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ABSTRACT

Currently, pharmacovigilance relies mainly on dispropor-
tionality analysis of spontaneous reports. However, the anal-
ysis of spontaneous reports is concerned with several prob-
lems, such as reliability, under-reporting and insufficient pa-
tient information. Longitudinal healthcare data, such as
Electronic Patient Records (EPRs) in which comprehen-
sive information of each patient is covered, is a complemen-
tary source of information to detect Adverse Drug Events
(ADEs). A wide set of disproportionality methods has been
developed for analyzing spontaneous reports to assess the
risk of reported events being ADEs. This study aims to
investigate the use of such methods for detecting ADEs
when analyzing EPRs. The data used in this study was
extracted from Stockholm EPR Corpus. Four dispropor-
tionality methods (proportional reporting rate, reporting
odds ratio, Bayesian confidence propagation neural network,
and Gamma-Poisson shrinker) were applied in two different
ways to analyze EPRs: creating pseudo spontaneous reports
based on all observed drug-event pairs (event-level analysis)
or analyzing distinct patients who experienced a drug-event
pair (patient-level analysis). The methods were evaluated in
a case study on safety surveillance of Celecoxib. The results
showed that, among the top 200 signals, more ADEs were
detected by the event-level analysis than by the patient-level
analysis. Moreover, the event-level analysis also resulted in
a higher mean average precision. The main conclusion of
this study is that the way in which the disproportionality
analysis is applied, the event-level or patient-level analysis,
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can have a much higher impact on the performance than
which disproportionality method is employed.
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1. INTRODUCTION

Drug safety has always been a crucial issue in the phar-
maceutical industry. Although the benefit-risk analysis of
newly developed drugs is already conducted in clinical tri-
als before they are released to the market, post-marketing
detection and surveillance is still necessary, since clinical tri-
als are normally done with limited samples of subjects and
within limited periods of time. Several drugs have been
withdrawn from the market due to safety issues. For exam-
ple, Cerivastatin was withdrawn worldwide in 2001 because
of causing fatal rhabdomyolysis [1]. During post-marketing
surveillance, potential safety hazards of a certain drug are
uncovered through analyzing different types of data source,
e.g., spontaneous reporting system (SRS) data, longitudinal
administrative or claim data, or electronic patient records
(EPRs) [2].

Currently, post-marketing drug surveillance largely relies
on SRS data, such as the Yellow Card scheme® in the UK,
Adverse Event Reporting System (AERS)? used by the Food
and Drug Administration (FDA) in the USA, and the World
Health Organization (WHO) International Database® main-
tained at Uppsala Monitoring Center (UMC) in Uppsala,
Sweden. These SRSs have been developed to collect informa-
tion about adverse drug events (ADEs) voluntarily reported

nformation available at https://yellowcard.mhra.gov.uk
“Information available at http://www.fda.gov/Drugs
3Information available at http://www.who-umc.org



by both clinical professionals and patients. They typically
contain drugs being taken, adverse events that occurred, and
occasionally some basic patient information. However, SRS
data has some obvious limitations, such as under-reporting,
problems with reliability and compliance, insufficient infor-
mation of patients’ medical history, and lacking the total
number of patients taking the drug of interest. Recently in-
creasingly available large databases of EPRs have been used
to complement such SRS data. The EPRs typically contain
longitudinal observational data of large samples of patients
including demographic information, medical history, drug
consumption with exposure time and dosage information,
clinical measurements, lifestyle factors, and clinical narra-
tives, which are also rich in information for detecting ADEs
[2].

Disproportionality analysis, widely used in post-marketing
drug surveillance, was initially designed to analyze data from
SRS for detecting drug safety signals that correspond to clin-
ical events associated with the use of one or more drugs.
These events can be any undesired medical occurrence in
a patient that has taken the drug. A signal indicating an
ADE is detected if the frequency of such an event, e.g., a skin
problem, deviates substantially from what is expected, i.e.,
when not taking the drug. The most common disproportion-
ality methods include Proportional Reporting Ratio (PRR)
[3], Reporting Odds Ratio (ROR) [4], Bayesian Confidence
Propagation Neural Network (BCPNN) [5], and Gamma
Poisson Shrinker (GPS) [6]. They count the drug-event pairs
from the reports and calculate the "observed-expected” ratio
of each drug-event pair.

