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ABSTRACT
In this paper we describe an algorithm for clustering mul-
tivariate time series with variables taking both categorical
and continuous values. Time series of this type are frequent
in health care, where they represent the health trajectories
of individuals. The problem is challenging because categori-
cal variables make it difficult to define a meaningful distance
across trajectories.

We propose an approach based on Hidden Markov Mod-
els (HMMs), where we first map each trajectory into an
HMM, then define a suitable distance between HMMs and
finally proceed to cluster the HMMs with a method based
on a distance matrix. We test our approach on a simulated,
but realistic, data set of 1,200 trajectories of individuals of
age 45 and over. In addition to our preferred definition of
distance between HMMs, based on the Kullback-Leibler di-
vergence, we test an alternative definition and obtain a very
similar cluster structure. The proposed method can be im-
plemented quite simply with standard tools and packages in
R and Matlab and may be a good candidate for solving the
difficult problem of clustering multivariate time series with
categorical variables.

Categories and Subject Descriptors
H.3.3 [ Information Search and Retrieval]: Clustering
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1. INTRODUCTION
The interaction of a patient with the health care system

takes place at different points in space and time. This im-
plies that in many cases the natural unit of observation for
health care research is the entire trajectory of a patient. As
linked data and personal health records become more easily
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available we expect that both researchers and health care
stakeholders will have an increasing need for tools that can
be used to analyze health trajectories.

A very common type of analysis one may need to perform
on health trajectories is clustering. For example an insurer
may wish to cluster claims trajectories in order to better
account for risk categories, and a health regulator may need
to cluster administrative data trajectories for the purpose of
defining appropriate groups for activity based funding.

Clustering trajectories requires to define a proper notion
of distance and to preserve the information about the order-
ing of the events, which are both challenging tasks. Tra-
ditional clustering techniques do not extend naturally to
the domain of trajectories, and a fair amount of research
has been performed on this subject. Most of the literature
focuses on continuous valued time-series (possibly multi-
dimensional) [16], which are much easier to analyze (and
visualize) than time series of categorical variables.

Unfortunately, the time series we expect to find in health
care related research are likely to contain a mix of categor-
ical and continuous variables. Categorical variables may be
used to denote a health condition (such as breast cancer,
or diabetes), or a risk factor (such as smoking), the use of
medication and the administration of a procedure or of a
laboratory test. Continuous variables may arise in conjunc-
tions with claims, costs and results of laboratory tests (such
as glucose or cholesterol levels).

As a consequence, in order to make our research relevant
for health care applications, in this paper we focus on the is-
sue of clustering trajectories with a method that can handle
both continuous and categorical variables at the same time.

Our approach is conceptually simple: since time series of
continuous and categorical variables are difficult objects to
deal with, we replace each time series with a model that
is likely to generate it, and then perform the clustering in
the space of models. As generative models we use Hidden
Markov Models (HMMs) [22], extended to allow for covari-
ates [2, 25]. Clustering HMMs is possible because to each
HMMs we can attach the likelihood of generating any given
trajectory, and the likelihoods can be used to define dis-
tances between HMMs. In turns this allows us to use any
clustering technique which is based on a distance matrix.

The approach taken in this paper is similar in spirit to
the one taken by Ramoni and collaborators [18, 19], which
is based on Markov Chains rather than HMMs, and we will
argue in the next section that for applications in health care
HMMs with covariates might be a more appropriate starting
point than Markov Chains.



2. HIDDEN MARKOV MODELS
Hidden Markov Models (HMMs) are a class of probabilis-

tic models that were introduced in late 60s [4] and proved
to be extremely useful in a variety of disciplines, includ-
ing speech recognition, weather prediction, financial time
series analysis, robotics, detecting protein homologies and
computer vision [13, 22, 25]. The feature that distinguishes
HMMs from the more conventional Markov chains is the fact
in HMMs the state of the system is not observed. What is
observed is the collection of values taken by a number of vari-
ables, whose probability distribution depends on the hidden
state.

For the sake of mathematical and computational tractabil-
ity the following assumptions are usually made: 1) the hid-
den states form a Markov chain, and 2) the probability
distribution of an observation only depends on the current
state. Therefore an HMM can be represented by a triple of
parameters: the probability distribution of the initial state,
the transition matrix for the hidden states, and the proba-
bilities of the observations conditional on the hidden state.

