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ABSTRACT
Scoping reviews of the biomedical literature are commonly
used in health technology assessments to inform the plan-
ning of more detailed and resource-intensive evaluations. A
typical task is to ‘map’ the literature addressing a specific
clinical question, i.e., (i) identify as many relevant articles
of interest as feasible under a constrained budget, and (ii)
estimate how many such articles likely exist. These are com-
peting objectives. Using active retrieval strategies (e.g., ac-
tive learning) to realize the former aim immediately hinders
our ability to achieve the latter: ‘naive’ estimates of the
number of relevant articles taken over an enriched sampled
acquired through selective sampling will be inflated. We
propose a novel method for correcting such estimates. We
demonstrate the efficacy of our approach on three system-
atic review datasets, showing that we can achieve both aims:
rapid evidence discovery and acceptably accurate estimation
of the number of relevant articles.
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1. INTRODUCTION AND MOTIVATION
Health technology assessments are increasingly used to in-
form decision making at all levels of health care [7]. A key
tool of such assessments is the systematic review, a protocol-
driven and resource-intensive evaluation of all available ev-
idence addressing a clinical question [9, 18, 19]. Large sys-
tematic reviews can take several months to complete and
are costly, because they are undertaken by researchers with
substantial medical and methodology training. Therefore,
substantial forethought and planning goes into prioritizing
the questions that should be addressed with systematic re-
views. Clinical or policy topics attain higher priority if a
new systematic review is expected to provide information
that will change current practice; reduce costs, resource use,
needless practice variation or health inequalities; affect the
well-being of an important population subgroup; and for
which substantial empirical evidence has been generated.

Typically these prioritization exercises incorporate input from
various stakeholding parties. Irrespective of the exact prior-
itization methodology being used, however, a common task
during the planning of a systematic review is the construc-
tion of evidence maps or horizon scans of large domains of
the biomedical literature [15, 6, 12]. These rapid-turnaround
scoping exercises describe the volume and type of available
evidence on a topic in broad strokes. For example, if the
scoping review suggests that the available evidence on a can-
didate question is sparse, a full-blown systematic review may
be premature to undertake. Conversely, if the estimated
number of relevant articles is large, appropriate resources
must be budgeted and/or the scope must be contained.

Among other goals, these scoping exercises invariably in-
clude two aims that must be achieved rapidly and within a
tight budget. The first is to maximize the number of rel-
evant articles identified, and the second is to estimate the
total number of eligible articles in the literature. Identify-
ing relevant articles in the planning stage provides direct
content-relevant information to the stakeholders and the pri-
oritization team. The importance of accurately estimating
the scope of a full-blown systematic review is obvious.

Here we frame the problem following the typical workflow
in a scoping review: standard Boolean queries are issued to
a biomedical database (e.g., MEDLINE, via PubMed), re-
turning a relatively large number of citations (often several
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Figure 1: Selective compared to uniform-random sampling versus the number of labels provided (screening
decisions). The left-hand plot shows the proportion of relevant articles identified; the right-hand plot shows
the estimated prevalence of relevant citations. On the latter, the thick black line demarcates the true
prevalence in the corpus (which is constant). Lines correspond to means over ten independent runs. Selective
sampling drastically increases the amount of retrieved relevant literature, but (unsurprisingly) results in a
poor estimate of the prevalence.

thousands). Such searches are sensitive by design to cast a
net wide enough to capture most (and preferably, all) rele-
vant articles. Assuming that budget constraints do not allow
screening (labeling) all the citations in the retrieved corpus
as relevant or irrelevant to the topic at hand, researchers
typically examine a (uniform) random sample. The propor-
tion of relevant articles in the sample is an unbiased estimate
of the prevalence π of relevant articles in the pool.

However, because the search is not specific, π is typically
small (often as low as 1 − 5%), and only a small number
of relevant articles are found in the drawn sample. Thus
while the second aim is achieved, the first is not. On the
other hand, selective sampling, e.g., using ranking technolo-
gies [17] or active learning [24, 25] facilitates rapid discovery
of relevant articles. However, when using such strategies the
observed proportion of relevant articles in the (selectively)
drawn sample will be an upwards biased estimate of π, be-
cause relevant articles have been oversampled by design.

