
One Click Mining—
Interactive Local Pattern Discovery through

Implicit Preference and Performance Learning∗

Mario Boley, Michael Mampaey, Bo Kang, Pavel Tokmakov, and Stefan Wrobel
Fraunhofer IAIS and University of Bonn

Schloss Birlinghoven, Sankt Augustin, Germany
{mario.boley,stefan.wrobel}@iais.fhg.de

{michael.mampaey,bo.kang,pavel.tokmakov}@uni-bonn.de

ABSTRACT
It is known that productive pattern discovery from data
has to interactively involve the user as directly as possible.
State-of-the-art toolboxes require the specification of sophis-
ticated workflows with an explicit selection of a data min-
ing method, all its required parameters, and a correspond-
ing algorithm. This hinders the desired rapid interaction—
especially with users that are experts of the data domain
rather than data mining experts. In this paper, we present a
fundamentally new approach towards user involvement that
relies exclusively on the implicit feedback available from the
natural analysis behavior of the user, and at the same time
allows the user to work with a multitude of pattern classes
and discovery algorithms simultaneously without even know-
ing the details of each algorithm. To achieve this goal, we
are relying on a recently proposed co-active learning model
and a special feature representation of patterns to arrive
at an adaptively tuned user interestingness model. At the
same time, we propose an adaptive time-allocation strategy
to distribute computation time among a set of underlying
mining algorithms. We describe the technical details of our
approach, present the user interface for gathering implicit
feedback, and provide preliminary evaluation results.

1. INTRODUCTION
Productive pattern discovery from data is known to be

an iterative process that ideally requires a tight interaction
between a discovery system and a user who is an expert of
the data domain [Fayyad et al., 1996]. State of the-art data
analysis suites (e.g., Rapid Miner [Mierswa, 2009], WEKA
[Hall et al., 2009], KNIME [Berthold et al., 2008]) rely on
an explicit construction of a discovery workflow including
selection of a discovery method along with its parameters,

∗This article is a short version containing only preliminary
experimental results. Complete evaluation will be available
in a future full version.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
IDEA’13, August 11th, 2013, Chicago, IL, USA.
Copyright 2013 ACM 978-1-4503-2329-1 ...$15.00.

a corresponding mining algorithms, and post-processing of
results. The resulting high number of alternative formaliza-
tions of a single analysis task poses a substantial burden on
creating and iteratively refining these workflows—especially
for users that lack deep technical understanding of data min-
ing methods—and ultimately it hinders the desired rapid
interaction [Cao, 2012]. Previous research tried to alleviate
this problem by assisting the user in constructing or selecting
a workflow (see Morik and Scholz [2004] or Bernstein et al.
[2005]) or by providing direct active user-involvement for in-
dividual parts of the workflow such as for the post-processing
[Xin et al., 2006] or even the mining itself [Goethals et al.,
2011]. However, all these approaches still expose the user
to the complexity of the discovery worklow and/or require
technical knowledge about its components that goes way be-
yond the semantic knowledge about the data domain.

In this paper, we present a fundamentally new approach
towards user involvement that for the first time requires nei-
ther an explicit formalization of analysis goals in terms of a
workflow or another specification language nor any techni-
cal data mining knowledge that goes beyond the pure data
semantics. Instead, the approach relies exclusively on the
implicit feedback available from the natural analysis behav-
ior of the user when he investigates the data and mining
results. At the same time, the approach allows the user
to work with a multitude of pattern classes and mining al-
gorithms simultaneously without even knowing the details
of each algorithm. In particular, the approach avoids all
method selection and configuration steps from standard pro-
cesses, and instead an individual mining step is started by
pressing once a single dedicated mine button. Hence we refer
to this process as one-click mining.

Naturally, the goal of this process is to produce patterns
that are relevant to the latent user interest as fast as possi-
ble. We show how this goal can be achieved by the interplay
of two appropriately designed online learning/optimization
components. On the one side, there is model of the hidden
user interest based an a suitably designed feature representa-
tion of all pattern types that are included in the range of the
analysis system. The learning of the corresponding model
parameters is based on the recently proposed co-active learn-
ing model [Shivaswamy and Joachims, 2012, Raman et al.,
2012]. On the other side, there is a time-allocation strategy
that distributes the computational time-budget available in
each discovery round among a set of underlying mining algo-
rithms. We model this task as a multi-armed bandit explo-

27

Figure 1: Visual layout of one-click mining prototype that contains (a) mine-button, (b) result candidate
area, (c) result analysis board, trash can (d), and data view (e).

ration/exploitation problem where the payoffs correspond
to the utility of the mined patterns. Since this utility is
measured by an evolving approximation of the user interest,
we address this problem by a bandit algorithm suitable for
shifting payoffs [Cesa-Bianchi and Lugosi, 2006]. Overall,
we end up with a very general method that can aggregate
any combination of data mining tasks, for which results can
be mined by parameter-free anytime algorithms and be rep-
resented in a suitable joint feature space.

After recapping basic pattern discovery concepts from a
unifying perspective (in Sec. 2), we present in detail the one
click mining framework along with visual components that
support its user/system dialog (Sec. 3). We then give a proof
of concept based on an exemplary instantiation that com-
bines subgroup discovery and association discovery (Sec. 4).
The resulting prototypical one-click mining system, called
Bonn click mining (see Fig. 1), is demonstrated in the con-
text of a socio-economic data analysis task. We document
that the system is able to quickly provide interesting pat-
terns corresponding to latent analysis goals that have been
learned implicitly.

