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ABSTRACT
Sampling methods for large networked data try to crawl the
network uniformly. Such a sample can be used to estimate
any user’s and the specified topological properties. However,
in other domains, the goal of sampling is to help learn hard
labeling task. In addition, the link information may be not
available because of constraint or cost and the number of in-
volved nodes is limited. Our work is to, given a information
network, sample a sub network under a specific task, acquir-
ing positive nodes. In particular, we refer to this problem
as supervised sampling, where we sample the network for
the specific category of nodes. To address this challenge we
construct a Markov chain on the networked data by using
a variety of weighted random walks to learn a stationary
distributin involved in labeling task. The learned station-
ary distribution of the sampled network can help guide to
visit next node. With the more information of node col-
lecting, these can strength the supervised sampling in turn.
Experiments on synthetic as well as real data show that our
supervised sampling outperforms than other methods.

Categories and Subject Descriptors
H.2.8 [Database Management]: Database applications –
Data mining

General Terms
Algorithms, Experimentation, Performance

Keywords
Supervised sampling, Random walks

1. INTRODUCTION
A large number of works in the networking study focus

on node classification at various levels, including the Web,
citation network and online social networks. The size of
these networks and other restrictions make learning from
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the entire networked data impossible. For example, learning
specific community on DBLP would require to search all the
HTML pages and download TB-level data, which is most
likely impractical. Thus many research work is to typically
collect and study a small but representative sample from the
graph.

Currently, most graph sampling algorithms have mainly
focused on generating a uniform random sample of nodes
and edges in the original graph and operating on the entire
static graph. They assume that the node and link informa-
tion are readily observable. For example, BFS, DFS, Forest
Fire, Snowball and so on. These methods sample networks
beginning at the seed node, and naturally allow to recur-
sively visit (one, some or all) its neighbors. They are varied
and different with each other because of the order in which
they visit the nodes, and they are very popular and widely
used for sampling the networks, especially for the topologies.

However, in other domains, this assumption is no longer
exist. For example in the citation network, papers are read
or preprocessed to find their citations, as well as categories,
general terms, keywords, authors and so on and thus col-
lecting information incurs a cost. In other words, collecting
a paper’s information is costly and when applied to a real-
world scenario such as identifying the papers in the network
which belong to specific research topic, for example, graph-
ical model, we may wish to minimize the cost by collecting
a small portion of network instead of overall network. Sim-
ilar tasks can occur on Facebook or Twitter online social
networks. In addition, the varied numbers of nodes for dif-
ferent categories make the classes imbalanced and it may
make sample minority category nodes difficult because of
degree and less connection. For example, in DBLP citation
network, papers involved in graphical model is a small part
of the whole papers.

The sampling methods mentioned above can not be suit
for the new case that we have defined specific task for sam-
pling. It was observed that these sampling methods auto-
matically crawl the nodes without influence of nodes’ at-
tribute information. In addition, some works [6] show that
these methods are influenced by the high-degree nodes. For
example, BFS is confirmed that it introduces a bias towards
high-degree nodes. Despite the nodes’ attribution informa-
tion ignoring of traditional sampling methods on the hand
and its bias on the other hand, it is still hard to sampling mi-
nority category nodes because of size and degree of minority
category nodes.

Motivated by the above observations, our work in this pa-
per is to provide a framework for obtaining a biased sample



of nodes by crawling the network under supervision. We re-
fer to this class of problems as supervised sampling, where
we aims to identify significant nodes (i.e., positive instances)
that may comprise only a small portion of the overall net-
work. We provide practical implementation of the super-
vised sampling, where given a large graph and specific task,
the goal is to iteratively sample a subgraph from the orig-
inal graph under the requirement of task. To tackle this
problem, we model a graph as a Markov chain, where nodes
are considered as interior states and links are chains between
states, and design a supervised random walk to compute the
stationary distributions of nodes, which indicate the proba-
bility of nodes being positive, by using the nodes’ attribute
information. Based on this, unlikely BFS, we explore next
nodes by considering the node’s stationary probability. At
each iteration, the sampling process is guided by a weighted
random walk that is more likely to visit positive nodes in
the neighborhood. When a node is visited, we can gain
its neighbors, including the nodes, corresponding edges and
attribute information. Thus we can update the stationary
distribution of network when we get new sampled nodes and
edges and network information.
The main contributions of this work can be summarized

as: we introduce a new supervised sampling problem on net-
worked data; we present a novel unified framework to nat-
urally perform sampling for a given task by formulating a
weighted random walk as an optimization problem. Exper-
iments on synthetic and real-world networks show that our
proposed algorithm achieves higher recall of positive nodes
while sampling large networks than baseline methods, espe-
cially in networks having imbalanced class distributions.