This is illustrated in Figure 1, which shows the results of
retrospectively simulating interactive information retrieval
using a previously assembled dataset.1 Selectively sampling
articles preferentially with respect to their predicted proba-
bility of being relevant (left-hand side) results in rapid dis-
covery of relevant articles, but induces a severely inflated
estimate of the prevalence. Whereas sampling documents
uniformly at random is inefficient in terms of identifying
relevant articles, but the observed sample prevalence of rel-
evant articles provides an accurate estimate of π. However
we would like to achieve both of these aims, rather than one
or the other.

To our knowledge, this trade-off between article identifica-
tion and estimation of the proportion of relevant articles in a

1The Chronic Obstructive Pulmonary Disease (COPD) sys-
tematic review [3]; see Section 4.

corpus has not previously been addressed. But this poses an
important practical problem to evidence-gathering activities
that could otherwise benefit from active ranking/retrieval
strategies. To address this issue, we present a novel method
to leverage interactive information retrieval (IR) methods to
rapidly find relevant articles while obtaining a reliable es-
timate of the proportion of relevant papers early on in the
process.

Our approach relies on two prevalence estimates. One is
based on stochastically sampling articles with known prob-
abilities (we set the probability of sampling each article to a
value proportional to its predicted probability of being rel-
evant), and then using inverse-weighting to correct for the
induced sampling bias. The other relies on probability esti-
mates to calculate the expected number of relevant citations
remaining in the unlabeled set at each step (and combines
this expectation with the number of relevant articles ob-
served thus far). This approach can be used in conjunction
with any learning algorithm that provides an estimate of
the probability that individual citations are relevant. We
demonstrate that this method allows for rapid evidence dis-
covery while still providing a reasonable estimate of preva-
lence on three datasets from previously conducted system-
atic reviews.

The remainder of this paper is structured as follows. We
briefly review related work in the following section to pro-
vide a context for our contribution. We present our pro-
posed method in Section 3. In Section 4 we describe our
experimental setup and we report results in Section 5. We
conclude in Section 6 by discussing future directions.



2. RELATED WORK
There is a wealth of literature on biomedical information
retrieval (IR); for a comprehensive survey, see [16]. Most
relevant to our work, several existing systems allow the user
to provide relevance feedback to rerank or refine the results
[27, 26, 21]. Leveraging classification technology to rank ar-
ticles with respect to their predicted probability of relevance
(as we do here) has been previously proposed [21, 10]. But
most of these approaches have considered the problem from
a general perspective of improving PubMed search, whereas
we are specifically interested in developing methods that fa-
cilitate retrieval of relevant literature for EBM tasks such as
systematic reviews, horizon scans and evidence scoping.

An exception to this is the recent work by Karimi et al. [14]
in which they experimented with ranking articles for the lit-
erature retrieval step in systematic reviews, as opposed to re-
trieving them with Boolean queries as is usually done. They
argued that in the case of systematic reviews, wherein com-
prehensiveness (sensitivity) takes precedence over efficiency
(precision), Boolean queries offer advantages over ranking-
based approaches. A similar argument might be applied
to scoping and related evidence synthesis tasks, although in
such cases sensitivity is generally not as important as it is for
comprehensive systematic reviews. Karimi et al. highlighted
the potential of combining Boolean and ranking queries by
starting with the former and then using the latter to rank
within the retrieved set. This is the strategy we pursue here;
we assume that we start with a set of articles retrieved via a
query, and we rank within this set, interactively requesting
labels from the user.

However, in this paper our focus is not on the particular
ranking function or strategy used. Instead, we look to de-
velop a general method that allows for selective sampling
(efficient discovery of relevant evidence) and accurate esti-
mates of the volume of existing relevant literature. There
has been a fair amount of work on using text classification
to semi-automate citation screening for systematic reviews
[5, 4], including approaches that use active learning [24, 25].
But this work has not addressed the issue of simultaneously
estimating the volume of published relevant literature while
rapidly identifying relevant studies.