Many studies applied disproportionality methods to in-
vestigate the safety of specific drugs with SRS data [3, 7, 8,
9]. However, the best methodology to detect ADE signals
with data from EPRs is still nascent. According to Madigan
and Ryan [10], the only way to find out is through exten-
sive empirical experimentation. So far, only a few studies
have investigated how to analyze longitudinal data using a
disproportionality method [11, 12] or several such methods
[13]. Zorych el al. [13] made the first attempt to extend
disproportionality methods to the analysis of administrative
claim data, where they proposed three counting approaches
to represent the events: distinct patient, pseudo SRS, and
modified SRS. In the first approach, all events are repre-
sented by distinct patients who experienced them; in the
second approach, all valid drug-event pairs, i.e., events as-
sociated to one or more drugs, are counted; and in the third
approach, besides valid drug-event pairs, events that are not
associated to any drug are also counted. The last two ap-
proaches lead to very similar results in their study. They
focused on the relative difference among those disproportion-
ality methods instead of the difference on their overall per-
formance between different counting approaches. However,
it is crucial to investigate the most suitable way to apply
disproportionality methods to EPRs. Therefore, this study
alms at evaluating two ways of adapting disproportionality
methods to EPRs: pseudo SRS and distinct patient. These
strategies are here referred to as event-level analysis and
patient-level analysis, respectively, to more clearly indicate
that the former is based on analyzing all events that occur
in conjunction with a drug, while the latter is based on an-
alyzing at most one event pair per patient. The data was

extracted from the Stockholm EPR, corpus® [14] and the
safety of Celecoxib was used as a case study.

This paper is organized as follows: Section 2 discusses in
more detail the differences between SRS and EPRs. Section
3 introduces the methods evaluated and compared in this
study, including details of the four disproportionality meth-
ods, event-level and patient-level analysis, implementation
of the case study, and performance metrics. The results
are presented in Section 4. Finally, concluding remarks are
given in Section 5.

2. SPONTANEOUS REPORTS AND ELEC-
TRONIC PATIENT RECORDS

During the last decade, the interest in pharmacovigilance
has been increasing, along with which a wide variety of data
sources have been collected and used, including SRS data,
captured data of drug dispensing, longitudinal administra-
tive or claims databases, EPRs databases, clinical trials or
lab measurements, medical internet forums, and biomedi-
cal literatures [15]. Among these data sources, SRS data
has been most commonly used for drug safety surveillance,
while EPRs data is recently emerging as a potentially useful
resource.

The SRS data contains valuable information voluntarily
reported by both clinical professionals and drug users. Each
spontaneous report typically comprises of one or more drugs,
one or more ADEs, and possibly some basic demographic
information [13]. Many national and international organi-
zations, such as FDA and WHO, are using such SRSs to
detect drug safety signals. However, analyzing SRS data is
associated with some problems. First of all, the proportion
of under-reported events is typically not known and varies
for different types of events and drugs. Second, SRS data is
limited in providing drug users’ other information including
disease history and previous drug prescriptions. Further-
more, as the information reported in SRS is not longitudi-
nal, but is based on a single event only, the analysis of such
data only gives a small part of the whole picture [2]. Last
but not least, it is not possible to calculate the incidence
rate, since the denominator, i.e., the total number of times
a drug has been taken, cannot be estimated from the SRS
data. Given these limitations of the spontaneous reports, it
is necessary to look for additional sources of information to
improve ADE signal detection.

One such source of information is EPRs, which contain
longitudinal data. Although EPRs databases were histori-
cally implemented for administrative purposes, they are be-
coming valuable resources for different kinds of clinically re-
lated research, especially in pharmacovigilance. Compare
to SRS, EPRs can potentially provide valuable additional
information not only because it contains a wider variety
of information, but also because each EPR typically cov-
ers all the medical information of one patient since the first
day he or she enters the system. Any clinical event of im-
portance is recorded, such as newly developed diseases and
prescribed drugs or additional measurements from clinical
testing. Hence, it can shed light on the whole picture of
a patient’s medical history. In addition, the problems of
under-reporting and compliance are diminished, especially

4This research has been approved by the Regional Ethi-
cal Review Board in Stockholm (Etikprévningsndmnden i
Stockholm), permission number 2012/834-31/5.



for the hospitalized patients, as the information reporting is
under a fairly good control of clinical professionals. Even the
patients who are not exposed to any drug or who experience
no adverse events are also included in the EPR database.
Therefore, it is possible to calculate incidence rates. As such
data is longitudinal, the information of time frame is avail-
able, which was considered in recently proposed methods for
drug safety surveillance [16]. In disproportionality analysis,
although SRS contains a large amount of records, the EPRs
involve much more data as each patient may contribute to
plenty of records over time [13].