2. PATTERN DISCOVERY
In this section we provide and repeat general formal def-

initions for pattern discovery starting from pattern classes
(or languages), over scoring functions that assess pattern in-
terestingness, up to mining algorithms that aim to find inter-
esting patterns. As illustrative examples, we recall subgroup
discovery [Klösgen, 1996] and association discovery [Webb,
2011], which are also used in our one-click mining prototype.

As notational convention, throughout this paper we de-
note by [n] for a positive integer n ∈ N the set {1, . . . , n},
and by B the set of truth values {true, false}.

2.1 Pattern Languages
Standard approaches to local pattern discovery that are

fully automatized usually rely on a specific pattern (descrip-
tor) language along with a single choice of a measure for
assessing the utility or interestingness of a descriptor. In
contrast, one-click mining can aggregate a mixture of differ-
ent pattern discovery methods and interestingness measures.
Hence, we have to introduce an explicit notion of pattern
that combines a descriptor with the information of why it is
supposed to be interesting (i.e., wrt what measure).

We assume a given fixed dataset D = {d1, . . . , dm} of m
data records d ∈ D, each of which is described by a set of
n attributes A = {a1, . . . , an}. All attributes ai assign to
each data record a value from their attribute domain Vi,
i.e., ai : D → Vi. Here, we assume that attributes are either
numerical, i.e., Vi ⊆ R and we use ≤ to compare attribute
values, or categorical, i.e., |Vi| is finite and its values are
incomparable. A pattern language L is a set of pattern
descriptors s ∈ L to each of which we can associate a local
extension D(s) ⊆ D in the data.

For example, in association discovery, where one aims
to find attribute/value combinations that show a high co-
occurrence in the data, one usually considers the language
Lcnj of conjunctions of constraints on individual attribute
values. That is, Lcnj contains descriptors s of the form

s = ci1(·) ∧ · · · ∧ cis(·)

28

Figure 2: Association pattern with a descriptor con-
taining five attribute constraints and a rationale that
contains two elementary interestingness functions
and one function derived from them.

such that cij : Vij → B is a binary constraint on attribute
aij for all j ∈ [is]. Correspondingly, the extension of s is
defined as

D(s) = {d ∈ D : ci1(ai1(d)) ∧ · · · ∧ cik (aik (d))} .

In particular, for a categorical attribute ai we consider equal-
ity constraints c(v) ≡ v = b with b ∈ Vi, and for numeri-
cal attributes we consider interval constraints c(v) ≡ v ∈
[l, u] with l, u ∈ Vi. We refer to cnst(s) = {ci1 , . . . , cis}
as the constraints and to attr(s) = {ai1 , . . . , ais} as the
attributes contained in s, respectively. We assume that
each attribute is contained at most once and call |cnst(s)| =
|attr(s)| = is ∈ N the size of s.

A further example of a pattern language is provided by
subgroup discovery where one is interested in pattern de-
scriptors that are at the same time fairly general (have a
large extension) and that show an unusual distribution of
one specific target attribute at ∈ A in their extension.
The corresponding pattern language is Lsgd = Lcnj × [n],
i.e., it contains descriptors s = (c, t) with a conjunctive de-
scriptor c annotated by the index t of a target attribute. The
conjunction c also defines the extension of the subgroup de-
scriptor s, i.e., D(s) = D(c).

2.2 Interestingness and Patterns
In order to assess how interesting a pattern descriptor is

as an observation in the data, there exists a wide range of
interestingness functions f : L → R+ that have been
developed across different pattern discovery methods (see
Geng and Hamilton [2006]). A basic example is the fre-
quency ffrq(s) of a pattern descriptor s, which is defined as
its generality measured as the fraction of data records that
are part of the pattern’s extension, i.e.,ffrq(s) = |D(s)| / |D|.
Another general example is the relative shortness of a pat-
tern defined by fsho(s) = (n− |attr(s)|)/n.

Specifically for subgroup discovery interestingness,
corresponding to its semantics, one typically uses functions
of the form

fb
sgd(s, t) = ffrq(s)bfdv(s, t) , (1)

i.e., a multiplicative combinations of frequency (weighted by
a real-valued parameter b ∈ [0, 1]) and a target deviation
function fdv. In this work, we choose fdv to be the to-
tal variation distance between the distribution of the target
attribute in the pattern extension S = s(D) and the distri-
bution in the complete data, i.e.,

fdv(s, t) = sup
X⊆Vt

|pt
S(X)− pt

D(X)| .

Here, pt
S and pt

D are a (fitted) distribution of attribute val-
ues of at in the pattern extension and the complete data, re-
spectively (see Appendix A for computational details). This
function provides a uniform interpretation of interestingness
for categorical and numerical target variables.

Association interestingness is usually quantified as the
difference between the frequency of the pattern and its ex-
pected frequency if we assume that some of its parts are
satisfied independently. Here, we use a first order approx-
imation to the leverage measure [Webb, 2010] that can be
computed efficiently. That is, we consider the following ad-
ditive lift measure defined by

flft(s) =

ffrq(s)−
∏

c∈cnst(s)

ffrq(c)

 /2|cnst(s)|−2 .

Thus, conceptually this measure assumes as null hypothesis
that all individual constraints of the descriptor are satisfied
independently.