HMMs are particularly appealing in the health care set-
ting because they capture the notion that the health state
of an individual is not a well defined quantity, and that the
observations available on an individual only capture certain
dimensions of health, and do not necessarily get to underly-
ing construct of health state.

Therefore it seems reasonable to assume that a person’s
health state remains unobservable, and the only quantities
that we can observe are certain “manifestations” of the hid-
den state. This is very much in line with the approach taken,
usually in a static setting, by Latent Class Analysis (LCA).
Based on the success of LCA in a wide range of applica-
tions [12], it seems likely that HMMs will prove to be a
valuable tool for the analysis of dynamic data sets in health
care. In addition, recent advances in HMM theory [25] al-
low to incorporate easily time-dependent covariates into the
model, so that unrealistic stationarity assumption do not
need to be made. In the next section we will discuss how we
plan to use HMMs to solve the problem of clustering health
trajectories.

3. METHOD
In this section we describe our method in fairly general

terms, leaving some of the details for section 4, that dis-
cusses the experimental results. Our starting point is a set
of N health trajectories Ti corresponding to N distinct in-
dividuals, where each trajectory is a matrix with d columns.
Each column is the time series of a categorical or continu-
ous variable. The d time series will be in general correlated,
and we refer to the variables they represents as the “observ-
ables”. The lengths of the trajectories do not have to be
the same across individuals, but the observables must be
defined for all individuals, meaning that we are taking the
same measurements for all individuals in the data set.

Clustering the trajectories Ti is difficult because there is
no obvious notion of similarity between trajectories. If all
the observables were continuous-valued variables the prob-
lem would be easier, since in that case several notions of
distance are available (for example, the Frechet distance [1]).

Since in most applications to health care we expect that
many of the observables will be categorical we accept the
fact that there is no obvious metric structure on the set
of trajectories and take a different approach: we replace
each trajectory with a probabilistic generative model, that

is a set of probabilistic rules that are likely to generate that
trajectory. Then, rather than comparing two trajectories we
compare the models that generated them.

This approach is attractive because, as we will discuss in
more details in section 3.1, there is a natural way to compare
probabilistic models that generate random trajectories: two
models are similar if the probability distributions of the tra-
jectories they generate are similar. Therefore the ill-defined
problem of comparing two trajectories has been replaced by
the well-defined (although not necessarily easy) problem of
comparing two probability distributions.

As explained in section 2 our preferred class of probabilis-
tic models is HMMs. This means that each trajectory Ti
is mapped into an HMM λi. In order to avoid making sta-
tionarity assumption we use HMMs that allow the model
probabilities to depend on a specific set of covariates [2,25].
In order to fit an HMM model λi to the trajectory Ti one
needs to decide the number of hidden states. This need not
to be the same for all trajectories (for example if the length
of the trajectories has high variance), and can be done using
a variety of methods [20,25].

Once the N HMMs models λi have been fit one can apply
the preferred notion of distance D(·; ·) between two HMMs
to define a distance matrix Dij ≡ D(λi;λj). This effectively
defines the distance between two trajectories as D(Ti;Tj) ≡
D(λi;λj), which was the most difficult obstacle to cluster-
ing. Armed with a distance matrix one can then apply one
of several clustering algorithms, such as Partition Around
Medoids (PAM) [14], spectral clustering [17] and hierarchi-
cal clustering [10], whose sole input is a distance matrix, and
do not require manipulations of the objects underlying that
matrix, as in the standard k-means algorithm. Therefore,
once the distance matrix Dij has been determined the prob-
lem can be considered solved, since standard methods can
then be applied.

In the next section we describe in more details how a dis-
tance between HMMs can be computed and the choices we
made in practice.

3.1 Definition of distance between HMMs
The need to compare different HMMs through an appro-

priate distance measure is not new, and has arisen in a va-
riety of contexts such as speech recognition [9, 21, 22], doc-
ument and image classification [5], time series prediction [7]
and of course in the literature on clustering HMMs [6,11].

In order to define a meaningful distance between two HMMs
researchers have used the fact that it is easy to compute, by
means of the forward-backward algorithm [21], the likeli-
hood Pij ≡ P (Ti | λj) of observing a trajectory Ti given
a model λj , and that likelihoods can be used to define dis-
tances.