2. RELATED WORK
There are many research works studying information net-

works, including node classification [15], link prediction [1,
16] and active learning [3] and so on. These works is dif-
ferent with traditional problems because they all use the
information of both the nodes and network. [15] introduced
a classification framework for networked data as collective
classification. Collective classification is a combined clas-
sification of a set of interlinked objects using correlations
between label of node and its attributes and label and at-
tributes of other nodes in the neigbhorhood. Link prediction
is also a fundamental problem in the networked data [1]. [1]
started to combine the information from the network struc-
ture with rich nodes and edge attributes. [16] tried to use
Nonnegative Matrix Tri-Factorization (NMTF) to learn the
latent topological feature from the structure of networks and
enhance its nodes’ features. [3] proposed a active learning
algorithm based on collective classification.
Information networks have been studied by many applica-

tion fields, and it also goes to sample technology. For sam-
pling the network, traditional graph sampling techniques can
be roughly classified into two categories: graph traversals
and random walks [7]. For graph traversals, nodes are sam-
pled without replacement; once a node is visited, it is never
revisited again. Depending on the order in which nodes are
visited, these methods include Breadth-First Search (BFS),
Depth-First Search (DFS), forest fire, and snowball sam-
pling. When using graph traversals for sampling, the sam-
pling process terminates after a fraction of graph nodes are
collected.

Random walks fall into the other category of sampling
techniques, which usually start at any specific node and ini-
tiate a random walk by proceeding to the next node selected
at random from the neighbors of the current node. It is
found that random walks are biased towards high degree
nodes in the graph. Some works have attempted to cor-
rect the bias of random walks. For example, Gjoka et al.
[7] proposed a Metropolis-Hastings algorithm to collect an
unbiased sample of Facebook users. Likewise, Hübler et al.
[8] presented a Metropolis algorithm for sampling a repre-
sentative subgraph, requiring that sampled graph preserves
crucial graph properties of the original graph.

Graph sampling techniques provide an efficient, yet inex-
pensive solution for social network analysis. Leskovec and
Faloutsos [9] examined different sampling methods over dif-
ferent social networks and found that best performing meth-
ods are random walks and forest fires. Papagelis et al. [12]
introduced sampling-based algorithms that given a user in
a social network efficiently obtain a near-uniform random
sample of nodes in its neighborbood. Maiya and Berger-
Wolf [10] described an online sampling technique to sample
large social networks in order to discover the most influential
individuals within the network.

There is a distinction between the aims of past work on
graph sampling and our work; where these earlier works were
seeking to obtain a smaller subgraph capturing the proper-
ties of the original graph. In contrast, we aim to supervise
the sampling process to explore the network by visiting more
important nodes belonging to a desired class.

Our work is also related to the problem of active sampling
[13], in which both instances’ labels and edges are acquired
through an iterative process to update the classifier for dis-
covering the nodes with a specific label. This work assumes
that a node has no other known attributes aside from its
label. In contrast, in our work, we formulate a supervised
learning task by combining the network structure with rich
node and edge attributes and use it to guide a random walk
on the graph for discovering the nodes having a particular
label while exploring the network and their corresponding
information, including attributes and labels.

3. PROBLEM DEFINITION
Let G = (V, E) be an undirected graph where V denotes

a set of nodes (or instances) and E denotes a set of edges
between nodes. Each node vi ∈ V is described by a feature
vector xi and a class label yi ∈ Y, where Y denotes a set of
class labels. Each edge (vi, vj) ∈ E has a corresponding fea-
ture vector r(vi, vj) which describes relationships between
nodes vi and vj . In this work, the specific task is a binary
class problem, in which each node vi belongs to a positive
class (yi = 1) or a negative class (yi = −1), and positive
nodes comprise a small portion of the overall network. In
our problem, we assume that a full graph is too large for its
global network structure to be known as a whole. Therefore,
only a partial network can be observed.