Aside from work specific to biomedical text, there has re-
cently been interest in inducing unbiased estimators of the
expected loss of models during active learning [2, 11]. Most
relevant to the present work, Ganti and Gray recently pro-
posed an inverse-weighting based method for accomplishing
this in the context of pool-based active learning, which they
called Unbiased Pool-based Active Learning, or UPAL [11].
Our strategy is similar, in that we leverage inverse-weighting
to mitigate bias, but we focus on estimating the prevalence
rather than the expected loss. Moreover, we combine this
with a second estimator based on predicted probabilities (see
Section 3), which improve over time (i.e., as we acquire ad-
ditional training data).

3. ACTIVE RANKING & PREVALENCE ES-
TIMATION

We now present our method, which we envision proceeding
in rounds. At each round k, we would draw a set of articles

Sk of cardinality Bk, following the sampling procedure de-
scribed below. We will denote the set of articles the expert
has labeled thus far (up to k) by Lk−1, the set of as-yet un-
labeled articles by Uk−1 and the set of all articles (the entire
corpus) by D. The expert would be asked to label those
articles in Sk not already in Lk−1, i.e., Sk \ Lk−1. These
articles would be removed from Uk−1 and added to the la-
beled set to form Lk. We then train a model over Lk and
obtain predicted probabilities of relevance over all xi ∈ D,
which we denote by Pk = (pk,1, . . . pk,|D|).

To attain aim 1 (to rapidly identify relevant articles), we
then preferentially sample those articles with high probabil-
ity of being relevant (as predicted by the model). Specifi-
cally, we use probability sampling with replacement to se-
lect Bk papers to be labeled at round k. (The sampling
is stochastic, but we set the probabilities such that the ex-
pected number of articles sampled at each round is B, i.e.,
E(Bk) = B.) Call the current vector of sampling probabili-
ties Zk = (zk,1, . . . zk,|D|). By design (to attain aim 1), Zk

is a function of Pk. In the simplest case Zk = Pk, in which
case the expected number of articles sampled at each round
would be equal to the expected number of relevant articles
in the corpus.

To achieve aim 2 (i.e., to estimate prevalence π in the orig-
inal corpus), we use two estimators. The first estimator
π̂∗HT,k is based on the Horvitz–Thompson estimator [13],2

in which the contribution of each observed label yi in Sk is
weighted by its inverse sampling probability (zk,i).

π̂HT,k =

∑
xi∈Sk

yi/zk,i∑
xi∈Sk

1/zk,i
(1)

Under typical large sample assumptions, π̂HT,k is an un-
biased estimator of π provided that all zk,i are positive.
Because we sample with replacement in each round, the k
independent estimates (one per iteration) can be regarded
as bootstrap estimates, and we can average them to reduce
variance [8]. Our first estimator is thus the mean:

π̂∗HT,k =
1

k

k∑
t=1

π̂HT,t (2)

The second estimator we use, which we denote by π̂M,k, is
based on the predicted probabilities of relevance Pk and the
observed labels (i.e., the labels in L).

π̂M,k =

∑
xi∈Lk

yi +
∑
xi∈Uk

pk,i

|D| (3)

This estimator can be biased; it will depend on the proba-
bility estimator used. Here we use Support Vector Machines
(SVMs) [1] as our base classifier and a variant of Platt scal-
ing [20] to estimate class probabilities. In particular, we con-
struct an ensemble of regressors, each induced on a random,

2The ∗ here is to highlight that this is an average (Eq. 2).



balanced bootstrap sample of the training data. We have
previously demonstrated that this method provides more re-
liable probability estimates for minority instances in imbal-
anced scenarios than standard Platt scaling (see [23]). Be-
cause it emphasizes providing reliable estimates for minority
instances, we can expect that estimates from this model will
be upwardly biased. In any case, in principle any probability
estimator could be used in the proposed framework.

Note that a ‘naive’ estimator that ignores the sampling scheme
(as in Eq. 4) is biased because the sampling weights are not
uniform due to the preferential sampling scheme.

π̂naive,k =
1

|Lk|
∑
xi∈Lk

yi (4)

We use two estimators because we expect each to perform
well at different points during the retrieval process. Specif-
ically, the Horwitz–Thompson estimator (1) is unbiased in
expectation, but B << |D| and thus, empirically, the sam-
pling probabilities zi may be practically 0. We may therefore
expect an upward bias in the estimate of π (if it is extremely
unlikely that we draw irrelevant articles). Recall that to
achieve aim 1 (to identify as many positives as possible) we
set the sampling probabilities proportional to the predicted
probability of relevance. Thus we observe the ‘paradox’ that
as the model improves (as we achieve aim 1), the elements of
Pk are expected to tend towards 0 or 1, resulting in poten-
tially biased estimates of π. By contrast, in earlier rounds,
the probability predictions would be more uncertain, and Eq
2 is more likely to be unbiased.