The key observation is that the likelihood of a trajectory T
given an HMM model λ, P (T |λ), can be seen as a probability
density on the space of trajectories, and a standard notion of
distance between probability densities already exists, being
the Kullback-Leibler (KL) divergence [15]. Therefore the
distance between models λi and λj could be measured as
the KL distance between P (T |λi) and P (T |λj), which is:

DKL(P (T |λi);P (T |λj)) ≡
∫
dTP (T |λi) log

P (T |λi)
P (T |λj)

(1)

The expression above is quite difficult to compute since it
requires to integrate over the space of trajectories [9, 11].
Therefore we settle for an approximation of it: we replace



the integral over the space of trajectories with a sum over the
space of trajectories that have been actually observed, under
the assumption that they are sufficiently representative of
the bigger space.

Operationally, for each model λj we create a likelihood
vector P (Tk|λj), k = 1, . . . , N , that we normalize to one,
obtaining a discrete probability distribution P ∗j over the set
of observed trajectories. The KL distance between two dis-
crete distributions p and q is easy to compute, since it is

Ddisc
KL (p; q) ≡

∑
α

pα log
pα
qα

Therefore we define the distance between model λi and
model λj as

DKL(λi;λj) ≡
1

2

(
Ddisc
KL (P ∗i ;P ∗j ) +Ddisc

KL (P ∗j ;P ∗i )
)

(2)

where we have “symmetrized” the expression to account for
the fact that the KL distance is not symmetric.

While it is not the purpose of this paper to perform a com-
parison among distance measures for HMMs, as was done
in [11], we do want to demonstrate that our method is not
unstable, and that a change in the distance definition does
not lead to a very different result. Therefore we adopt a
second definition of distance, fully aware that we are using
the word “distance” not in the strictly mathematical sense.

The second definition is motivated by the observation that,
intuitively, two models are different if they differ in the prob-
ability of generating the same trajectory [22]. For exam-
ple, defining the log-likelihoods Lij ≡ logPij , we expect the
terms Lii − Lij and Ljj − Lji to be large if λi and λj are
different. This led Yin and Yang [24] to define the following
distance

DY Y (λi, λj) = |Lii − Lij + Ljj − Lji| (3)

Porikli [20] introduced a similar distance using likelihoods
instead of log-likelihoods. However, we prefer the Yin and
Yang (YY) distance because the log-likelihood has better
information theoretical properties [22]. In addition, the term
Lii−Lij and its symmetric counterpart in equation 3 can be
seen as a very crude approximation of the KL distance. In
fact, if we assume that the conditional probability P (T |λi)
in equation 1 is highly concentrated around the trajectory
Ti, then the integral in that expression can be estimated by

the “one point approximation” log P (Ti|λi)
P (Ti|λj)

= Lii − Lij .
To summarize, while our preferred distance is the KL dis-

tance because it makes use of more information, we consider
in this paper also the YY distance, so that we can study the
stability of the results to a change in distance metric.

4. AN EXPERIMENT WITH
REALISTIC, SIMULATED DATA

We begin with a description of the simulated data set we
used for the experiment.

4.1 Data
The data for our study come from a simulation based on

the 45 and Up Study dataset [3]. The 45 and Up Study is
based in the population of the state of New South Wales
(NSW), Australia. Prospective participants were randomly
sampled from the enrolment database of Medicare Australia,
which provides near complete coverage of the population.
People 80+ years of age and residents of rural and remote
areas were oversampled. A total of 267,153 participants

joined the Study by completing a baseline questionnaire (be-
tween Jan 2006 and April 2009) and giving signed consent for
follow-up and linkage of their information to routine health
databases. About 18% of those invited participated and par-
ticipants included about 11% of the NSW population aged
45 years and over.

A subset of 60,000 participants was interviewed two to
three years after baseline, as part of the Social, Economic
and Environmental Factors (SEEF) study. The longitudinal
structure of this data set allowed us to estimate transition
probabilities between health states over a two years inter-
val. Applying repeatedly the transition probabilities to the
original 45 and Up data we obtained a Markov model that
we used to generate over 260,000 health trajectories. The
trajectory of an individual stops when the individual dies,
where the probability of dying was estimated using data
from the Australian Bureau of Statistics mortality dataset
linked to the 45 and Up data.