Given a very small set of labeled nodes, also called seed
nodes, V l ∈ G with V l = {(vi, yi)}Ki=1, our active super-
vised sampling problem aims to: sample a representative,
connected subgraph G′ from the original large graph G, un-
der specific task, e.g. visit a number of positive nodes by
biasing the sampling process. As sampling, we can get the
information of visited nodes. The generated subgraph G′

consists of nodes and edges and information of nodes. In



our problem, our framework can be derived when not all the
nodes provided full information for a node. In this setting,
the sampling process is, given a partially observed subgraph
Gt = (Et,Vt), to decide which node v to sample next in
the neighborhood, and the subgraph is expanded to include
a new node v, its neighbors N (v) and new edges between
them.

4. OUR PROPOSED APPROACH
One important aim of supervised sampling is to discover

a number of important nodes belonging to a desired class.
However, traditional graph sampling techniques can not be
directly applied to achieve this objective, because they as-
sume that the nodes are equally important during the sam-
pling process. Therefore, we propose a novel algorithm to
solve our supervised sampling problem.
Figure 1 gives an example to illustrate key concepts be-

hind our proposed algorithm. Given a partially observed
subgraphGt, which is a sampled network at time t, we define
two types of nodes: Intra-acquired nodes Iintra and Bolder-
acquired nodes Ibolder. Intra-acquired nodes are the nodes
that have been explored up to time t, and Bolder-acquired
are those directly connected to Intra-acquired nodes.

A 

Figure 1: A partially observed subgraph Gt = (Vt, Et).
Intra-acquired nodes are denoted by double solid circles

and nodes directly connected to Intra-acquired nodes are

Border-acquired nodes, from which node A is selected

to be sampled next because it has maximum probabil-

ity (according to our formulation) belonging to positive

nodes. Labeled nodes are denoted by dark circles.

Our proposed algorithm is to determine which node from
Border-acquired nodes Ibolder should be sampled next and
process sampling iteratively. For example, in Figure 1, star
node A is selected from Border-acquired nodes to be sampled
next.
To enable our proposed algorithm to sample more positive

nodes, one important issue is how to calculate the probabil-
ity of nodes being positive. To this aim, we model a graph
as a Markov chain, where nodes are considered as different
interior states and links are chains between states. In partic-
ular, we consider two virtual absorbing states: one virtual
positive node, and one virtual negative node. We assume
that positive nodes are all connected to the virtual positive
node, and negative nodes are all connected to the virtual
negative node. Let p denote the probability of a node being
positive, which is calculated as the probability for a node
to transfer to the positive absorbing state. To capture such
transition probabilities, we consider a random walk on the
Markov chain, in which a walk is stopped when it reaches an
absorbing state. Whereas traditional random walks assume

that transition probabilities of all edges to be the same, we
learn how to assign each edge a transition probability so that
the random walk is more likely to visit positive nodes than
other negative nodes in a network.

Below, we first formulate supervised random walks as an
optimization problem and derive its solution. Based on this,
we then discuss selection criteria used for sampling and la-
beling. Finally, we present our proposed algorithm for the
active exploration problem.

4.1 Weighted Random Walks
Given an observed subgraph Gt, we propose a supervised

random walk that naturally combines the information from
the network structure with node and edge features. One way
to bias the random walk is to assign each edge a random walk
transition probability (i.e., strength). Therefore, we aim to
learn a strength function fw(v, u) for each edge (u, v), based
on features of nodes u and v, as well as the features of the
edge (u, v). Intuitively, a random walk is more likely to
traverse an edge of high strength, and thus the connected
node via the path of the strong edge would be more likely
visited by the random walk.

Now the task is to learn the parameters w of function
fw(v, u) that assign each edge a transition probability. To
achieve this, we formulate an optimization problem:

min
w

F (w) =
∑

i∈L+,j∈L−

h(pj − pi)

+
∑

yiyj=1

∥pi − pj∥2 + λ∥w∥2 (1)

where L+ and L− is a set of labeled nodes with the positive
label, and the negative label, respectively. The stationary
distribution p of the random walk assigns each node a proba-
bility score, which depends on fw(v, u) that is parameterized
by w. Parameter λ controls the trade-off between the model
complexity, i.e., norm of parameter vector w, and two con-
straints. h(·) is a loss function that assigns a non-negative
penalty according to the difference of the scores pj − pi. If
pj − pi < 0, then h(·) = 0. If pj − pi > 0, then h(·) > 0.
Thus, the first term indicates that we want the probabil-
ity scores of nodes in L+ to be greater than the scores of
nodes in L−. The second term indicates that nodes having
the same class labels should have close probability scores.
In the following, we discuss how to solve this optimization
problem.