The estimator in (3), meanwhile, may be inaccurate in ear-
lier iterations because the model is ill-informed. However, in
later rounds the model probability estimates will improve,
and we thus expect this estimate to approach the true preva-
lence π. Hence we expect the two estimators to be more
accurate at different points in the interactive retrieval pro-
cess, and we expect both to tend to over-estimate the true
prevalence when they are off. We therefore take the prag-
matic approach of taking the minimum of the two estimates
as our estimate of π at any given iteration.

Algorithm 1 provides pseudo-code for the approach we have
just described (in the pseudo-code we have elided the k sub-
scripts, which denote the iteration; these are implicit).

4. DATASETS AND EXPERIMENTAL SETUP
We experimented with three systematic review datasets. The
proton beam dataset is from a systematic review of com-
parative studies on charged particle radiotherapy versus al-
ternate interventions for cancers [22]. It consists of 4,751
citations retrieved via a broad search, 243 of which are “rel-
evant” (about 5%). The COPD dataset is from a systematic
review and meta-analysis of all genetic association studies in
chronic obstructive pulmonary disease [3] comprising 1,601
citations, 196 of which are “relevant” (about 12%). The
Sedatives dataset from the set of systematic reviews of drug
classes made available by Cohen [4].3 This dataset comprises
1,655 articles, of which about 8% (132) are relevant.

3We selected this specific drugs dataset at random.

Algorithm 1 Adjusted active retrieval

1: Input: Initial labeled articles L, Unlabeled pool of ar-
ticles U , Desired batch-size B

2: HT← {}
3: while Not STOPPING CRITERION do
4: D ← U + L
5: f ← probability estimator induced over L
6: λ←

∑
xi∈D f(xi)

B
7: S ← {}
8: for all xi ∈ D do
9: zi ← f(x)

λ
10: add xi to S with probability zi
11: wi ← 1

zi
12: end for
13: request labels yi ∈ {0, 1}∀xi ∈ S \ L
14: L ← L ∪ S
15: π̂HT ←

∑
xi∈S wi·yi∑

xi
wi

16: add π̂HT to HT
17: π̂∗HT ← average(HT)

18: π̂M ←
∑

i∈0,1,...L yi+
∑

xi∈U f(xi)

|D|
19: π̂ ← min(π̂∗HT , π̂M )
20: end while

We encoded the articles comprising these documents using
standard binary bag-of-words (BoW) representation and re-
moving words that were either on the PubMed stopword
list4 or that did not occur at least three times. We col-
lapsed titles, abstracts and MeSH terms (when available)
into a single document before performing BoW encoding.

We used a ‘batch’ size of B = 50, i.e., we scaled the sampling
probabilities Pk such that the expected number of articles
drawn at each step k was 50. This is a relatively large batch-
size by active learning standards (though not necessarily for
information retrieval tasks). Slightly larger batches allow for
more reliable estimates of the prevalence at each iteration.
Given that we are dealing with low prevalences (often < .1),
using small batch sizes would likely result in poor estimates.
Note also that because we are sampling with replacement,
the expert will only be asked to label the as-yet unlabeled
articles drawn at each iteration; this number shrinks over
time, as an increasing number of articles have already been
labeled. This effectively shrinks the batch size as the pro-
cess proceeds. That is, even though we calculate prevalence
estimates over draws comprising 50 articles, in practice the
expert would likely only review a fraction of these at each
iteration, since some of them will have already been labeled.

We seeded each strategy with 4 articles (2 relevant and 2
irrelevant, randomly drawn from each class) and simulated
interaction until labels were acquired for half of the dataset.
We performed 10 independent runs of this experiment and
report averages over these.