The health state of an individual was defined by a vector of
binary and categorical variables associated to the following
chronic conditions and risk factors: heart disease, diabetes,
stroke, hypertension, cancer, BMI status and smoking status
(current smoker, quit smoker, not a smoker).

All the transition probabilities of the model were esti-
mated using probit regressions that included as covariates
the previous health state, age, gender, income, education,
and insurance status. The error terms in the probit regres-
sions are correlated, so that the time series of different health
conditions are correlated and reflect the observed patterns
of co-morbidities.

We underscore that the model underlying these data is
much more complex than the HMM used in our experiments.
In addition, there is no guarantee that we will find any clus-
ters, since we have not artificially introduced any clustering
structure, and therefore we consider this model quite realis-
tic.

4.2 Experimental Results
In order to test the feasibility of the method that we pro-

posed we selected a subset of the 260,000 synthetic trajec-
tories generated as described in section 4.1. Our goal was
to use a set that was sufficiently complex and that exhib-
ited a high degree of variability. We wanted to avoid using
“trivial” trajectories, in which an individual never develops
any disease or only develops a condition prior to death, since
those are easy to differentiate from the others. Therefore we
picked a set of 1,200 trajectories associated with the individ-
uals who developed all the three health conditions of heart
disease, stroke and diabetes at some point during their life,
and included the Body Mass Index (BMI) as a time varying
covariate. We did not include any continuous valued variable
because none were available, but it is important to note that
HMMs handle continuous and categorical variables equally
well, and therefore this is not a concern.

The average age of the cohort is approximately 60, and
the length of trajectories is about 18 on average, although
it does vary between 4 to 20 time steps, where a time step
corresponds to a period of two years of life.

The trajectory for individual i is therefore represented by
4 time series (Hit, Dit, Sit,BMIit), which correspond to the
variables for heart disease (H), diabetes (D), stroke (S) and
BMI. It is important to underscore that the simulated data
are realistic and therefore the four time series for each indi-
vidual are correlated. Methods that treat the time series as



independent (such as the one in [18]) would not be appro-
priate in this context, and probably not appropriate in most
health care applications.

For each of the 1,200 trajectories Ti we estimate a corre-
sponding HMM λi using BMI as a time varying covariate.
The estimation is performed in R using the package dep-

mixS4 [23]. We performed a preliminary analysis and found
that most of the times an HMMs with three hidden states
was preferable, although for short trajectories two hidden
states would suffice. Since the purpose of the paper is to
demonstrate the validity of the method and not solve a par-
ticular problem optimally we opted for simplicity and used
three hidden states for all the trajectories.

Once we estimated the HMMs we used the standard forward-
backward algorithm [21] to compute the likelihoods P (Ti|λj),
that were then used as input for the algorithms described in
section 4.1 to compute KL and YY distance matrices.

Clustering is performed, on each of the matrices, using
the Partition Around Medoids (PAM) algorithm [14]. The
PAM algorithm takes as input the number K of clusters.
Since that is unknown, we tried values of K from 2 to 7, and
then used the Dunn Index [8] to select the optimal number
of clusters. The Dunn Index is defined in terms of the intra-
cluster distance, which measures the mean distance between
all pairs of points in a cluster k, and the inter-cluster dis-
tance, which measures the mean of the pairwise distances
between points in cluster Ci and Cj . A higher value of the
Dunn index denotes a better clustering.

In order to remove dependence from the initial conditions
the PAM algorithm was run 100 times for each value of K,
and the clustering with the best Dunn Index was chosen as
the result corresponding to K clusters.

In Figure 1 we show the Dunn Index as a function of the
number of clusters K for both the KL and the YY distance.
For the YY distance the Dunn Index is maximum for two
clusters, while for the KL distance it achieves its maximum
for three clusters. However, the Dunn Index for the YY
distance takes very similar values at K = 2 and K = 3,
and therefore in order to compare the results between the
YY and the KL distance we choose K = 3 as our preferred
number of clusters.
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Figure 1: The Dunn Index for both the YY and
the KL distance plotted as a function of the number
of clusters K. In order to produce this plot, for
each fixed number of clusters K the PAM algorithm
was run 100 times and only the result with the best
Dunn Index was plotted for that K.

