Size Score

PF00061 6 0.30 2 1.21 5 0.85 2 1.19 2 1.07 2
PF00556 6 0.26 3 1.08 6 0.39 6 1.31 3 0.90 6
PF00033 5 0.23 2 1.07 5 0.23 5 1.26 2 0.97 5
PF00115 3 0.31 3 1.21 3 0.69 3 1.21 3 1.01 3
PF00124 5 0.65 2 1.44 2 0.98 2 1.01 2 1.23 2

Table 6: Optimal cluster count for MST with minimal cut on each protein family.
Pfam ID Average Score Intra / Inter Intra - Inter Davies-Bouldin index Dunn index Final Size

Size Score Size Score Size Score Size Score Size Score

PF00061 7 0.30 3 1.20 5 0.95 4 1.19 4 1.04 4
PF00556 7 0.29 4 1.16 9 1.06 3 1.25 4 1.04 4
PF00033 3 0.41 2 1.19 4 0.67 2 1.21 3 1.04 2,3
PF00115 2 0.42 2 1.33 4 0.90 2 1.11 2 1.09 2
PF00124 4 0.75 2 0.68 3 1.35 2 0.95 2 1.23 2

Table 7: Details for the APC cluster used to verify on a PDB structure and its similarity to APC cluster
from MST with minimal cut.

Pfam ID Max Cluster average Max Cluster in k-means PDB ID # of MST results same APC cluster?

PF00061 0.30 2 4GNY 2 Yes
PF00556 0.46 2 1NKZ 1 No
PF00033 0.48 6 1Q90 3 No (subset only)
PF00115 0.52 4 3O0R 2 Yes
PF00124 0.64 4 2GNU 2 Yes



turned the same highly connected cluster. This observation
exemplified the differences in the two algorithms: k-means
clustering clusters all APCs and MST with minimal cut finds
a good cluster.

4.2 Biological Results Comparison
Similar to the third set of synthetic data, the more com-
plex biological datasets reflect the same level of differences
between the results obtained from the two clustering algo-
rithms. For triosephosphate isomerase, both algorithms had
the optimal cluster count of three; however, they each pro-
vided a different highly connected APC cluster. We dis-
covered that MST with minimal cut would have to cut a
non-MST edge in order to result in highly connected APC
cluster to obtain the same result as that of k-means. The
different resulting APC cluster demonstrated that cutting
MST edges limited the algorithm to a smaller set of results.
Once again, this also implies that k-means algorithm pro-
duce more accurate results for the given datasets.

For all other biological datasets used, we saw that MST with
minimal cut provided more than one set of results which
are different, even with the same cluster count, whereas the
results obtained from the k-means clustering only had dif-
ferent optimal cluster count between clustering indicators.
We solved that issue by picking the result with the statisti-
cal mode of all cluster count indicated. However, we were
not able to use that same procedure for MST with minimal
cut, as it provided different results even for the same cluster
count. Hence, without an additional procedure that picks
out the best answer of MST with minimal cut, k-means so-
lution is more reliable due to uniform answer if given cluster
count.

Similar to synthetic data results, we were able to find that
most of the results from MST with minimal cut shares the
same highly connected APC clusters with k-means cluster-
ing’s results on the same biological dataset. However, specif-
ically the results from PF00033, MST with minimal cut was
only able to find the subset of the highly connected APC
cluster as shown from the k-means’s results. This might
have been caused by MST with minimal cut being aggres-
sive in finding an local optimal solution, neglecting the APC
that didn’t increase local closeness but would have included
if compared to all other clusters. Instead, those APCs were
included in k-means clustering because it optimizes the clus-
tering configuration of all of the APCs. This characteristics
of k-means is particularly useful if we want to observe more
than just one of the cluster configurations, and hence, is
preferred over MST with minimal cut.

The results from both the synthetic and biological datasets
shows that k-means clustering algorithm is more suitable for
our methods and the types of datasets we have applied. In
addition, with the runtime advantage that k-means cluster-
ing algorithm provides, k-means is used to cluster and find
APC clusters that are important in the protein family.

5. CONCLUSION
We conclude that k-means clustering algorithm is more suit-
able for our problem and datasets than MST with minimal
cut. The reasons are due to faster runtime, global opti-
mization, and rendering more consistent final results. Re-

sults from synthetic shows that the two clustering algorithms
have a positive linear relationship, meaning that their results
would not differ much. Results from biological datasets high-
lighted that MST with minimal cut had more final results
and hence are less consistent results to k-means clustering.
In addition, global optimization of clusters was preferred in
the datasets over local optimization based on graph edges.
We analyzed the runtime and found that k-means clustering
algorithm was faster than MST with minimal cut. Because
k-means clustering algorithm was a more suitable clustering
algorithm for our problem and dataset, we verified results
from k-means clustering using three-dimensional structure.
This algorithm is further used to verify co-occurring APCs
in a crystallizing protein related to immunology.

6. REFERENCES
[1] T. K. Attwood, P. Bradley, D. R. Flower, A. Gaulton,

N. Maudling, A. Mitchell, G. Moulton, A. Nordle,
K. Paine, P. Taylor, et al. Prints and its automatic
supplement, preprints. Nucleic acids research,
31(1):400–402, 2003.

[2] H. M. Berman, J. Westbrook, Z. Feng, G. Gilliland,
T. Bhat, H. Weissig, I. N. Shindyalov, and P. E.
Bourne. The protein data bank. Nucleic acids
research, 28(1):235–242, 2000.

[3] D. L. Davies and D. W. Bouldin. A cluster separation
measure. Pattern Analysis and Machine Intelligence,
IEEE Transactions on, (2):224–227, 1979.

[4] J. C. Dunn. A fuzzy relative of the isodata process
and its use in detecting compact well-separated
clusters. 1973.

[5] R. D. Finn, J. Mistry, J. Tate, P. Coggill, A. Heger,
J. E. Pollington, O. L. Gavin, P. Gunasekaran,
G. Ceric, K. Forslund, et al. The pfam protein families
database. Nucleic acids research, 38(suppl
1):D211–D222, 2010.

[6] A. P. Francisco, S. Schbath, A. T. Freitas, and A. L.
Oliveira. Using graph modularity analysis to identify
transcription factor binding sites. In Bioinformatics
and Biomedicine Workshops (BIBMW), 2010 IEEE
International Conference on, pages 19–26. IEEE, 2010.

[7] A. R. Kinjo and H. Nakamura. Composite structural
motifs of binding sites for delineating biological
functions of proteins. PloS one, 7(2):e31437, 2012.

[8] E.-S. A. Lee and A. K. C. Wong. Revealing binding
segments in protein families using aligned pattern
clusters. Proteome Science, 2013.

[9] P.-N. Tan, M. Steinbach, and V. Kumar. Introduction
to Data Minig. Addison-Wesley, 2006.

[10] K. Wagstaff, C. Cardie, S. Rogers, and S. Schrödl.
Constrained k-means clustering with background
knowledge. In MACHINE
LEARNING-INTERNATIONAL WORKSHOP
THEN CONFERENCE-, pages 577–584, 2001.

[11] H. Wolda. Similarity indices, sample size and diversity.
Oecologia, 50(3):296–302, 1981.

[12] A. K. Wong, D. Zhuang, G. C. Li, and E.-S. Lee.
Discovery of delta closed patterns and noninduced
patterns from sequences. Knowledge and Data
Engineering, IEEE Transactions on, 24(8):1408–1421,
2012.