A pattern as a pair (s, F) ∈ L × 2F where s ∈ L is
a descriptor and F ⊆ F a rationale consisting of one or
more interestingness measures with an appropriate domain.
As we will see below, it is useful to potentially have more
than one function in the interestingness rationale, because
standard measures often are a function of several elementary
functions—like in subgroup discovery interestingness, which
is a function of frequency and target deviation. By giving
feedback on a pattern annotated by elementary measures, a
user implicitly provides insight into his preferences about all
other measures that can be computed from these elementary
measures. Fig. 2 shows an example of a pattern as displayed
in our one-click mining prototype. By P = L×2F we denote
the set of patterns defined by L and F .

2.3 Mining Algorithms
For the actual generation of patterns, let us denote byM a

set of k mining algorithms that is at our disposal. For no-
tational convenience we sometimes identify M = [k]. From
our perspective an individual mining algorithm m ∈M can
simply be treated as producing a random set of result pat-
terns m(t) ⊆ P with an unknown distribution that depends
on the time t ∈ R+ that the algorithm is running. Of course,
we usually know more about a given mining algorithm such
as the pattern language it uses and the interestingness mea-
sure it optimizes. Yet from the perspective of one click min-
ing it is sufficient to treat the algorithms as black boxes as
long as they satisfy the following two requirements.

We assume that all algorithms are parameter-free. In prac-
tice this can mean that a single algorithm either uses a spe-
cific parameter assignment of a mining algorithm or it is in
fact a meta-algorithm that includes a parameter-selection
procedure. Moreover, all algorithms should be anytime al-
gorithms, i.e., conceptually at every moment in time after
they are started they maintain a current solution that can
be retrieved when the algorithm is terminated preemptively.
This is necessary, because in one click mining the time bud-
get available for a given run of an algorithm is determined by
the user ad hoc. These requirements can (or are automati-
cally) satisfied by a wide range of modern pattern discovery
algorithms that provide various pattern types. Examples
are Slim [Smets and Vreeken, 2012], pattern sampling [Bo-
ley et al., 2012], or beam search approaches [van Leeuwen
and Knobbe, 2011].

29

u
p
d
a
t
e

u
t
i
l
i
t
y

m
o
d
e
l

pro
d
u
c
e

p
a
t
t
e
r
n
su

p
d
a
t
e

a
l
g
.

d
i
st
r.

Pattern
 Cache

Algorithm
Selection

Mine
Button

cr
ea
te
 c

an
d.

r
a
n
k
i
n
g

g
a
t
h
e
r

f
ee
db
ac

k
ra
nk
ing

Mining

Round

Discovery Round

Figure 3: Temporal structure of discovery pro-
cess: one discovery round can contain several mining
rounds.

3. ONE-CLICK MINING
We now show how different pattern discovery methods

and algorithms can be combined within a one-click mining
system. After outlining the general process dynamics and
the visual components that support the user/system inter-
action, we describe in detail the two online learning com-
ponents involved in that process: the ranking mechanism of
the mined results and the exploitation/exploration strategy
for controlling the underlying mining algorithms.

3.1 Discovery Process and Visual Elements
The key idea of one-click mining is to not occupy the user

with the technicalities of the mining workflow, but instead
to let her focus on investigating the produced results on a se-
mantic level. In this subsection we present visual elements
that support this investigation and show how the interac-
tion with these elements can be incorporated into a sensible
discovery process that produces useful patterns.

The most characteristic visual element is the mine but-
ton (Fig. 1 (a)), which the user presses in order to see new
mining results. Implicitly, pressing this button also indi-
cates that the user is done with inspecting the results that
were displayed before. Moreover, there is a result candi-
date area (Fig. 1 (b)), which is used to present ranked
mining results. From here the user can investigate results,
delete those that she considers useless by drawing them to
the trash can (Fig. 1 (c)), and move those which she wishes
to use for further analysis to the result analysis board
(Fig. 1 (d)). These elements support an interactive discov-
ery process, which is defined as follows (see Fig. 3).

The main temporal unit of the process are discovery
rounds t ∈ N that correspond to the period between two
consecutive activations of the mine button. As further, more

refined, temporal structure, during each discovery round
there is a number of mining rounds l ∈ N, each of which
corresponding to a background execution of a mining algo-
rithm. Here, the last mining round within a given discov-
ery round is terminated preemptively in order to end syn-
chronously with this discovery round. Hence, every mining
round can be associated to a unique discovery round. We
count mining rounds consecutively and denote by t(l) the
discovery round in which mining round l occurs and con-
versely by l(t) the first mining round within the discovery
round t.

An individual mining round l consists of first selecting a
mining algorithmml at random according to a distribution
for algorithm selection πl : M→ [0, 1], running ml and
fetching its result patterns Pl. All mining results are then
stored in a pattern cache, for which we denote by Cl ⊆ P
the state before the results of mining round l are added. The
cache has a finite cache capacity c ∈ N such that at all
times l it is enforced that |Cl| ≤ c. Finally, the performance
of ml is assessed by comparing Cl and Cl+1 (using a current
approximation of the pattern utility defined below). Based
on this information the selection distribution for the next
round πl+1 is determined and automatically started.

In the beginning of a discovery round t, a candidate
ranking rt of size c is constructed from the current state
of the pattern candidate cache Cl(t) and displayed in the
result candidate area. Formally, a ranking of patterns is
an ordered list r = 〈r1, . . . , rk〉 ∈ P∗ such that ri 6= rj
for all i, j ∈ [k]. Let us denote by {r} = {r1, . . . , rk}
the (unordered) set of patterns contained in the ranking,
by ri = 〈r1, . . . , ri〉 the i-prefix of r for i ≤ k, and by
|r| = |{r}| = k the size of r. The set of rankings is de-
noted by R and the set of all rankings of some fixed size c
is denoted Rc.

