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ABSTRACT

In biomedical text mining, entity recognition is often an
early task in the pipeline of analyzing free text. MetaMap,
the de facto standard software tool for this task, employs
much Natural Language Processing (NLP) machinery to rec-
ognize entities in UMLS (Unified Medical Language Sys-
tem), the largest metathesaurus. Knowing that the NLP
machinery is time-consuming, and that UMLS is rich in lex-
ical variations, this work investigates whether a fast, string
similarity-based method can achieve results comparable to
those of MetaMap. We implemented an NLP-light method
that performs fast MinHash lookups via character trigram
features. Starting with UMLS as the dictionary of entities,
we select a subset whose entity names are short and thus
amenable to a string similarity-based approach. We applied
the method to both scientific literature and layman-oriented
texts from Internet health portals. Our proposed method
achieved up to 83% precision and 78% coverage under a
strict rating scheme that penalizes failure in Word Sense
Disambiguation (WSD), at a throughput of 1,720 PubMed
abstracts or 175 web pages per minute. When compared to
MetaMap, our proposed method achieved comparable preci-
sion and 13% less coverage using less than 1% of the time.

Categories and Subject Descriptors

J.3 [Life and Medical Sciences]: Medical Information
Systems; 1.2.7 [Natural Language Processing]: Text Anal-
ysis
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1. INTRODUCTION

In recent years, the amount of biomedical information has
grown tremendously. Much of this information is published
as free texts in scientific literature as well as layman-oriented
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health portals on the Internet. The Biomedical Natural Lan-
guage Processing (BioNLP) community has responded by
developing and applying various text mining techniques in
order to extract this information buried in free texts.

In a BioNLP text mining pipeline, recognizing entities in
these free texts often serves as an early task, upon which
other downstream tasks depend. Knowledge harvesting, for
instance, requires text mentions to be mapped to entities
in a dictionary before relations between them can be an-
alyzed. Downstream tasks not only depend their success
on the quality of the entities recognized; they may not even
begin before the entity recognition task is completed. There-
fore, it is crucial that a biomedical entity recognition method
provides both high quality and high throughput.

Entity recognition in the biomedical domain presents unique
challenges uncommon to the general domain. Biomedical
texts, especially scientific literature geared towards profes-
sionals, are steep in specialized jargons. Biomedical concepts
are often expressed in long phrases with a large number of
variations. Given a text mention, there is often a high degree
of ambiguity for the text mention-entity mapping. In fact,
there is often inherent vagueness in the text regarding the
precise type of the entity; whether high blood pressure is a
disease, a symptom, or a risk factor to a disease is not easily
distinguishable even given the context. Word Sense Dis-
ambiguation (WSD) is therefore a closely related research
topic, whose contribution can greatly refine the output of
an entity recognition method.

To counter these challenges, entity recognition has been
a major area of research within the BioNLP community.
Over the past decade, MetaMap [1] has become the de facto
standard software tool for general-purpose biomedical entity
recognition. Employing much Natural Language Processing
(NLP) machinery, MetaMap trades off higher quality with
lower throughput. As text collections grow in size, this lower
throughput gradually becomes the bottleneck of a BioNLP
text mining pipeline. In our experience, without paralleliza-
tion, processing 600k PubMed' abstracts — a small portion of
over 16m English abstracts in the entire collection — takes 26
days (3.8s per abstract using a single instance of MetaMap).
On the other hand, we observe that MetaMap takes UMLS
(Unified Medical Language System)? as its dictionary of en-
tities. UMLS is the largest metathesaurus, rich in synonyms
and lexical variations. This observation spurs us to inves-
tigate an alternative entity recognition method that is fast
and exploits this lexical richness.
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This work presents a string similarity-based method for
biomedical entity recognition aimed at minimizing the use
of NLP machinery, and thus processing time. The key ingre-
dient of the method is MinHash [2], a variant of the Locality
Sensitive Hashing (LSH) [4] algorithm that transforms a dic-
tionary lookup into a hash lookup with high probability of
success. Together with judicious selection of a subset of the
UMLS dictionary and simple heuristics in selecting which
text mentions to perform lookups for, our method achieves
up to 83% precision, under a strict rating scheme that pe-
nalizes failure in WSD, at 35ms per abstract. By comparing
our results to those of MetaMap, we hope to demystify the
contributions of NLP components in an entity recognition
machine.