In order to convince ourselves that three is a reasonable
number of clusters for these data we use Multidimensional
Scaling (MDS) to visualize the cluster structure. MDS works
by finding a set of points in an d-dimensional Euclidean
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Figure 2: MDS in three dimensions applied to the
KL (a) and the YY (b) distance matrices. There are
1,200 points in each plot, one for each of the trajec-
tories. We used the PAM algorithm to define three
clusters, and we color-coded the points according to
which of the three cluster they belong. The color
coding is performed independently for the two sets
of points, so points of one color in figure (a) cannot
be matched to points of the same color in figure (b):
this is just a depiction of the metric structure of the
data and of the results of the clustering algorithm.

space such that the distance matrix of these points is as
similar as possible to a given distance matrix D. By choos-
ing d equal to two or three one can plot the location of these
points and obtain an intuitive representations of how the
points that generated the original distance matrix D relate
to each other.

In our case we choose d equal to three, and for each of the
distance matrices associated to the KL and to the YY dis-
tances we find a corresponding set of points in three dimen-
sions. We then plot these points and assign them a unique
color depending on which cluster they are in. We manually
rotate the plotting view until we find one that best shows the
cluster structure. The results of this procedure are shown
in Figure 2.
While figure 2 does suggest that three clusters exists in the
data, MDS is only a visual help and does not tell us anything
about what is the content of these three clusters, or whether
the grouping that we found is sensible. In order to interpret
the meaning of the clusters we define, for each trajectory,
a set of continuous valued features that characterize it, and
then compare the means of these features across the three
clusters, looking for some meaningful patterns.



Since a common measure used in health care research is
the amount of time spent with a certain health condition,
we compute for each trajectory the percentage of time that
the individual spends with specific combinations of the three
health conditions we have considered. We consider all the
possible combinations (although they are not independent),
that we label H, D, S, HD, HS, SD, HSD, where H stands
for heart disease, D for diabetes and S for stroke. We also
compute the percentage of the time spent in one of the three
BMI states: normal, overweight and obese. We purposefully
neglect the underweight state because it is relatively rare in
this sample. As a result, each trajectory can be associated
with a “profile” of 10 features, where each feature represents
the percentage of the trajectory spent with a certain health
condition. It is important to underscore that the features
are not exclusive: so “time spent with heart disease” does
not mean “time spent exclusively with heart disease”.

In Figure 3 (a) and (b) we show average, cluster-specific
profiles for the three clusters obtained using the KL dis-
tance and the YY distance respectively. More specifically,
for each cluster and for each distance definition we show
the average percentage of trajectory spent with 10 different
health conditions. From this figure we can draw the follow-
ing conclusions:

• the three clusters are composed of individuals with sig-
nificantly different health trajectories. This is clear from the
fact that the profiles corresponding to the different clusters
are sufficiently different.

• the profiles are easily interpretable and show meaningful
groupings. For example, looking at panel (a) we notice that
people in cluster 2 (the blue profile) spent more than half of
their trajectories with heart disease, diabetes and stroke at
the same time. Individuals in cluster 1 and 3 are different,
because they only spent 20 to 30 percent of their trajectories
in such a state. What differentiates cluster 1 from cluster
3, however, is the time spent with two conditions: people in
cluster 1 spent considerable time with diabetes and stroke,
but not with heart disease, while people in cluster 3 spend
considerable time with heart disease and diabetes, but not
stroke. A similar interpretation is valid for panel (b).

• the KL distance and the YY distance find three clusters
with qualitatively similar profiles. If we “read” panel (b) we
find that it tells a very similar story to the one of panel
(a). In fact, we were able to match the clusters obtained
with the two distances, and color coded them in the same
way. While the heights of the profiles are not exactly the
same, and for example the profile of cluster 3 in panel (b) is
about 10 percentage points too low compared to its partner
in panel (a), the profiles have very similar shapes. The sizes
of the clusters are also quite similar, although the size of
cluster 1 in panel (a) is small compared the one in panel
(b).