As discussed before, each edge (u, v) in a graph has a cor-
responding feature vector ruv that describes nodes u and v
(e.g., words in paper titles) and the interaction attributes
(e.g., when an edge exists, or how many words in their titles
are shared). Thus, for edge (u, v) we define the strength
function as Ru,v = fw(ru,v). Function fw parameterized by
w takes the edge feature vector ru,v as input and computes
the corresponding edge strength Ru,v that models the ran-
dom walk transition probability. We then build the random
walk stochastic transition matrix Tr:

Tru,v =

{
Ru,v∑
v Ru,v

if u, v ∈ E,

0 otherwise.
(2)

Here, since two virtual absorbing states are only connected
with labeled nodes having the same label, we can define the
edge strength for virtual absorbing states R̂s,v. Let fw be a



linear function, R̂s,v can be computed as:

R̂s,v =
∑

i∈N (v)

Rv,i, (3)

where R̂s,v has the same linear form of fw. Intuitively, R̂ can
be considered as the sum of the information flow originating
from virtual absorbing states to node v’s neighbors via node
v on the Markov chain.
The vector p is the stationary distribution of the random

walk (also known as Personalized PageRank), and it is the
solution to the following eigenvector equation:

pT = pTTr. (4)

The above equation establishes relationships between the
node probability scores pv ∈ p and the parameter w of func-
tion fw(ru,v) via the random walk transition matrix Tr.
Now we can minimize Eq. (1) with respect to parameter

vector w. The optimization problem can be solved by deriv-
ing the gradient of F (w) with respect to w, and then using
a gradient based method to find w that minimizes F (w).
First, we have derivative of F (w) with respect to w as

∂F (w)

∂w
=

∑
i∈L+,j∈L−

∂h(pj − pi)

∂w

+
∑

yiyj=1

∂(pi − pj)

∂w
+ 2λ∥w∥,

=
∑

i∈L+,j∈L−

∂h(pj − pi)

∂(pj − pi)
(
∂pj
∂w
− ∂pi

∂w
)

+2
∑

yiyj=1

(
∂pi
∂w
− ∂pj

∂w
) + 2λw.

(5)

We can easily compute
∂h(pj−pi)

∂(pj−pi)
when we define a differen-

tiable loss function for h(.), for example squared loss. How-
ever, it is difficult to compute ∂pv

∂w
because we do not have

the exact function form of p(w). Therefore, we compute the
derivative of p with respect to the vector w based on Eq. (4).
Since Tr is a symmetric matrix, we have

pv =
∑
i

piTri,v. (6)

Therefore, the derivative of pv is given as:

∂pv
∂w

=
∑
i

Tri,v
∂pv
∂w

+ pv
∂Tri,v
∂w

. (7)

We can calculate this equation by iteratively computing pv
and ∂pv

∂w
. Firstly, we compute pv.

• Initialization: for v ∈ V , let p
(0)
v = 1

|V | .

• Iteration: step n:

p(n)
v =

∑
i

p
(n−1)
i Tri,v. (8)

Secondly, we compute ∂pv
∂w

. For each wc ∈ w, c = 1, . . . , |w|,
let ∂pv

∂wc

(0)
= 0 then for v ∈ V , we have

∂pv
∂wc

(n)

=
∑
i

Tri,v
∂pv
∂wc

(n−1)

+ p(n−1)
v

∂Tri,v
∂wc

(9)

To solve Eq. (1), we need to further calculate
∂Tri,v

∂w
as

∂Tri,v
∂w

=

∂fw(rv,u)

∂w
(
∑

u fw(rv,u))− fw(rv,u)(
∑

u

∂fw(rv,u)

∂w
)

(
∑

u fw(rv,u))2

(10)
where fw(rv,u) is the edge strength function. We define fw

to be differentiable, so
∂fw(rv,u)

∂w
can be easily computed.