3. METHODS

3.1 Disproportionality methods

Disproportionality analysis detects drug safety signals by
measuring the disproportionality based on a contingency ta-
ble with two variables corresponding to the drug of interest
and the clinical event of interest, see Table 1. Each cell rep-
resents the number of drug-event pairs: a is the number of
observations for which both event y and drug x are present;
b is the number of observations where other events and drug
x are present; c is the number of observations where event y
and other drugs are present; and d is the number of obser-
vations where other drug-event pairs are present involving
neither drug « nor event y. There are four commonly applied
disproportionality methods, PRR, ROR, BCPNN, and GPS.
The first two are basic measurements calculating the ob-
served and expected ratio directly from the contingency ta-
ble, while the other two are Bayesian based techniques esti-
mating the prior and posterior probability distribution of the

relative reporting ratio (RRR). RRR = Piﬁ;;i )’f}fzjzl;i')y),

where P(drug x, event y) is the joint probability of drug x
and event y and P(drug x) and P(event y) are the uncon-
ditional probabilities of drug = and event y, respectively.

Table 1: A two-by-two contingency table for drug =
and event y

Event y | Other events
Drug z a b
Other drugs c d
o PRR=%5/:%;
e ROR=¢/5

e BCPNN [5] is based on the estimation of the informa-
tion component (IC) value, which measures the mu-
tual information between two variables, such as drug
z and event y. In this case, IC = log,(RRR) =
log,, %. The method derives a posterior ex-

pectation and the variance of the IC value.

e GPS [6] defines RRR as A = £, where y is the mean of
Poisson distribution of a and FE is the expected event
count, estimated as F = %. The method

then estimates the empirical Bayesian geometric mean

(EBGM) defined as EBGM = " (°e(\),

PRR and ROR have the advantage of simplicity, but when
it comes to rare events, they are rather unstable with wide

confidence intervals and often result in many false positive
signals [15, 17]. BCPNN and GPS adopt a Bayesian ap-
proach to address this variety issue.

3.2 Data

The data source used in this study is the Stockholm EPR
Corpus [14]. It includes medical records from more than
700,000 patients living in Stockholm, Sweden during 2009
and 2010. Approximately 9,863 different diagnoses, encoded
using ICD-10-SE®, and 1,312 different drugs, encoded by the
anatomical therapeutic chemical (ATC) classification sys-
tem, are covered in this EPR database.

Celecoxib was taken as an example for safety signal detec-
tion in this case study. It is a non-steroidal anti-inflammatory
drug mainly treating oesteoarthritis, rheumatoid arthritis,
acute pain, etc. In the Stockholm EPR Corpus, 7,380 pa-
tients were prescribed with Celecoxib.

3.3 Event-level vs. patient-level analysis

Two ways of applying the disproportionality analysis meth-
ods were investigated: event-level (EL) and patient-level
(PL) analysis. In the EL analysis, a pseudo SRS was created
using the data from the EPR database, mimicking the way
that spontaneous reports are reported. For this represen-
tation the assumption is that events are more likely to be
reported together with the closest drug taken before. There-
fore, events that occurred after drug = was prescribed but
before the next drug (drug x or any other drug) was pre-
scribed were considered as occurred during the erposure to
drug x. In this way, large number of drug-event pairs were
generated from the database. For example, if three events
occurred after drug x, three pairs were counted for drug =
with each of the event; if event y occurred after three dif-
ferent drugs, one pair was counted for it with the closest
drug. These drug-event pairs were then counted to fill the
contingency table based on the elements in the pair, i.e.,
pairs that included both drug « and event y were added to
a, pairs that included drug = and other events were added
to b, pairs that included other drugs and event y were added
to ¢, and pairs that neither included drug = and drug y were
added to d. The upper limit of exposure time is 12 weeks.

e a is the number of event of interests that occurred
during the exposure to Celecoxib;

e b is the number of other events that occurred during
the exposure to Celecoxib;

e cis the number of event of interests that occurred dur-
ing the exposure to other drugs;

e d is the number of other events that occurred during
the exposure to other drugs.

In the PL analysis, instead of drug-event pairs, the con-
tent of the contingency table switched to numbers of unique
patients. Patients who experienced event y after they took
drug x within 12 weeks were considered as experienced event
y during their exposure to drug x. Each patient was counted
only once in this analysis, meaning that the patient who ex-
perienced event y during his or her exposure to drug = was
added to a only, even if this patient also took other drugs

SInternational Classification of Disease, Version 10, Swedish
Modification



or experienced other events during the exposure to drug =z.
For patients who did not meet the condition to be added to
a, their qualifications of being added to b were assessed at
first, then to ¢, otherwise they were added to d.

e ¢ is the number of patients who experienced event of
interests during their exposure to Celecoxib;

e b is the number of patients who experienced other
events during their exposure to Celecoxib;

e ¢ is the number of patients who experienced event of
interests during their exposure to other drugs;

e dis the number of patients who were neither prescribed
with Celecoxib nor experienced the event of interests,
which equals to the total number of patients in the
database subtracted by the sum of a, b and c.