The ranking rt is based on a current utility approxi-
mation ût of the user-subjective pattern utility u. After
the user indicates that she is done with investigating the
candidate ranking (by clicking mine as described above),
a feedback ranking r can be constructed from her actions.
For the definition of this feedback ranking, let us denote by
Tt and Bt all the patterns that have been deleted to the
trash can and promoted to the result board until the end
of round t, respectively. The feedback ranking consists of
all patterns that were promoted in that round to the result
board followed by all patterns in the candidate ranking that
have been inspected by the user and were neither deleted
nor promoted. Let

x = max{i ∈ [c] | xi 6∈ (Bt+1 \Bt) ∪ (Tt+1 \ Tt)}

be the maximal index of a pattern that has been either pro-
moted or deleted during round t. Formally, the feedback
ranking is defined by

rt = 〈b1, . . . , bk, ri1 , . . . , ril〉

where {b1, . . . , bk} = Bt+1 \Bt in the order of their promo-
tion and {ri1 , . . . , ril} = {rxt } \ (Bt+1 ∪ Tt+1) with ij < ij′
for j < j′ ≤ x. At the end of the discovery round, a new
utility approximation ût+1 is inferred by comparing rt with
r and the next discovery round starts.

3.2 Learning and Construction of Rankings
We now turn to the precise details of the ranking mech-

anism that is used in the beginning of a discovery round

30

in order to compute a candidate ranking from the content
of the pattern cache. With this mechanism we aim for two
goals: firstly, we want to allow the user to find new patterns
that are maximally relevant in terms of her specific utility
preferences, and, secondly, we want to provide her a suffi-
cient amount of diversity in the displayed mining results.
The latter goal is important in a user-based search process,
because if the user is not able to express previously unspec-
ified aspects of her preferences the whole discovery process
can get stuck in a local maximum.

In order to achieve these goals, we adapt the co-active
learning process proposed in Shivaswamy and Joachims [2012]
and Raman et al. [2012] for maintaining the parameter vec-
tor wt of a ranking utility function

ût(r) = 〈wt, ϕ(xt, r)〉

over the discovery rounds t ∈ N. This function is defined
by a joint feature map ϕ : X ×R → RF that maps a pat-
tern ranking together with the current system state to an
|F|-dimensional real-valued feature vector, i.e., the feature
representation is determined by the set F of interestingness
functions. The system state xt ∈ X in discovery round t is
given by the contents of the pattern cache, the result board,
and the trash can, respectively, i.e., xt = (Cl(t), Bt, Tt). The
component of ϕ corresponding to function f ∈ F is defined
as a discounted aggregate of the individual patterns’ contri-
bution to feature f , i.e.,

ϕf (xt, r) =

∥∥∥∥∥
(
δ(xt, ri)ϕf (ri)

log(i+ 1)

)|r|
i=1

∥∥∥∥∥
d

where ϕf (ri) is given by the feature map for individual pat-
terns (defined below) and δ(xt, ri) is an indicator function
that is 1 if pattern ri neither already present on the result
board Bt or in the trash can Tt and 0 otherwise. The choice
d ∈ N∪{∞} of the norm is a diversity parameter that de-
termines the trade-off between relevance and diversity when
evaluating a ranking.

The feature map for the individual patterns is designed
to allow a maximal cross-pattern inference and at the same
time to only require minimal attention of the user: while the
actual pattern p can only contain the values for some base
interestingness functions, the feature vector of p also con-
tains values for all interestingness functions that the user
can infer from these base functions. For example the ratio-
nale of the pattern in Fig. 2 contains only the interestingness
functions ffrq, and f t

dv. However, this is enough to infer also
the values for the multiplicative combinations fb

frqf
t
dv, and,

hence, we can also use these in the feature reperesntation
of the pattern. Formally, the individual components of the
pattern feature map are defined by

ϕf (s,X) =

{
f(s) , if f ∈ X̂
0, , otherwise

where X̂ denotes the set of all feature functions in F that
can be computed based on functions in the rationale X, i.e.,

X̂ = {f ∈ F : f1, . . . , fk ∈ X,
f(s) = g(f1(s), . . . , fk(s), s)} .

This means the feature representation of a pattern consists
of all function values of interestingness functions in the ra-
tionale X and those that can be inferred from these values.

Other features—that are not in X or that cannot be inferred
from X—are set to zero. Note that feature functions that
only depend on the pattern descriptor (such as the relative

shortness fsho) are always part of X̂. Hence, if F contains
features such as descriptor length and indicator features for
the presence of the specific constraints, then these features
are relevant for all patterns.

Algorithm 1 Greedy ranking

Require: Patterns P ⊆ P, size c ∈ N, utility fct u : R→ R
Ensure: Ranking rcgrd(P) s.t. u(rcgrd(P))/u(rcopt(P)) ≥ 1/3
1. for i = 1, . . . , c do
2. set ri ∈ arg maxp∈P\{r1,...,ri−1} u(〈r1, . . . , ri−1, p〉)
3. return 〈r1, . . . , rc〉

With the definition of the ranking utility we can now spec-
ify the candidate ranking rt that is displayed to the user at
the beginning of every discovery round t. Naturally, one
would want this to be the optimal ranking of length c
(cache capacity) with respect to the current model, i.e.,

rcopt(Cl(t)) ∈ arg max{ût(xt, r) : r ∈ Rc(Cl(t))} .