In order to confirm that individuals in the three clusters
are indeed different we also looked at some baseline charac-
teristics of the individuals in the three clusters, measured at
the beginning of their trajectory. While these variables do
not enter the HMMs, they were used to generate the simu-
lated data, and therefore we expect them to be correlated
with the health trajectories.

In Table (1) we show the distribution of some socio-economic
variables and risk factors for people in the three clusters
found with the KL distance (results for the YY distance are

similar). Without discussing each table entry, we merely
point out that the tables show, for many variables, signifi-
cant differences across clusters. In a real world application
a table of this type would be used to understand the com-
position of the clusters that have been discovered.

H S D HSD HS HD SD Normal Overweight Obese
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

%
 o

f 
T

ra
je

ct
o

ry
 s

p
en

t 
w

it
h

 H
ea

lt
h

 C
o

n
d

it
io

n

 

 
Cluster1 (N=239)
Cluster2 (N=597)
Cluster3 (N=364)

(a) KL distance

H S D HSD HS HD SD Normal Overweight Obese
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

%
 o

f 
T

ra
je

ct
o

ry
 s

p
en

t 
w

it
h

 H
ea

lt
h

 C
o

n
d

it
io

n

 

 

Cluster1 (N=341)
Cluster2 (N=556)
Cluster3 (N=303)

(b) YY distance

Figure 3: Profiles of the three clusters in the fea-
ture space, for the KL distance (panel a) and the
YY distance (panel b). The features correspond to
the percentage of the trajectory time spent with dif-
ferent combinations of health conditions (H for heart
disease, S for stroke and D for diabetes) and with
different BMI status. For example, in panel (a), the
height of the profile of cluster 3 (green) for feature
“H” is 55%. This means that, on average, individu-
als in cluster 3 (defined using the KL distance) spent
55% of their trajectory time with heart disease.

5. CONCLUSION
While there is significant literature on the problem of clus-

tering time series of continuous variables [16], much less is
known when the time series consist of categorical variables.
In this paper we have described a clustering method that is
indifferent to the distinction of continuous versus categori-
cal.

Our goal was to devise a method that was sound but
also easy to implement and accessible to a large group of
researchers, possibly in the field of health care, where we
expect the problem of clustering health trajectories will be-
come more and more relevant. The method is sound because
it is based on the well-tested approach of embedding a time
series into a dynamic model. The crucial step of the method
is in the approximate computation of the KL distance be-
tween two HMMs. The fact that when using the alternative
YY distance (which utilizes less information) we obtain sim-
ilar results suggests that the method is robust to the choice
of distance. Whether the approximate KL distance is better
than the YY distance remains to be seen, and may depend
on the specific problem at hand.

The data set on which we tested the algorithm was sim-
ulated but realistic, because it was generated by a model



Table 1: Distributions of some socio-economic vari-
ables and risk factors for the individuals in the three
clusters found using the KL distance. The table
shows that individuals in the three clusters are dif-
ferent in meaningful ways. For example, people in
cluster 2 have the highest prevalence of hyperten-
sion (84%). This is sensible since Figure 3 already
showed that these people are the sickest group.

Trajectory Length Mean

Cluster1 17.80
Cluster2 18.04
Cluster3 18.20

Age Mean Std

Cluster1 61.28 8.38
Cluster2 59.58 7.81
Cluster3 57.95 7.62

Hypertension No Yes

Cluster1 0.18 0.82
Cluster2 0.16 0.84
Cluster3 0.24 0.76

Gender Female Male

Cluster1 0.56 0.44
Cluster2 0.55 0.45
Cluster3 0.61 0.39

Income Less than 20K 20-40K More than 40K

Cluster1 0.28 0.21 0.51
Cluster2 0.21 0.21 0.58
Cluster3 0.25 0.19 0.56

Smoking Not smoking Quit smoking Smoking

Cluster1 0.63 0.32 0.05
Cluster2 0.57 0.35 0.08
Cluster3 0.56 0.34 0.10

based on longitudinal survey data. The problem was chal-
lenging because the data contained trajectories of different
lengths corresponding to an heterogeneous population, and
it was not designed to contain any specific clustering struc-
ture. The algorithm discovered three clusters of significantly
different individuals, and it was easy to interpret their com-
position. The method seems promising, and we plan to test
it on increasingly more difficult problems.
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