The main difference between these two ways of analyzing
the information is the way in which the number of events
is counted. In EL analysis, events that occur several times
for a single patient can be counted several times, while in
PL analysis, each patient is counted only once no matter
how many events he or she experienced. This will affect the
scores calculated by the disproportionality analysis methods,
as d is much larger in EL analysis than it is in PL analysis.
Moreover, in PL analysis, all patients were included, while in
EL analysis, information from patients that have not taken
any drug or did not experience any event were excluded from
the analysis.

3.4 Implementation

The four aforementioned disproportionality methods were
applied for each of the above two strategies, hence there
were eight different ways of detecting signals. They were
implemented using the R® package "PhViD” [18]. To guar-
antee a non-zero a, the events that were not reported at
least once for a drug were excluded. For PRR and ROR,
detected signals were ranked by the PRR and ROR score
itself. For BCPNN, detected signals were ranked by the
lower bound of the 95% credibility interval of IC, estimated
through Monte-Carlo simulation with 10,000 iterations, fol-
lowing Noren et al. [19]. For GPS, detected signals were
ranked by the EBGM.

3.5 Evaluation

The evaluation was based on the ADE information of Cele-
coxib extracted from SIDER” [20], a drug side effect informa-
tion system containing information on marketed medicines
and their recorded ADEs extracted from public documents
and package inserts. If a detected signal was found in the
ADE list from SIDER, it was considered as an ADE. In
each analysis, the top 50, 100, and 200 signals were investi-
gated separately. Overall precision (OP) and mean average
precision (MAP) were used to compare the different mea-
surements.

Overall precision was measured by the ratio between the
number of ADEs found and the number of signals, which
indicates the proportion of true positives among the total

50pen source statistical  software, available at

http://www.r-project.org
" Available at http://sideeffects.embl.de/

detected signals. Given the fact that the more dispropor-
tionally an event occurs, the stronger the signal should be,
it is desirable to also consider the order of the ADEs pre-
sented, hence the MAP score was calculated to take into
account the rank of the ADEs.

The MAP score [21], commonly used in information re-
trieval, for a set of ADEs is the mean of the average pre-
cision scores for each ADE. The higher the MAP score is,
the better a method performs. For example, a MAP of 0.1
means that every 10th signal is expected to be an ADE, and
even if more than half of the signals are ADEs, the MAP
score might be below 0.5, if more ADEs are ranked at the
second half of the list. Calculating the MAP score starts
with ranking all the signals from top to bottom. Let i de-
note the position (rank) of each signal, i = 1,2,..., N, and
k; denote the accumulated number of ADEs at position 1,
ki = 1,2,..., K. The average precision (AP) is 31 B (i),
where (i) is the indication of an ADE (z(¢) = 1, if the sig-
nal at position ¢ is an ADE; otherwise, x(i) = 0). Then,
MAP = 4E.

4. RESULTS

The results from applying ROR, PRR, BCPNN and GPS
in the EL and PL analysis for the top 50, 100, and 200 signals
are listed in Table 2, where the OP and MAP scores are
presented. In general, the EL analysis gives better results
than the PL analysis. For top 100 and 200 signals, the EL
analysis dominated the PL analysis with both higher OP and
higher MAP scores, which indicates that in the EL analysis,
not only were more ADEs found but they were also ranked
higher in general. For the top 50 signals, ROR and PRR
detected more ADEs in the PL analysis, and BCPNN and
GPS detected more ADEs in the EL analysis; however, those
ADEs were detected with stronger signals on average in the
EL analysis.

Table 2: Performance of four disproportionality
methods in two analyses for the top 50, 100, and
200 signals

Top 50 Top 100 Top 200
OP MAP OP MAP OP MAP

PRR (EL) 0.12 0.25 0.14 0.20 0.12 0.17
PRR (PL) 0.14 0.16 0.08 0.15 0.08 0.12

ROR (EL) 0.14 0.26 0.15 0.21 0.12 0.19
ROR (PL) 0.16 0.18 0.10 0.17 0.09 0.13

BCPNN (EL) 0.20 0.26 0.15 0.25 0.12 0.20
BCPNN (PL) 0.14 0.13 0.11 0.14 0.09 0.12

GPS (EL) 0.20 0.27 0.15 0.24 0.12 0.20
GPS (PL) 0.04 0.17 0.10 0.10 0.08 0.10

Table 2 also shows that the performances among the four
methods vary in both analyses. In the EL analysis, BCPNN
and GPS performed better than ROR and PRR on both
OP and MAP. In the PL analysis, ROR performed best in
general. The low OP but high MAP from GPS in the PL
analysis for the top 50 signals suggests that the few ADEs
found had rather high ranks.