Unfortunately, using a reduction from the max-k-cover prob-
lem (see, e.g., [Feige et al., 2011]), one can show that it is
NP-hard to compute this optimal ranking and even to ap-
proximate one within a ratio larger than (1 − 1/e). This
holds already for very simple feature spaces F , in particu-
lar for the one used in our prototype (see Sec. 4). On the
other hand, a greedy ranking rcgrd(P) can be constructed
efficiently by Alg. 1, which iteratively grows a solution by
adding in each step to the current partial ranking the pat-
tern that maximizes the utility. For all pattern sets P ⊆ P
this solution can be computed in time O(c |P |) and satisfies
the approximation guarantee

ût(r
c
grd(P))/ût(r

c
opt(P)) ≥ 1/3 .

This result can be proven by observing that the space of
partial rankings can be represented by the intersection of two
Matroids and that û is sub-modular with respect to that set
system. The approximation guarantee then follows from a
general performance theorem for the greedy algorithm from
Fisher et al. [1978].

Finally, we can specify how to update the parameter vec-
tor of the ranking utility at the end of each discovery round.
Following Raman et al. [2012], we can update by the follow-
ing multiplicative utility update rule

wt+1,f = wt,f exp(θt(ϕf (rt)− ϕf (rt)))/Z (2)

where Z is a normalization factor that ensures that ‖wt‖2 =

1 and θt = 1/(2S
√

2blog tc) is a decreasing utility learning
rate depending also on a bound S ≥ maxr,B ‖ϕ(r)‖∞ on
the max-norm of all rankings (in our prototype we can, e.g.,

use S = c1/d; see Sec. 4). The approximation guarantee of
the greedy algorithm and a certain guarantee on the quality
of the user feedback imply that this update mechanism has
a controlled regret over an optimal weight vector.

3.3 Online Control of Mining Algorithms
It remains to specify the algorithm selection distribution

πl that is used in mining round l. As mentioned earlier, we
consider the output of mining algorithms as random vari-
ables following a distribution that depends on the available

31

running time. In order to asses the mining performance,
the system can only observe the output of algorithms that
it actually uses and initially the performance of all algo-
rithms are unknown. Thus, the system is facing an ex-
ploitation/exploration problem of the multi-armed bandit
style (see, e.g., Cesa-Bianchi and Lugosi [2006]). In order
to apply known strategies for this kind of problem, we first
have to model the reward that is generated by a mining
algorithm when it is executed.

Let us Pl denote the result pattern set returned by the
mining algorithm executed in round l (denoted by ml ∈M)
and by cl the computation time it used to produce these
results. Then the mining performance of round l can be
quantified by the utility gain per time of the ranking that can
be constructed from the old and the new patterns together,
i.e., by

(u(ropt(Pl ∪ {rt(l)}))− u(rt(l)))/cl .

Of course, the system has no access to the true utility func-
tion and cannot compute an optimal ranking efficiently. Hence,
it has to rely on its current approximation ût(l) and the
greedily approximated ranking to estimate the performance,
i.e., it has to use the estimated relative utility gain

gl = (ût(l)(rgrd(Pl ∪ {rt(l)}))− ût(l)(rt(l)))/cl .

Thus, the observed reward generated by a mining algorithm
depends not only the current system state but also on the
current approximation of the user utility, both of which
evolve over time.

This means that we need an exploitation/exploration strat-
egy that is robust to non-stationary rewards. To this end,
we employ an algorithm of Cesa-Bianchi and Lugosi [2006,
p. 160] that has an optimally bounded regret. Throughout
all mining rounds l ∈ N, it maintains performance poten-
tial weights vl ∈ Rk

+ starting with v1 = (1, . . . , 1). The
algorithm ml to run in mining round l is then chosen at ran-
dom according to the algorithm selection distribution
πl ∈ [0, 1]k, which is a mixture of the distribution given by
v and the uniform distribution, i.e., it is given by

πl,i = ((γl − 1)vi)/V + γl/k

where V normalizes the sum of the entries of v to one.
The bandit mixture coefficient γl depends on the min-
ing round and will be specified below. After the result of a
mining round is observed the potentials are updated multi-
plicatively by the bandit update rule

vl+1,i = vl,i exp(ηlgl,i)

where ηl is the bandit learning rate ηl = γl/(2k) and gl,i
an optimistic estimator of the performance of algorithm i in
round l that is defined by

gl,i =

{
(gl + βl)/πml), if i = ml

βl/πml), otherwise
.

By choosing

βl =
√

ln(10k)/(k2blog lc)

one can make sure that the bias of the performance esti-
mates is not too large while still being optimistic with high
probability. Depending on βl one can also chose the bandit
mixture coefficient as γl = 4kβl/(3 + βl).

This concludes the formal description of the one-click min-
ing framework. All algorithmic ideas are summarized again
in Alg. 2. Note that this is a compressed listing that needs a
slight addition in order to avoid concurrency issues: When
the mine-click procedure terminates the currently running
mining algorithm, this triggers a call of the algorithm-end
procedure. In this case the algorithm-end procedure should
only be carried out until step 6 and the new mining algo-
rithm is only started after the remaining steps 5-7 of the
mine-click procedure are finished.