We now have an iterative way to compute the derivation
∂F (w)
∂w

. Then we compute the updated parameters using
a gradient descent based method to solve the optimization
problem and obtain optimal values of p and w.

4.2 Supervised Sampling Algorithm
Sampling of our active exploration is to bias discovering

positive nodes. We select the node which is most likely to
be positive and then gain its neighbors, including nodes and
edges. Based on supervised random walks, we can construct
a Markov chain with probabilities, in which p is the optimal
stationary distribution of the network. Each node vi in the
network Gt is assigned with a probability score pi, Since pi
indicates the probability of a node vi reaching the virtual
positive node, which indicates node vi’s probability of being
positive, we use it to guide the sampling process to more
likely visit a positive node. Intuitively, if a node has a higher
value of pi, it is more likely to be a positive node because it
is closer to the virtual positive node. Therefore, we choose
a node v∗ from Border-acquired nodes to be sampled next
such that it has the highest value of pv.

v∗ = arg max
v∈Ibolder

pv. (11)

Our supervised sampling algorithm is a biased sampling,
as given in Algorithm 1. At time t, we construct a Markov
chain based on the subgraph obtained so far, and compute
the stationary distribution p of the Markov chain. The sam-
pling process determines which node to be sampled next
using Eq. (11). Then we get the information of its neighbor-
hood, including nodes, edges and their tagging information.

Algorithm 1 Supervised Sampling for Networked Data

1: Gt = (V l
t ∪ Vu

t , Et) with Ibolder and Iintra ;
2: while t ≤ Budget do
3: Construct the Markov chain for Gt by using our opti-

mization problem;
4: Select a node i for sampling by using Eq. (11), then

update Vu
t , Ibolder and Iintra with new nodes and

edges of N (i);
5: Update G: G(t+1) ← Gt;
6: t = t+ 1.
7: end while

5. EXPERIMENTS
In this section, we evaluate the effectiveness of the pro-

posed algorithm on both synthetic and real-world data.

5.1 Experimental Settings

5.1.1 Benchmark Data
To study the algorithm performance with respect to dif-

ferent network features, we generate scale-free graphs with
400 nodes and 4000-6000 edges to simulate networks, includ-
ing labeling information and features for the network nodes.



Because real-world networks usually have community struc-
tures, we use random graph to create network components,
each containing a number of nodes, and then connect these
components by randomly creating edges between different
components [5]. To generate a class label for each node, we
simply assign all nodes within one component as one class
(we focus on binary class problems so each node is labeled
as either 1 or 0). Details about synthetic networks are de-
scribed in Section 5.2.
Besides synthetic networks, we also validate our proposed

algorithm on PubMed citation network1. Detailed informa-
tion is introduced in Section 5.3.

5.1.2 Baseline Methods
To study the empirical performance of our proposed algo-

rithm, called Supervised Sampling for Networked data, we
use four baseline methods for comparison:

• USNET: This is a variant of our proposed Supervised
sampling algorithm by removing the weight optimiza-
tion module. In other words, we do not consider the
features and there is no strength function for each edge.

• Degree: This method uses node degree as the measure
to guide the sampling and the labeling process. At
each iteration, it samples the node with the maximum
node degree and gains the neighbors of the selected
node.

• BFS: This is original BFS strategy to sample the nodes.

• Random: This method carries out network sampling
and labeling in a completely random manner. At each
iteration, it randomly selects a node to sample.

5.1.3 Performance Metrics
Recall: Because our active exploration goal is to discover a
network including a maximum number of positive nodes and
their structures. To this end, we use recall to compare differ-
ent methods with respect to different explored network sizes.
In our experiments, because we know genuine labels of the
nodes, we carry out sampling and labeling without knowing
genuine labels of nodes. Only after a node is selected for
labeling, we assign its original label to the node. By doing
so, we can compute recall as the number of explored positive
nodes divided by the number of genuine positive nodes.

Network Centrality: To evaluate the quality of the ex-
plored network, in comparison with the original network, we
focus on network structure, and compare the explored net-
work and the original network with respect to two popular
measures: betweenness centrality and closeness centrality.
Betweenness measures the degree of brokerage [4, 14] for

the nodes in a network. It shows how much information is
propagated through each node. It is defined as:

CB(v) =
∑

s,t∈V

σ(s, t|v)
σ(s, t)

, (12)

where σ(s, t) is the number of shortest paths between nodes
s and t in the graph, and σ(s, t|v) is the number of (s, t)-
paths that go through node v.

