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ABSTRACT
We analyze colon surgery data from the ACS NSQIP pro-
gram with the aim of developing accurate risk prediction
models for post-operative adverse outcomes in colon surgery
using data mining techniques. The data used in this study
is de-identified and consists of 23 pre-operative risk factors,
and 30-day postoperative mortality, serious morbidity, and
overall morbidity outcomes for patients undergoing major
colon surgical procedures in the year 2011. Our dataset had
27,011 such patient instances. Several data mining classifi-
cation techniques were used on this data along with various
data mining optimizations and validations to build predic-
tive models for each of the three adverse outcomes, and were
able to achieve a c-statistic of 0.905, 0.771, and 0.737 for
30-day mortality, serious morbidity, and overall morbidity
respectively. Further, we also applied feature selection tech-
niques to reduce the number of pre-operative risk factors in
the model to 6, 5, and 5 for the three outcomes, while trying
to have minimal degradation in c-statistic (0.88, 0.757, and
0.727 respectively).

Categories and Subject Descriptors
H.2.8 [Database Applications]: Data mining; J.3 [Life
and Medical Sciences]: Medical information systems

Keywords
Biomedical informatics, Colon surgery, Decision making, Pre-
dictive modeling

1. INTRODUCTION
Accurate risk estimation for post-operative morbidity (com-

plications) and mortality can improve both informed patient
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consent by helping patients better understand risks and ben-
efits, and also aid the physicians in surgical decision mak-
ing by assessing the true patient-specific risks of a proposed
procedure rather than relying on population-wide risk as-
sessments [31]. It is estimated that more than 30 million
surgical operations in the U.S. annually to remove deadly
cancers, repair diseased organs and replace worn-out joints,
resulting in more than 290,000 surgical-site infections each
year, which cost about $10 billion annually [5, 32, 6]. Thus,
accurate risk estimation can potentially save thousands of
complications and also reduce healthcare costs.

Colon cancer is the second most common cancer in women
and third most common in men [24], and fourth most com-
mon cause of cancer death [3]. In the ACS NSQIP dataset
used in this study, about 4% of patients did not survive more
than 30 days after surgery, 26% patients developed serious
morbidity, and 32% patients developed some kind of mor-
bodity. Colon operations are relatively common and pose
nontrivial morbidity and mortality risks [37], and there ex-
ist nearly half-a-dozen tools for its mortality risk assessment
[11].

The American College of Surgeons (ACS) is a scientific
and educational association of surgeons founded in 1913 to
standardize surgical care, and its National Surgical Quality
Improvement Program (ACS NSQIP) is the first nationally
validated, risk-adjusted, outcomes-based program to mea-
sure and improve the quality of surgical care. It collects
data on patient demographics, preoperative risk factors, lab-
values, operative variables, and postoperative events using
standardized definitions. Here, we use the ACS NSQIP data
for colon surgery (both cancer and non-cancer) for the year
2011. The data has three binary variables for adverse out-
comes - mortality, overall morbidity (any complication), and
serious morbidity, all within 30 days of the surgical opera-
tion.

Applying data mining techniques to surgery data is useful
to rank and link available attributes to the outcome. Here
we use data mining techniques to estimate the risk of the
three post-operative outcomes. Experiments with nearly 50
modeling techniques were conducted to find the best model
for each of the three outcomes. Further, feature selection
was used to find smaller attribute subsets in the data that
could incur only minimal loss in accuracy, if at all.

The rest of the paper is organized as follows: Section 2



summarizes related work, followed by a brief description of
the data mining techniques used in this study in Section
3. NSQIP data used in this work is decribed in Section 4.
Experiments and results are presented in Section 5, followed
by the conclusion and future work in Section 6.

2. RELATED WORK
Optimizing risk adjustment methodologies is an impor-

tant endeavor, particularly for quality improvement pro-
grams that seek accurate risk predictions and ultimately
hospital comparisons. In the surgical arena, much work has
focused on hierarchical modeling strategies [6, 12] as well as
identifying the important predictors of postoperative out-
comes [33, 32]. For example, in a recent article, Cohen et al
[6] discuss the developmental history of ACS NSQIP model-
ing and the shift from logistic regression to generalized linear
mixed models. Although the program recently moved to hi-
erarchical models, it has not yet attempted a machine learn-
ing approach. A separate report by Syed and colleagues [39]
implemented a computer based learning strategy to optimize
risk adjustment. These investigators used a single method
(ie., support vector machines) to learn the relationships be-
tween CPT codes and morbidity and mortality. However,
this report focused primarily on improving complexity ad-
justment and used a single method. In the present study,
we sought to comprehensively examine nearly 50 different
methods.
The concept that adequate risk adjustment can be per-

formed on the basis of a limited number of predictors has
been previously established using American College of Sur-
geons National Surgical Quality Improvement Program data.
For example, in a 2010 report by Dimick et al [13], sepa-
rate 5-predictor colectomy morbidity (ASA class, functional
status, emergency surgery, albumin level and body mass in-
dex) and mortality (ASA class, functional status, emergency
surgery, albumin level, dyspnea) models were highly corre-
lated with the more complex models with respect to dis-
crimination, calibration, and hospital-level performance. In
a another report, Merkow et al [32] identified 6 predictors
(ASA class, procedural risk, functional status, emergency
surgery and wound class) for the NQF endorsed death or
serious morbidity colectomy model. They also found near
equivalence in model discrimination and calibration. Nev-
ertheless, these investigators did not use powerful computer
based learning techniques.