Algorithm 2 One-click Mining

Initialization:

1. init utility weights w1 ← (1, . . . , 1)/ |F|
2. init performance weights v1 ← (1, . . . , 1)
3. init discovery and mining round t, l← 1
4. draw algorithm m ∈M uniformly at random
5. run m blocking for time cinit (result patterns P)
6. init candidate buffer C1 = P and present rgrd(C1)

On Algorithm End:

1. update candidate buffer Cl+1 = Cl ∪ Pl

2. asses gl = (ût(l)(r
c
grd(Cl+1))− ût(l)(r

c
grd(Cl))/cl

3. for all i ∈M do

4. gl,i ←

{
(gl + βl)/πml , if i = ml

βl/πml , otherwise

5. vi ← vi exp(ηlgl,i)
6. l← l + 1
7. run algorithm ml ∼ πl in background where

πl,i = (1− γl)vi/V + γl/k

On Mine Click:

1. assess feedback ranking rt
2. for all f ∈ F do
3. wt+1,f = wt,f exp(θt(ϕf (rt)− ϕf (rt)))
4. terminate current algorithm ml

5. construct and show greedy ranking rt+1 = rgrd(Cl−1)
6. reset Cl = {rt+1}
7. t← t+ 1

4. PROOF OF CONCEPT
In order to provide a proof of concept for the one-click-

mining approach, we present an exemplary pattern discovery
session performed by the prototypical one-click mining im-
plementation called Bonn click mining. In this session, we
deal with the pattern discovery use case of election analysis
(see Grosskreutz et al. [2010]).

4.1 Prototype Configuration
The prototype is configured to combine association and

subgroup discovery; both with a range of interestingness
functions that is able to express different trade-offs between
pattern frequency and lift or target deviation, respectively.
In addition there are functions that express certain prefer-
ences on the form of the pattern only, i.e., its descriptor.
On the algorithm side, there is a mixture of 8 deterministic
beam-search and randomized pattern sampling algorithms.

More precisely, the pattern language Lbcm of the proto-
type is the combination of association and subgroup pat-

32

Figure 4: Five association patterns found in analysis phase 1 of proof of concept experiment; patterns were
found between discovery rounds 5 and 15 after promoting some simpler (more trivial) associations and
deleting some subgroup patterns.

terns, i.e., Lbcm = Lasd ∪ Lsgd. The feature functions Fbcm

can be separated into three groups, i.e.,

Fbcm = Fsgd ∪ Fasd ∪ Fdsc

where Fsgd, Fasd, and Fdsc are sets of subgroup discovery,
association discovery, and descriptor functions, respectively.
The subgroup discovery features Fsgd contain the functions
given by Eq. (1) for the three choices of b equal to 0, 1/2,
and 1. Analogously, the association functions contain the
same trade-offs with frequency, but with the target devia-
tion measure replaced by the lift measure fass. Also pattern
frequency is included for both pattern classes. Finally, the
descriptor features contain the relative shortness fsho along
with binary indicator functions fd

cns that signal whether at-
tribute d is present in the descriptor or not, i.e., fd

cns(s) = 1
if d ∈ attr(s) and fd

cns(s) = 0 otherwise. For subgroup pat-
terns there are in addition similar features that can express
affinity for a specific target attribute, i.e., for all t ∈ [n] the
feature f t

trg(s, t′) that takes on the value 1 if and only if
t = t′. For the resulting feature space Fbcm we have for all
patterns p ∈ P that ϕf (p) ∈ [0, 1]. Hence, we can use the

bound S = c1/d for setting the learning rate for the utility
updates as defined in Eq. (2) where c denotes as usual the
capacity of the pattern cache.

The employed set of algorithm Mbcm consists of 4 direct
pattern sampling and 4 beam search algorithm such that
from each group there are two algorithms for each discov-
ery task. Direct pattern sampling produces random pat-
tern collections as the outcome of fast appropriately biased
random experiments without constructing auxiliary parts of
the pattern space (see Boley et al. [2012] from which we
also use the complementary pattern sampling library1). All
algorithm preprocess the data by discretizing numerical at-
tributes into high and low bins. In the case of subgroup
discovery all algorithm draw the target attribute at random
according to the distribution given by the current weights
for the target preference features. The beam search algo-
rithms then directly optimize either subgroup or association
interestingness; finding the top-10 patterns with a beam size
of 5 or 10, respectively. For the sampling algorithms appro-
priately constructed pattern distributions are chosen: For
association discovery we use distributions that are biased
towards patterns with a high frequency on the one side but
that contain individual constraints with a low frequency on
the other side. This favors the production of patterns with
a high lift. For subgroup discovery we split the dataset into

1http://www-kd.iai.uni-bonn.de/index.php?page=
software_details&id=23

to parts corresponding to high and low values of the target
attribute and sample patterns discriminating these parts.

4.2 German Socio-economical Data
For this proof of concept we used data from the domain

of socio-economics and politics, which can be used to in-
vestigate a diverse set of understandable and interpretable
analysis questions. Specifically, we constructed a table from
publicly available database provided by the German Federal
Office of Statistic2. This database provides a wide range of
statistical variables mapped to regional units of Germany.

For our table, we let the data records correspond to the 413
administrative districts of Germany (Landkreise), which is
the second finest spatial resolution provided in the database.
Each district is described by 39 attributes that can be roughly
grouped into socio-economical and political variables. In
terms of socio-economic attributes we selected variables from
the following categories: age structure and education of the
population, economic indicators (e.g., GDP growth, unem-
ployment), and structure of the labor market (workforce in
different sectors such as production, public service, etc.).
In terms of political attributes, we added the election re-
sults of the five major political parties for the federal elec-
tions in 2005 and 2009, respectively: CDU (conservative),
SPD (center-left), GREEN (center-left), FDP (liberal), and
LEFT (left-wing).