5. EXPERIMENTAL RESULTS
Results over the three systematic review datasets, COPD,
proton beam and Sedatives, are shown in Figures 2, 3 and

4http://www.ncbi.nlm.nih.gov/books/NBK3827/table/
pubmedhelp.T43/



4, respectively. Consider first the left-hand sub-plots, which
show the proportion of relevant evidence literature discov-
ered (y-axis). This corresponds to the efficiency of the corre-
sponding method in terms of facilitating rapid identification
of relevant biomedical literature. In all cases, stochastically
sampling with probabilities proportional to the predicted
probability of relevance discovers a far greater amount of rel-
evant literature than does sampling uniformly at random.5

The right-hand sub-plots show the estimated prevalences.
The true prevalence in each dataset is demarcated by the
thick black lines (this is constant, and only available once the
entire corpus has been screened). The adjusted estimates are
drastic improvements over the naive, unadjusted estimate
(i.e., the observed proportions) in all cases. Our method
thus allows one to simultaneously rapidly identify relevant
biomedical literature and estimate how much of it exists.

6. CONCLUSIONS
We have addressed an important practical problem in many
biomedical literature retrieval tasks: simultaneously attain-
ing reliable estimates of the number of published relevant
evidence while using selective sampling (ranking) to rapidly
identify studies of interest. We demonstrated that this method
facilitates rapid identification of relevant studies (compared
to perusing them in an arbitrary order) while providing rea-
sonable estimates of the overall prevalence of pertinent lit-
erature early on in the process of literature screening.

This method may be especially useful for horizon scan and
evidence-mapping activities, in which one aims to rapidly
characterize the body of existing literature on a topic [15,
6, 12]. Such activities are best informed both by finding
relevant studies and by estimating how many might remain.
Moving forward, we hope to develop a more principled means
of combining the two prevalence estimates we have proposed.
We also plan on conducting further empirical evaluations,
and conducting experiments with live (rather than simu-
lated) experts.

7. REFERENCES
[1] K. P. Bennett and C. Campbell. Support vector machines:

hype or hallelujah? ACM SIGKDD Explorations Newsletter,
2(2):1–13, 2000.

[2] A. Beygelzimer, S. Dasgupta, and J. Langford. Importance
weighted active learning. In Proceedings of the 26th annual
International Conference on Machine Learning (ICML),
pages 49–56. ACM, 2009.

[3] P. Castaldi, M. Cho, M. Cohn, F. Langerman, S. Moran,
N. Tarragona, H. Moukhachen, R. Venugopal, D. Hasimja,
E. Kao, et al. The COPD genetic association compendium: A
comprehensive online database of COPD genetic associations.
Human Molecular Genetics, 19(3):526–534, 2010.

[4] A. Cohen, W. Hersh, K. Peterson, and P.-Y. Yen. Reducing
workload in systematic review preparation using automated
citation classification. JAMIA, 13:206–219, 2006.

[5] I. Cohen and M. Goldszmidt. Properties and benefits of
calibrated classifiers. Knowledge Discovery in Databases
(KDD), pages 125–136, 2004.

[6] K. Davis, N. Drey, and D. Gould. What are scoping studies? A
review of the nursing literature. International Journal of
Nursing Studies, 46(10):1386–1400, 2009.

5Sampling the top ranking document deterministically in-
creases this proportion even more, but without sampling
probabilities there would be no way to bias-correct via
weighting.

[7] J. Eden, L. Levit, A. Berg, S. Morton, et al. Finding what
works in health care: Standards for systematic reviews.
National Academies Press, 2011.

[8] B. Efron. Bootstrap methods: Another look at the jackknife.
The Annals of Statistics, pages 1–26, 1979.

[9] M. Egger, G. D. Smith, and D. Altman. Systematic reviews in
health care: Meta-analysis in context. BMJ books, 2008.

[10] J.-F. Fontaine, A. Barbosa-Silva, M. Schaefer, M. R. Huska,
E. M. Muro, and M. A. Andrade-Navarro.

[11] R. Ganti and A. Gray. UPAL: Unbiased pool based active
learning. arXiv preprint arXiv:1111.1784, 2011.

[12] M. Gwinn, D. Grossniklaus, W. Yu, S. Melillo, A. Wulf,
J. Flome, W. Dotson, and M. Khoury. Horizon scanning for
new genomic tests. Genetics in Medicine, 13(2):161–165, 2011.