2. RELATED WORK

Entity recognition in the biomedical domain often focuses
on a specific sub-domain. Proteins and genes are the most
popular sub-domain to date. BioCreative has been driv-
ing the community with the gene mention normalization
task [8], that is, to map a text mention of a gene or a gene
product to biological databases. Out of a large body of
works, there are a number of software tools publicly avail-
able, where Gimli [3] and ABNER [12] are two notable ones.
Besides recognizing proteins and genes, there are also works
focusing on chemical entities [11], disease names [7], and or-
ganisms [9], to name only a few. Other efforts contribute to
providing linguistic resources for the community, of which
BioLexicon [13] is a recent addition with over 2.2m lexical
entries. For general-purpose biomedical entity recognition,
however, MetaMap and UMLS remain the most widely used
resources.

String similarity-based methods are frequently employed
to perform various text-oriented tasks in the biomedical do-
main. Yamaguchi et al. [16] compare the performances of
four different string similarity metrics for the task of clus-
tering chemical and non-chemical abbreviations. Wellner et
al. [15] combine an adaptive string similarity model with
conditional random fields to pick up protein names in free
text. String similarity metrics can be cast as a machine
learning problem, as Tsuruoka et al. [17] propose — given
protein names, learn the metric via logistic regression. The
resulting metric is later used to look strings up from a dic-
tionary of protein names.

LSH is a proven technique used in numerous applications,
especially when one requires speed in working with large
data sets. Ravichandran et al. [10] present an NLP exam-
ple, where nouns from a web corpus are clustered based on
cosine similarity. Chum et al. [5] present another, prominent
example in the area of computer graphics. The authors ex-
tend the hashing algorithm with weighted set similarity mea-
sures. The resulting algorithm is capable of detecting near
duplicate images and videos, and is highly scalable.

3. METHOD

3.1 Dictionary Lookup via MinHash

MinHash algorithm. LSH [4] is a probabilistic method
that reduces the dimensions of a high-dimensional data set.
Intuitively speaking, similar items in the data set are hashed
with high probability to the same bucket. MinHash (min-
wise independent permutations) [2], a variant of LSH, has

the additional property that the probability of two sets Si
and S2 being hashed to the same bucket is exactly their Jac-
card similarity:
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In our implementation of MinHash, we encode a string as
the set S of character trigrams of the string. Let w1, 72,
... 7 be hash functions from k independent min-wise per-
mutations, such that each m maps trigrams to integers. Then
m(S) is the set of integers thus mapped, and let min(w(S))
be the smallest integer in this set. The hash value, or sig-
nature, of the string is a concatenation of these smallest
integers from each permutation:

min(m1(S)) ® min(m2(S)) & - - - ® min(mi(S))

The concatenation operator is implemented as simple arith-
metic summation. [2] shows that, for each permutation m:

P[min(w(S1)) = min(w(S2))] = J(S1,S2)

To tune the MinHash parameters, we performed prelim-
inary experiments. Besides reviewing precision and recall,
we also wanted to minimize lookup time and bucket col-
lisions, or false positives. We applied MinHash to UMLS
dictionary entities, and looked up 500 random entity names.
The optimal parameters that yielded the best results were
as follows: choose k=30 from 14k permutations, project the
data set into 12m dimensions, and use 2 MinHash tables to
increase recall.

Dictionary construction. UMLS is made of up enti-
ties, called concepts in UMLS documentation, where one
entity is represented by one or frequently multiple entity
names bearing the lexical variations from different thesauri
sources. Being a potpourri of different thesauri with hetero-
geneous norms, UMLS contains entity names unsuitable for
a string similarity-based method. Specifically, entity names
featuring long strings are unlikely to appear verbatim in free
text. Including such entities in MinHash also clogs the hash
tables with unproductive signatures and increases collisions.
Therefore, we take only those entity names in UMLS that
are 5 words or shorter, and 100 characters or shorter. Using
the freely available (category 0) portion of the 2012AB data
set, the subset of UMLS thus obtained features 2.7m unique
entity-entity name pairs.