1http://www.cs.umd.edu/projects/linqs/projects/
lbc/Pubmed-Diabetes.tgz

Closeness is another popular measure of centrality [2]. It
measures how close a node is to all other nodes in the net-
work as defined by the shortest path from the source node
to the destination node.

CC(v) =
1∑

t∈V d(v, t)
, (13)

where d(v, t) is the (weighted, directed) distance from node
v to node t in the graph.

5.1.4 General Parameter Settings
Setup: For active exploration, we need to set up several
initial nodes to start the exploration process. In our exper-
iments, we randomly choose three connected nodes as the
initial network, which contains both positive and negative
nodes, e.g. we start with two positive nodes and one nega-
tive node and they are connected. After that, the algorithm
iteratively explores the network by carrying out sampling
and labeling simultaneously.

Edge Strength Function: According to Eq. (3), we em-
ploy a linear function fw(·) to calculate the edge strength.
Let r denote the feature vector of the edge connecting nodes
u and v, fw(·) is defined as:

fw(ru,v) = wT r. (14)

Loss Function: To define the penalty for the optimization
function in Eq. (1), we use a common squared loss with
margin b as:

h(x) = max{x+ b, 0}2. (15)

Parameter λ: λ is used as a regularization term for avoid-
ing overfitting. However in our experiment, we find that
vector w is relatively small and λ has little impact for our
problem. Empirically we set the λ = 1 and it can give good
performance.

5.2 Results on Synthetic Data

5.2.1 Synthetic Networks
In our experiments, we build three synthetic networks,

each contains two labels: positive and negative.

(a) P100-N300 (b) P50*2-N300

Figure 2: A snapshot of three synthetic networks
with different levels of biased node distributions.

P100-N300: The P100-N300 network contains two com-
ponents, which have 100 and 300 nodes, respectively. The
component with 100 nodes belongs to the positive class, and
the second component belongs to the negative class. Each
node in the network has six random edges on average. After



that, we randomly create 480 edges between two compo-
nents. This network is used to simulate real-world situation
with moderately biased node distributions.

P50*2-N300: The P50*2-N300 network contains three com-
ponents, where the largest one contains 300 nodes, belonging
to the negative class, and the other two components both
contain 50 nodes, belonging to the positive class. Mean-
while, each node has six randomly connected edges within
its component. After that, we create 480 edges to randomly
connect the three components. This network is used to sim-
ulate real-world situation with severely biased node distribu-
tions. A snapshot of the three networks is shown in Figure 2.
For each node in the networks, we create two node fea-

tures: (1) the first feature is a random variable which follows
a zero mean (variance σ = 1) Gaussian distribution. It acts
as a noisy feature without any specific meaning; and (2) the
second feature is a also a random variable with Gaussian
distribution but subject to different means. Specifically, if
a node belongs to positive class, it would follow a Gaussian
distribution with N (0, 1). If it belongs to negative class, it
would follow a Gaussian distribution with N (1, 1). In addi-
tion, given an edge (v, u) with two nodes u and v, we define
the edge feature as:

riv,u = |xi
v − xi

u|, i = 1, 2. (16)

5.2.2 Results
The results in Figure 3 show that biased sampling can help

acquire more positive nodes. SSNET and USNET both bias
sampling positive nodes by using the probability score of
each node, leading to higher recall values than others for
the same sampling size of network. SSNET outperforms
USNET. It makes sense because the same class label in syn-
thetic networks are correlated in the feature space. SSNET
leverages the correlations, whereas USNET discards the edge
strengths. The recall achieved by Degree, BFS and Ran-
dom are all very low, and significantly worse than SSNET.
Degree, BFS and Random select next node based on the
structure of the network. They all likely sample nodes with
high degree. In practice, positive nodes does not necessarily
have a high degree, which explains why these methods fail
in achieving good performance.
To evaluate the quality of explored networks in preserv-

ing the major structure of the original network, we find the
nodes with Top-k (k = 10) betweenness and closeness scores
in the original network and calculate the percentage of those
nodes collected in the sampled network. We compare results
of two different sampling sizes of networks in Figure 4, which
represents 50% and 25% size of the original network. The re-
sults show that SSNET achieves a much better performance
than BFS in preserving major network structures (i.e. in-
cluding nodes with Top-k betweenness and closeness scores
in the sampled network), especially when positive nodes are
significantly infrequent in the networks. This indicates that
SSNET can help identify nodes which are not only helpful in
acquiring positive nodes in the future, but also help preserve
important network structures for positive nodes.