[13] D. G. Horvitz and D. J. Thompson. A generalization of
sampling without replacement from a finite universe. Journal of
the American Statistical Association, 47(260):663–685, 1952.

[14] S. Karimi, S. Pohl, F. Scholer, L. Cavedon, and J. Zobel.
Boolean versus ranked querying for biomedical systematic
reviews. BMC Medical Informatics and Decision Making,
10(1):58, 2010.

[15] D. Levac, H. Colquhoun, K. O’Brien, et al. Scoping studies:
Advancing the methodology. Implementation Science, 5(1):69,
2010.

[16] Z. Lu. Pubmed and beyond: A survey of web tools for
searching biomedical literature. Database: the journal of
biological databases and curation, 2011, 2011.

[17] C. D. Manning, P. Raghavan, and H. Schütze. Introduction to
information retrieval, volume 1. Cambridge University Press
Cambridge, 2008.

[18] C. D. Mulrow. The medical review article: State of the science.
Annals of Internal Medicine, 106(3):485–488, 1987.

[19] C. D. Mulrow. Systematic reviews: Synthesis of best evidence
for health care decisions. American College of Physicians, 1998.

[20] J. Platt et al. Probabilistic outputs for support vector machines
and comparisons to regularized likelihood methods. Advances
in Large Margin Classifiers, 10(3):61–74, 1999.

[21] G. Poulter, D. Rubin, R. Altman, and C. Seoighe. MScanner:
A classifier for retrieving medline citations. BMC
Bioinformatics, 9(1):108, 2008.

[22] T. Terasawa, T. Dvorak, S. Ip, G. Raman, J. Lau, and T. A.
Trikalinos. Charged Particle Radiation Therapy for Cancer: A
Systematic Review. Annals of Internal Medicine, 2009.

[23] B. C. Wallace and I. J. Dahabreh. Class probability estimates
are unreliable for imbalanced data (and how to fix them). In
IEEE 12th International Conference on Data Mining
(ICDM), pages 695–704. IEEE, 2012.

[24] B. C. Wallace, K. Small, C. E. Brodley, and T. A. Trikalinos.
Active learning for biomedical citation screening. In
Proceedings of the 16th ACM SIGKDD international
conference on Knowledge Discovery and Data mining, pages
173–182. ACM, 2010.

[25] B. C. Wallace, T. A. Trikalinos, J. Lau, C. Brodley, and C. H.
Schmid. Semi-automated screening of biomedical citations for
systematic reviews. BMC Bioinformatics, 11(1):55, 2010.

[26] H. Yu, T. Kim, J. Oh, I. Ko, and S. Kim. Refmed: relevance
feedback retrieval system for pubmed. In Proceedings of the
18th ACM Conference on Information and Knowledge
Management, pages 2099–2100, New York, NY, USA, 2009.
ACM.

[27] H. Yu, T. Kim, J. Oh, I. Ko, S. Kim, and W.-S. Han. Enabling
multi-level relevance feedback on pubmed by integrating rank
learning into DBMS. BMC Bioinformatics, 11:S6, 2010.



0 100 200 300 400 500 600 700 800
Number of papers screened

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

P
ro

p
o
rt

io
n
 o

f 
re

le
v
a
n
t 

p
a
p
e
rs

 o
b
se

rv
e
d

sampling ∝ probabilities

uniform random sampling

0 100 200 300 400 500 600 700 800
Number of papers screened

0.10

0.15

0.20

0.25

0.30

0.35

P
re

v
a
le

n
ce

 o
f 

re
le

v
a
n
t 

p
a
p
e
rs

true

estimated (unadjusted)

estimated (adjusted)

estimated (uniform random sampling)

Figure 2: Results for the COPD [3] systematic review dataset. The x-axis in both sub-plots represents the
number of citations labeled. The left-hand plot shows the proportion of relevant literature found, the right-
hand plot shows the running estimate of the true prevalence of relevant articles. Results are averaged over
10 independent runs (each seeded with two randomly selected relevant and two randomly selected irrelevant
articles).
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Figure 3: Results for the proton beam [22] systematic review dataset. Layout is similar to Figure 2.
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Figure 4: Results for the Sedatives [5] systematic review dataset. Layout is similar to Figure 2.