Many entities in UMLS already provide ample lexical vari-
ations such as singular and plural forms (for example in en-
tity C0020974 immunoglobulin injection, immunoglobulin in-
jections, and immunoglobulins injection), verb conjugations
(C0021107 smplant, implanted, and implanting), and differ-
ent word orders (C0021943 chromosome inversion and in-
version chromosome). Some entities, however, do not con-
tain such information. Since the MinHash implementation
relies heavily on the completeness of lexical variations, we
augment our subset of UMLS by generating missing varia-
tions.

The first augmentation concerns plural forms of nouns.
We use WordNet [6] to detect entity names that end with
an English noun, and then use MorphAdorner® to generate

3morphadorner.northwestern.edu



Number of Average number of
Corpus Genre articles selected | words in one article
PubMed abstracts from 2011 Scientific 5,000 181.47
PubMed Central literature 500 3,038.01
full-length articles from 2011
MayoClinic Health portal 500 1,793.47
UpToDate on the 500 2,570.94
Wikipedia health portal Internet 500 510.05

Table 1: Composition of test articles

the noun’s plural form. The entity C0751248 M’Naghten
rule, for instance, is augmented with the additional entity
name M’Naghten rules. This procedure generates 439k en-
tity names.

The second augmentation concerns verb conjugations. Start-

ing from entities featuring a single word, we first use Word-
Net to check that it is an English verb. Then we verify
that the corresponding entity belongs to UMLS-defined se-
mantic groups that feature verbs. We choose Activities €
Behaviors, Concepts & Ideas, Phenomena, Physiology, and
Procedures as the qualifying semantic groups, such that, for
instance, a gene named CASH is disqualified. After pass-
ing these tests, we apply MorphAdorner to conjugate the
verbs. Care is taken not to incorporate a generated vari-
ation when such an entity name already exists in UMLS,
because a pre-existing entity may well represent a semanti-
cally different entity. For instance, although from C0175735
shear the medical device we could generate shearing, that
entity name already exists as entity C0205013 the therapeu-
tic procedure. In this case, shearing is not used to augment
the medical device entity. This procedure generates 4,614
entity names.

False positive pruning. Due to the probabilistic nature
of MinHash, collisions of different entity names being hashed
to the same bucket are inevitable, leading to false positives.
We detect false positives by comparing the Jaccard similar-
ity of character trigram sets between a text mention and a
dictionary entity name. When the Jaccard similarity scores
below the threshold of 0.8, the entity name is discarded as
a false positive.

3.2 Selecting Text Mentions for Lookup

Fast and robust dictionary lookups contribute to only half
of the success. The other half comes from the module that
selects text mentions for lookups. We present two strategies
that adhere to the theme of minimizing NLP machinery.

Consecutive words. This strategy is nearly NLP-free:
simply take consecutive words as text mentions, and use
heuristics to trim the text mentions or discard undesirable
ones. We start with the word length of 1, or every single
word. Discard the word when it is a stop word, or when the
word has only 3 or fewer characters. When looking at word
lengths of 2 or more, remove any leading stop words. Dis-
card the text mention when there is a punctuation dividing
the words, as this indicates the text mention would not rep-
resent a coherent entity. Since the dictionary only contains
entity names up to 5 words long, we also limit the length of
text mentions to 5 words. Despite the large number of text
mentions generated, this strategy is viable because it is fast,
and the accuracy of mapped entities is taken care of by the

dictionary lookup module.

Noun phrases. This strategy is NLP-light: take only
noun phrases as text mentions. We use the Stanford CoreNLP
tool [14] to assign part-of-speech tags, and then use OpenNLP*
to perform noun phrase chunking. We further identify com-
plex noun phrases in the form of:

noun group — preposition — noun group
where a noun group is in the form of:
[[optional adverb] — optional adjective] — noun

Complex noun phrases allow us to capture text mentions
like shortness of breath and left lower lobe of lung, as well
as lobe of lung when the optional adjectives left lower are
omitted. Notice that this strategy generates strictly a subset
of those text mentions from the consecutive words strategy.
This distinction addresses the question regarding the bal-
ance between precision and recall, as we want to investigate
whether using more selective text mentions improves preci-
sion.