4.3 Results
We report some results of an exemplary analysis session

to illustrate the system behavior. For this we assume that
the user starts at first with a very general purely exploratory
analysis intent on order to get an overview before she turns
to attack more specific questions. That is, we assume the
following analysis question for phase 1.

Phase 1—general question:
What attribute/value combinations show a strong

correlation in the data?

While following this intent, the user investigates and pro-
motes mostly fairly general association patterns, while she
deletes too specific and in particular subgroup patterns. Dur-
ing the first discovery rounds the produced matching candi-
date patterns are dominated by those that reflect the well-
known fact that political parties have relatively stable re-
gional strongholds. This means there are a lot of patterns
of the form “party 2005=high/low, party 2009=high/low”.
Then, after a few rounds, more space in the candidate area is
devoted to association patterns, and consequently a higher

2www.regionalstatistik.de

33

Figure 5: Subgroup patterns found in analysis phase 2 of proof of concept experiment; patterns were found
between discovery rounds 10 and 30 after promoting specific party targets and demoting sufficiently many
subgroup patterns with other parties in descriptor.

diversity of them with more non-trivial correlation are of-
fered. For instance, the patterns shown in Fig. 4 have been
produced between discovery rounds 5 and 15. These pat-
terns confirm some known associations between attributes.
CDU is strong in the economically strong regions of the
south of Germany that show low unemployment. Conversely,
CDU also and its economically liberal coalition partner FDP
are weaker in economically problematic areas with high un-
employment and little industry. Other patterns in the set
appear to be plausible and could be interesting for further
investigation.

After this initial exploratory phase, we now turn to a much
more specialized analysis question, in which we try to find
explanations for the 2009 election results of some specific
parties.

Phase 2—specific question:
What socio-economic and regional factors favored parties

from the left spectrum in the German 2009 federal election?

This question implies that we are interest in subgroup pat-
terns with the three targets SPD, GREEN, and LEFT. At
the same time, we are interested in socio-economic and re-
gional explanations only, which means do not want to see
descriptor elements of other parties (or the same party in
the 2005 election). Correspondingly, while following this
analysis question, the user deletes general association pat-
terns and those subgroup patterns that do comply to the
descriptor restrictions mentioned above. Again, just as in
phase 1, in the beginning the produced candidates are dom-
inated by the obvious correlations between party attributes.
Additionally, now we also have a much more narrow focus of
suitable pattern forms, because we are not interested just in
any subgroup pattern but only in those with having a target
from a set of 3 out of 39 attributes. Consequently, this time
it takes longer until suitable patterns show up in the result
area. The patterns shown in Fig. 5 have been produced
between discovery rounds 10 and 30. Again the patterns
partially confirm some known party preferences (note that
a high area code corresponds to the south/east and a low
area code to north/west regions). For instance it is known
that SPD has a relatively high result among older voters,
while GREEN is strong in the densely populated urban ar-
eas. Finally, LEFT is known to be strong among areas in
the east and particularly in economically weak areas with
high unemployment.

5. CONCLUSION
We presented a general framework for combining different

pattern discovery methods and algorithm into a single one-
click mining system. As a proof of concept of these ideas, we

constructed a prototype that includes association and sub-
group discovery. In a preliminary evaluation we saw that the
resulting system is able to produce patterns corresponding
to certain simple analysis goals without exposing the user
to the technical side of the pattern mining method and its
algorithms. The system is now ready to advance to the next
stage of evaluation with a full scale empirical user study.

One limitation of the current approach is related to the ex-
pressiveness of the user utility model. Currently, the model
weights as well as the feature functions are all positive and
the learning takes place in primal space without kernel-based
learning. On the one hand, this results in a sub-modular
utility function for rankings, which can be efficiently opti-
mized by the greedy algorithm within a reasonable approx-
imation ratio. On the other hand, it prevents the learning
of negative influence of some base features. Also the user is
currently not able to learn, e.g., conjunctive conditions on
the utility. For example she can not express that she is in-
terested in a certain descriptive attribute only in the context
of a specific target and otherwise not.

Another direction for future research is to closer investi-
gate and extend the feedback options of the user. For in-
stance, it appears to be desirable for negative feedback to
differentiate between the cases of patterns that are simply
invalid for the current analysis task and between patterns
that are interesting in a vacuum but not novel. One ap-
proach to realize this is to introduce an explicit model of
the user’s background knowledge. This would allow to in-
clude subjective interestingness functions (see De Bie [2011])
into the utility model.

Acknowledgment
This work was supported by the German Science Foundation
(DFG) under the reference number ‘GA 1615/2-1’.

APPENDIX
A. SUBGROUP DEVIATION MEASURE

The subgroup deviation measure can be computed differ-
ently depending on the nature of the target attribute. For
a categorical targets at with domain Vt = {v1, . . . , vk} the
measure is given as

f t
dv(s) =

k∑
i=1

|pt
S(i)− pt

D(i)|

where S = s(D) is the extension of s and pt
X ∈ [0, 1]k,

defined by

pt
X(i) = |{d ∈ X : at(d) = vi}| / |X| ,

34

is the empirical distribution of target values with respect to
some subset of the data X ⊆ D. Hence, Eq. (1) includes
well-known subgroup discovery measures such as Weighted
Relative Accuracy and the Binomial Test. In case of a nu-
merical target, the deviation can be computed by fitting a
continuous distribution and then approximating the total
variation distance. Here, for simplicity we assume a normal
distribution with mean µ =

∑
d∈D at(d)/ |D| and variance

σ2
X =

∑
d∈X

(at(d)− µX)2/(|X| − 1)

for the global data; and for the pattern a normal distribution
with µS =

∑
d∈s(D) at(d)/ |s(D)| and the same variance as in

the global data. The target deviation can then be expressed
much simpler as

f t
dv(s) = 2

∣∣∣∣∣erf

(
µS − µD

2
√

2σ2
D

)∣∣∣∣∣ ,
where erf denotes the Gauss error function. This is equal
to twice the probability mass of N (µD, σ

2
D) that is at most

(µS − µD)/2 standard deviations away from the mean µD.