After looking into the output signal lists, it was noticed
that ADEs such as headache and nausea, which are known
as common ADEs of Celecoxib, were not detected as signals
at all by any method. This might be due to the fact that



these more common events are not coded as diagnoses in the
EPRs each time they occur.

S. CONCLUDING REMARKS

This study investigated the analysis of EPRs, extracted
from the Stockholm EPR Corpus, using disproportional-
ity methods traditionally employed on spontaneous reports.
Two different approaches for how to apply the methods were
investigated: creating pseudo spontaneous reports based on
all observed drug-event pairs (event-level analysis) or ana-
lyzing distinct patients that experienced a drug-event pair
(patient-level analysis). Four disproportionality methods,
PRR, ROR, BCPNN, and GPS, were evaluated for both
levels of analysis. It was shown that the way in which
the disproportionality analysis is applied, the event-level or
patient-level analysis, can have a much higher impact on
the performance than which disproportionality method is
employed.

The disproportionality methods performed better in the
EL analysis than in the PL analysis in terms of both over-
all precision and mean average precision. It means that the
EL analysis detected more ADEs which were also stronger
ADE signals compared to the rest detected signals. In this
study, event-drug pairs in the EL analysis were counted in
the way which mimics how they were reported in SRS, and
patients who experienced a drug-event pair in the PL anal-
ysis were counted distinctly without duplication. The EL
and PL analysis are just two approaches among many other
possible ones. For example, in the EL analysis, events can
be paired with all drugs that were taken one week before
instead of being paired only with the closest drug; and in
the PL analysis, patients who experienced both event of in-
terest and other events can be counted twice, i.e., in both a
and b (see Table 1). Besides the counting strategy, tempo-
rality might have an impact on the results as well. In this
study, 12 weeks was chosen as the length of valid period for
including an event, meaning that the events occurred after
12 weeks since the drug was taken were not counted. This
is an empirical choice for all kinds of ADEs. An alterna-
tive is to assign different length of valid period to different
ADE, given the fact that some ADEs, such as vomiting, oc-
cur rather fast after taking the causing drug, while some
ADEs, such as myocardial infarction, might appear after a
while until the toxicity accumulates to a certain level to re-
sult in an ADE. Therefore, a fixed length of 12 weeks might
lead to over-estimated number of ADEs which occur fast
and under-estimated number of ADEs which occur slowly.

The results presented in this study provide insight into
how the disproportionality methods perform differently with
two representations of event counting and demonstrate the
potential of using EPRs for pharmacovigilance using dispro-
portionality analysis. They can also serve as a benchmark
for comparison when other methods are applied to the same
data in the future.

One obvious limitation of this study is that the case study
only consists of one specific drug and two ways of represent-
ing events, which does not allow for drawing conclusions on
what relative performance can be expected in general when
comparing disproportionality methods and which way of us-
ing these methods on EPRs is the most suitable.

There are several possible directions for future research.
First, experiments with several data sources will increase
the credibility of arguments about which way of adapting

disproportionality methods is more suitable. Second, when
the disproportionality methods count the drug-event pairs
or distinct patients, it may also be worth investigating that
whether all events or patients should be weighted equally
or not. For example, in the EL analysis, drugs that are
taken closer to the event of interest should potentially have
a higher influence than drugs that were taken much ear-
lier; in the PL analysis, patients who are exposed to the
drug of interest for a longer time or with a higher con-
sumption in dosage were counted only once like those who
only took the drug of interest once. More elaborate ap-
proaches which can take into account more information,
such as weights described above or have different counting
strategies could be proposed and evaluated. Third, it would
also be interesting to compare disproportionality methods
on EPRs with other means of detecting signals, such as ma-
chine learning techniques. Finally, the information required
by the current disproportionality analysis is only the tip of
the iceberg. The EPRs contains large amounts of informa-
tion which are under-utilized, especially for the purpose of
drug safety surveillance. For example, the demographical in-
formation and clinical measurements can be of importance
when conducting stratification or adjustment to deal with
confounding. Moreover, in reality, when a patient has one
or more severe diseases, events such as headache or nausea
might be omitted to be encoded as diagnoses by doctors.
Instead, doctors might have mentioned such events in the
patient’s clinical notes. Mining the unstructured narrative
of EPRs may bring a large contribution to pharmacovigi-
lance research.
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