4. EVALUATION

We programmed the aforementioned MinHash method in
Java, and ran the experiments in standard Linux machines
with 8 Intel Xeon CPUs at 2.4GHz and 48Gb of main mem-
ory. To maximize lookup speed, the program loads the pre-
computed MinHash tables in main memory, at a one-off cost
of 20s when the program starts up. The collection of test
articles are randomly selected from both biomedical scien-
tific literature and layman-oriented health portals on the
Internet (see Table 1).

To ensure that MetaMap achieved the best possible per-
formance, we loaded the MetaMap program and all of its
associated data files into shared memory (shm). We cut
MetaMap’s runtime by half by issuing one request per ar-
ticle rather than one per sentence. In addition, MetaMap
used the 2012AB base data set, which corresponded to the
same portion of UMLS we constructed our dictionary from.
Finally, MetaMap provides scored entities for each text men-
tion. We only used the top-scoring entity in our evaluation;
where multiple entities shared the same top score, all of
those entities were taken into consideration.

4.1 Precision

UMLS entity names sharing the same lexical form often
represent semantically different entities. The text mention

4opennlp.apache.org



UMLS UMLS + P | UMLS + V | UMLS + PV MetaMap

sci web | sci web | sci web | sci web sci web
Consecutive words | 0.94 | 0.98 | 0.97 | 0.96 | 0.94 | 0.99 | 0.96 | 0.99 0.94 | 0.96
Noun phrases 0.91 [ 096 | 094 0.99 | 0.94 | 0.97 | 0.92 | 0.96 ’ ’

(a) Lenient rating scheme

UMLS UMLS + P | UMLS + V | UMLS + PV MetaMap

sci web | sci web i web | sci web sci web
Consecutive words | 0.71 | 0.81 | 0.74 | 0.71 | 0.67 | 0.80 | 0.75 | 0.83 079 | 0.81
Noun phrases 0.73 10781 0.78 1 0.83 | 0.64 [ 0.79 | 0.74 | 0.81 ' )

(b) Strict rating scheme

Table 2: Precision of the MinHash method and MetaMap

medicine can be mapped to entity C0013227 the pharma-
cologic substance, and to entity C0025118 the occupational
discipline. While our string similarity-based method lacks
the power to discern between these semantic differences,
MetaMap has a WSD module that removes incorrect en-
tities. In order to assess how much WSD contributes to
the final mappings, we evaluated precision using two rating
schemes. In the lenient rating scheme, as long as a text
mention is mapped to at least one correct entity, we rated
this text mention as correct. In the strict rating scheme, the
presence of any incorrect entity would rate the text men-
tion as incorrect. In other words, the strict rating scheme
penalizes failure in WSD.

Table 2 shows the precision results of our program un-
der various combinations of experimental setups. In the ta-
ble’s headers, UMLS denotes the UMLS-subset dictionary;
+P and +V denote augmenting it with the plural nouns
and verb conjugations respectively. sci and web denote the
genres of the test articles, namely scientific literature and
health portal on the Internet respectively. Each cell in the
table presents the precision evaluated from 100 randomly
sampled text mentions. Overall, the MinHash method trails
behind MetaMap in precision, though in a few settings their
precision results are comparable (between 4% worse to 2%
better). A few trends are observed:

Lenient vs. strict rating scheme. Under the le-
nient rating scheme, the MinHash method scores consis-
tently over 90% in precision. This result is expected, as
MinHash finds, for a text mention, all entity names in the
dictionary spelled similarly. Almost all the time, at least
one of these entity names would be the entity expressed in
the text mention. In fact, MinHash fails when the text men-
tion is spelled similarly to unrelated entity names and when
the correct entity does not offer a lexical variation similar
to the text mention. For instance, the word architecture in
the phrase interfere/nce] with sleep architecture is mapped
to entity C0003737 the occupation, the only entity name in
the dictionary with that spelling.