5.3 Results on Real-World Data
For real-world networks, we use an existing PubMed ci-

tation network, which includes 19,717 (i.e. nodes) scientific
publications from the PubMed database pertaining to dia-
betes, and classifies each of them into one of three classes:

“Diabetes Mellitus, Experimental” (7739), “Diabetes Melli-
tus Type 1” (7875), and “Diabetes Mellitus Type 2” (4103)
(The number in the bracket denotes the number of papers
in each class). The citation network consists of 44,338 links.
We use the three labels to construct three exploration prob-
lems: Problem 1: we define “Diabetes Mellitus, Exper-
imental” as positive and others as negative, and explore a
network for“Diabetes Mellitus, Experimental”; Problem 2:
we define “Diabetes Mellitus Type 1” as positive and others
as negative, and explore a network for “Diabetes Mellitus
Type 1”; and Problem 3: we define “Diabetes Mellitus
Type 2” as positive and others as negative, and explore a
network for “Diabetes Mellitus Type 2”.

In our experiments, we use the features of nodes to con-
struct edge features. For each edge between two nodes, each
representing a paper, the first edge feature is the number of
shared words between two papers, defined as:

r1u,v = k, k = |{w|w ∈Wu

∩
Wv}|, (17)

where W denotes the words of a paper. The second edge
feature is defined as the cosine similarity between two pa-
pers,

r2u,v = cos(wu,wv), (18)

where w is the bag-of-word vector to represent each paper
using the occurrence of the words in the paper [11]. The
edge strength function and loss function are the same as the
one used for synthetic networks.

Figure 5 reports the recall of positive nodes with respect to
different sampling sizes of networks. It shows that SSNET
and USNET work better than Degree, BFS and Random,
which do not use supervised sampling strategy for identify-
ing positive nodes. In addition, SSNET works better than
USNET. This is because papers in the same class often share
common keywords, which is captured by the edge strength
function defined in SSNET. In comparison, USNET discards
edge strength and therefore ignores the degree of correlations
between papers during the sampling process.

The results in Figures 5 also show SSNET method has a
larger slope of improvement at the beginning of the sampling
process. After 4,500 exploration iterations, the recall values
become relatively stable. This demonstrates that SSNET
has good performance when the supervised sampling process
starts. It can thus potentially find useful positive nodes with
very little cost. The decreasing of the slope of improvement,
at the latter state of the sampling process, is mainly because
the number of undiscovered positive nodes decreases so it
becomes more difficult to find them.

Figure 6 reports the quality of the sampled network in
preserving major structure of the original network. The x-
axis in the figure denotes the ratio of the sampled network
and the y-axis shows that out of the Top-k (k=10) nodes
with the largest betweenness centrality and closeness cen-
trality scores in the original network, how many of them
(the percentage) actually appear in the sampled networks.
The results clearly show that SSNET outperforms others in
preserving important network structures.

6. CONCLUSION
In this paper, we have introduced the problem of super-

vised sampling, where we sample the network for the specific
category of nodes. Unlike most graph sampling algorithms
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Figure 3: Recall of positive nodes with respect to different sampling sizes of networks.
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Figure 4: Percentage (y−axis) of nodes with the Top-10 maximum betweenness scores (upper panel) and
Top-10 maximum closeness scores (lower panel) in the original network discovered in the sample of network.
The x−axis defines the ratio of the sampling size of network compared to the original network. SSNET shows
much better performance in preserving nodes with larger betweenness and closeness scores.

which focused on generating a uniform random sample of
the original graph, supervised sampling goal is to sample a
network under a specific task, acquiring positive nodes. We
construct a Markov chain on the networked data by using
a variety of weighted random walks to learn a stationary
distribution involved in labeling task. We showed that the
learned stationary distribution of the sampled network can
help guide to visit next node. Also with the more informa-
tion of node collecting, these can strength the supervised
sampling in turn. Experiments on synthetic as well as real
data show that our supervised sampling outperforms other
methods.
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