References
Abraham Bernstein, Foster Provost, and Shawndra Hill. To-

ward intelligent assistance for a data mining process: An
ontology-based approach for cost-sensitive classification.
Knowledge and Data Engineering, IEEE Transactions on,
17(4):503–518, 2005.

Michael R Berthold, Nicolas Cebron, Fabian Dill, Thomas R
Gabriel, Tobias Kötter, Thorsten Meinl, Peter Ohl,
Christoph Sieb, Kilian Thiel, and Bernd Wiswedel. KN-
IME: The Konstanz information miner. Springer, 2008.

M. Boley, S. Moens, and T. Gärtner. Linear space direct pat-
tern sampling using coupling from the past. In Proceed-
ings of the 18th ACM SIGKDD international conference
on Knowledge discovery and data mining, pages 69–77.
ACM, 2012.

Longbing Cao. Actionable knowledge discovery and deliv-
ery. Wiley Interdisciplinary Reviews: Data Mining and
Knowledge Discovery, 2(2):149–163, 2012.

Nicolo Cesa-Bianchi and Gábor Lugosi. Prediction, learning,
and games. Cambridge University Press, 2006.

Tijl De Bie. Maximum entropy models and subjective inter-
estingness: an application to tiles in binary databases.
Data Mining and Knowledge Discovery, 23(3):407–446,
2011.

Usama Fayyad, Gregory Piatetsky-Shapiro, and Padhraic
Smyth. From data mining to knowledge discovery in
databases. AI magazine, 17(3):37, 1996.

Uriel Feige, Vahab S Mirrokni, and Jan Vondrak. Maximiz-
ing non-monotone submodular functions. SIAM Journal
on Computing, 40(4):1133–1153, 2011.

Marshall L Fisher, George L Nemhauser, and Laurence A
Wolsey. An analysis of approximations for maximizing
submodular set functions—II. In Polyhedral combina-
torics, pages 73–87. Springer, 1978.

Liqiang Geng and Howard J Hamilton. Interestingness mea-
sures for data mining: A survey. ACM Computing Surveys
(CSUR), 38(3):9, 2006.

Bart Goethals, Sandy Moens, and Jilles Vreeken. Mime: a
framework for interactive visual pattern mining. In Ma-
chine Learning and Knowledge Discovery in Databases,
pages 634–637. Springer, 2011.

Henrik Grosskreutz, Mario Boley, and Maike Krause-
Traudes. Subgroup discovery for election analysis: a case
study in descriptive data mining. In Discovery Science,
pages 57–71. Springer, 2010.

Mark Hall, Eibe Frank, Geoffrey Holmes, Bernhard
Pfahringer, Peter Reutemann, and Ian H Witten. The
weka data mining software: an update. ACM SIGKDD
Explorations Newsletter, 11(1):10–18, 2009.

W. Klösgen. Explora: A multipattern and multistrategy
discovery assistant. In Advances in Knowledge Discovery
and Data Mining, pages 249–271. 1996.

Ingo Mierswa. Rapid miner. KI, 23(2):62–63, 2009.

Katharina Morik and Martin Scholz. The miningmart ap-
proach to knowledge discovery in databases. In Intelli-
gent Technologies for Information Analysis, pages 47–65.
Springer, 2004.

K. Raman, P. Shivaswamy, and T. Joachims. Online learning
to diversify from implicit feedback. In Proceedings of the
18th ACM SIGKDD international conference on Knowl-
edge discovery and data mining, pages 705–713. ACM,
2012.

Pannaga Shivaswamy and Thorsten Joachims. Online struc-
tured prediction via coactive learning. In Proceedings of
the 29th International Conference on Machine Learning,
(ICML 2012), 2012.

Koen Smets and Jilles Vreeken. Slim: Directly mining de-
scriptive patterns. In Proceedings of the Twelfth SIAM
International Conference on Data Mining (SDM 2012),
pages 236–247, 2012.

Matthijs van Leeuwen and Arno J. Knobbe. Non-redundant
subgroup discovery in large and complex data. In Machine
Learning and Knowledge Discovery in Databases - Euro-
pean Conference, ECML PKDD 2011, Athens, Greece,
September 5-9, 2011, Proceedings, Part III, pages 459–
474, 2011.

Geoffrey I. Webb. Self-sufficient itemsets: An approach
to screening potentially interesting associations between
items. TKDD, 4(1), 2010.

Geoffrey I. Webb. Filtered-top-k association discovery. Wi-
ley Interdisc. Rew.: Data Mining and Knowledge Discov-
ery, 1(3):183–192, 2011.

Dong Xin, Xuehua Shen, Qiaozhu Mei, and Jiawei Han.
Discovering interesting patterns through user’s interactive
feedback. In Proceedings of the 12th ACM SIGKDD in-
ternational conference on Knowledge discovery and data
mining, pages 773–778. ACM, 2006.

35