Naturally, both the MinHash method and MetaMap lose
precision under the strict rating scheme. While the Min-
Hash method loses between 15% to 30%, MetaMap only
loses 15% across all settings. MinHash’es heavier loss can
be attributed to its lack of WSD. A more precise diagnosis,
however, requires more in-depth investigation into the dis-
tribution of text mentions requiring WSD, together with the
distribution of UMLS entity names causing ambiguity.

Consecutive words vs. noun phrases. The precision
of text mentions selected via the noun phrases strategy is
generally lower than that via the consecutive words strat-
egy. We find this result surprising, as one would expect
noun phrases to be text mentions whose lexical variations
are likely to be found in the dictionary. Upon closer ex-
amination, it turns out that the root of the problem lies in
the noun chunks identified by the chunking tool. Many such
chunks are acronyms, numbers spelled out as English words,
and single words high in ambiguity such as form and sys-
tem — precisely the types of text mentions a simple string
similarity-based approach does not handle well. Compared
to the consecutive words strategy, the noun phrases strategy
uses a higher proportion of such problematic text mentions,
dragging the precision down.

Corpus genre. Precision observed in layman-oriented
articles generally outperforms that in scientific ones. One
contributing factor is the lack of acronym detection across
multiple sentences, as scientific literature features acronyms
more frequently. More importantly, we observe that sen-
tences in scientific articles — especially abstracts — are of-
ten long with convoluted sentence structures. As soon as
a text mention does not adequately express the full nature
of the corresponding entity, a simple string similarity-based
lookup would fail. A common example is the listing of mul-
tiple items, as in cell proliferation, differentiation and mi-
gration, where differentiation and migration are incomplete
text mentions, and only cell proliferation fully expresses the
entity.

One key observation here is that noun phrase chunking
does not rectify this situation. We conjecture that a better
solution lies in leveraging the sentences’ dependency parse
trees, such that text mentions may be properly constructed
before looking up the dictionary.

4.2 Coverage

To the best of our knowledge, although there are corpora
annotated for highly focused sub-domains such as proteins
and their interactions, there is none annotated with all types
of biomedical entities. To provide an indication of recall,
then, we rated every text mention in 30 random PubMed
abstracts from the test articles. We took the union of all cor-
rect text mentions mapped by either the MinHash method
or MetaMap, and let this larger set of text mentions be an
estimation of complete coverage. Using the lenient and strict
rating schemes, the 30 abstracts covered a total of 2,481 and
2,401 text mentions respectively.



MinHash con | MinHash NP [ MetaMap
Lenient 0.8420 0.2048 0.9105
Strict 0.7839 0.1930 0.9138

Table 3: Coverage of the MinHash method and MetaMap

Number of
other articles
per minute

Number of
PubMed abstracts
per minute

Number of words
per minute

MinHash con 1,720.19 175.15 339,508
MinHash NP 863.22 85.42 166,533
MetaMap 15.26 1.41 2,786

Table 4: Throughput of the MinHash method and MetaMap

Table 3 shows the coverage of the MinHash method and
MetaMap for these 30 abstracts. Since augmenting the UMLS
subset dictionary with verb and noun variations yielded the
best precision, here we used only this UMLS + PV dic-
tionary for the MinHash method. con and NP denote the
consecutive words and noun phrases strategies respectively.
Again, some trends are observed:

Low coverage of noun phrases strategy. The most
glaring observation in Table 3 is the low coverage of the
noun phrases strategy. Although disappointing, the num-
bers are not surprising. In the 30 abstracts, only 13% of
all words are chunked as noun phrases, and thus further
taken as text mentions for lookups by the MinHash method.
Compare this with the consecutive words strategy, where all
words regardless of parts-of-speech are considered, and verbs
in particular contribute to many text mentions. Under the
consecutive words strategy, 65% of all words are eventually
included in text mentions with (both correctly and incor-
rectly) mapped entity names.

MinHash and MetaMap complement each other.
Regardless of the lenient or strict rating scheme, MetaMap
achieves a stable coverage at 91%. As with precision, the
MinHash method with consecutive words strategy also trails
behind MetaMap in coverage, but is no rival here due to a
gap of up to 13%. Notice that neither the MinHash method
nor MetaMap finds every text mention in our estimated
complete coverage. Let us visit some notable patterns that
allude to the strengths and weaknesses of both programs,
which may shed some light on why both programs pick up
entities the other does not.

MetaMap is capable of analyzing text mentions syntacti-
cally, such that “less important” words within a text mention
may be skipped. Consider the text mentions aerobic anozy-
genic phototrophic bacteria and drug-endogenous substance
interaction. They are mapped to aerobic bacteria and drug
interactions respectively, which are indeed correct entities
despite losing some specificity. The MinHash method only
considers a sequence of words in its entirety, and would never
have found such coarser-grained entity names.

MetaMap’s syntactic analysis is not accurate all the time,
however. Where it makes a mistake is where the MinHash
method may prove complementary. Perhaps due to chunk-
ing errors, text mentions like shortness of breath and pain
breakthrough do not always remain intact; MetaMap may
split the text mention into shorter text mentions of single

words. Consequently, single words are mapped to their own,
separate entities, causing the original, longer text mention
as a whole to miss out on getting mapped to more applicable
entities. (Using the “term processing” option, one can force
MetaMap to take a text mention as-is without splitting it,
but this requires the user to provide the text mentions, which
in turn requires the user to precompute some linguistic anal-
ysis.) The MinHash method’s consecutive words strategy,
being blind to syntactic analysis, would always attempt to
lookup all text mentions consisting of a sequence of words.

Finally, MetaMap has built-in support for acronym detec-
tion, a feature that the MinHash method does not provide.
An acronym such as BAC represents four different entities,
and the correct entity can only be inferred from the spelled
out entity name usually appearing prior to the acronym in
the same article. Similar cases contribute to text mentions
the MinHash method misses but are picked up by MetaMap.

4.3 Throughput

We recorded the time required to apply the MinHash
method and MetaMap to all the test articles. Both text
mention selection strategies, consecutive words and noun
phrases, were performed using the UMLS + PV dictionary.
We report the average processing time from 5 repeated runs
in Table 4.

Employing almost no NLP machinery, the consecutive
words strategy is the fastest. The noun phrases strategy,
which uses light NLP machinery, takes twice as long as
the consecutive words strategy. Given that the consecutive
words strategy performs better in precision and coverage,
let us use this setting to revisit the scenario presented in the
Introduction. Instead of 26 days, processing 600k PubMed
abstracts now with the MinHash method will take less than
6 hours.

5.  CONCLUSIONS AND FUTURE WORK

MetaMap is the de facto standard biomedical entity rec-
ognition software tool that uses much NLP machinery. At
the cost of higher quality, however, is its lower through-
put. We presented an alternative, fast biomedical entity rec-
ognition method, with the aim of achieving near-MetaMap
quality at a fraction of the time. This alternative is a string
similarity-based method built upon the MinHash algorithm,
operating over a carefully constructed dictionary of entity
names based on UMLS. Using the consecutive words strat-



egy to select text mentions, the MinHash method achieves
a precision of up to 83% and a coverage of up to 78% under
the strict rating scheme. Our method’s precision is compa-
rable to that of MetaMap (between 4% worse to 2% better),
though our coverage trails behind MetaMap by 13%. It ap-
pears that while heavy NLP machinery does boost precision
and coverage, only a minority of text mentions benefit from
it; the majority of text mentions can be accurately mapped
to entities using the MinHash method alone. And since the
Java implementation of our method runs at two magnitudes
faster than MetaMap, we intend to utilize the time saved to
address that minority with appropriate NLP techniques.

Going forward, we would like to incorporate Word Sense
Disambiguation (WSD), as we believe it will have the most
impact on bridging the gap in quality. Secondly, to im-
prove the selection of text mentions, we would like to inves-
tigate the use of dependency parsing, which will hopefully
prove more beneficial than noun phrase chunking. Finally,
we would also like to leverage existing work on biomedical
acronym detection, and incorporate such a module into our
implementation.
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