3. DATA MINING TECHNIQUES

3.1 Modeling
We used 46 classification schemes in this study, including

both direct classification models and their ensembles using
various ensembling techniques. Due to space limitations,
here we briefly describe only those classifiers whose results
we present in the next section.

1. Support vector machines: SVMs are based on the
Structural Risk Minimization (SRM) principle from
statistical learning theory. A detailed description of
SVMs and SRM is available in [40].

2. Artificial neural networks: ANNs are networks of
interconnected artificial neurons, and are commonly
used for non-linear statistical data modeling to model

complex relationships between inputs and outputs. Sev-
eral good descriptions of neural networks are available
[7, 14].

3. Decision Table: Decision table typically constructs
rules involving different combinations of attributes, which
are selected using an attribute selection search method.
Simple decision table majority classifier [29] has been
shown to sometimes outperform state-of-the-art clas-
sifiers.

4. KStar: KStar [10] is a lazy instance-based classifier,
i.e., the class of a test instance is based upon the class
of those training instances similar to it, as determined
by some similarity function.

5. J48 decision tree: J48 (or C4.5) is a decision tree
based classifier. While constructing the decision tree,
the J48 algorithm [34] identifies the attribute that must
be used to split the tree further based on the notion of
information gain/gini impurity.

6. Reduced error pruning tree: Commonly known as
REPTree [42], it is a implementation of a fast decision
tree learner, which builds a decision/regression tree
using information gain/variance and prunes it using
reduced-error pruning.

7. Random forest: The Random Forest [9] classifier
consists of multiple decision trees. The final class of an
instance in a Random Forest is assigned by outputting
the class that is the mode of the outputs of individual
trees, which can produce robust and accurate classifi-
cation, and ability to handle a very large number of
input variables.

8. Alternating decision tree: ADTree [15] is decision
tree classifier which supports only binary classification.
It consists of two types of nodes: decision nodes (speci-
fying a predicate condition, like ’age’ > 45) and predic-
tion nodes (containing a single real-value number). An
instance is classified by following all paths for which all
decision nodes are true and summing the values of any
prediction nodes that are traversed.

9. Decision stump: A decision stump [42] is a weak
tree-based machine learning model consisting of a single-
level decision tree with a categorical or numeric class
label. Decision stumps are usually used in ensemble
machine learning techniques.

10. M5 Model Trees: M5 Model Trees [41] are a recon-
struction of Quinlan’s M5 algorithm [35] for inducing
trees of regression models, which combines a conven-
tional decision tree with the option of linear regression
functions at the nodes.

11. Naive Bayes: The naive bayes classifier [18] is a
simple probabilistic classifier that is based upon the
Bayes theorem. This classifier makes strong assump-
tions about the independence of the input features,
which may not always be true.

12. Bayesian Network: A Bayesian network is a graphi-
cal model that encodes probabilistic relationships among
a set of variables, representing a set of random vari-
ables and their conditional dependencies via a directed
acyclic graph (DAG).



13. Logistic Regression: Logistic Regression [22] is used
for prediction of the probability of occurrence of an
event by fitting data to a sigmoidal S-shaped logistic
curve. Logistic regression is often used with ridge es-
timators [30] to improve the parameter estimates and
to reduce the error made by further predictions.

14. AdaBoost: AdaBoost [16] is a commonly used ensem-
bling technique for boosting a nominal class classifier.
In general, boosting can be used to significantly reduce
the error of any weak learning algorithm that consis-
tently generates classifiers which need only be a little
bit better than random guessing.

15. LogitBoost: The LogitBoost algorithm is an ensem-
bling technique implementation of additive logistic re-
gression which performs classification using a regres-
sion scheme as the base learner, and can handle multi-
class problems. In [17], the authors explain the theo-
retical connection between Boosting and additive mod-
els.

16. Bagging: Bagging [8] is a meta-algorithm to improve
the stability of classification and regression algorithms
by reducing variance. Bagging is usually applied to
decision tree models to boost their performance.

17. Random subspace: The Random Subspace classi-
fier [21] constructs a decision tree based classifier con-
sisting of multiple trees, which are constructed system-
atically by pseudo-randomly selecting subsets of fea-
tures, trying to achieve a balance between overfitting
and achieving maximum accuracy.

18. Rotation Forest: Rotation forest [36] is a method
for generating classifier ensembles based on feature ex-
traction, which can work both with classification and
regression base learners. The training data for a the
base classifier is created by applying Principal Compo-
nent Analysis (PCA) [25] to K subsets of the feature
set, followed by K axis rotations to form the new fea-
tures for the base learner, to encourage simultaneously
individual accuracy and diversity within the ensemble.

3.2 Feature Selection
We used 2 feature selection techniques in this study - first

to find a subset of features from the available feature set,
and then to evaluate the predictive potential of the each of
the attribute in the resulting subset of features.

1. Correlation Feature Selection (CFS): CFS is used
to identify a subset of features highly correlated with
the class variable and weakly correlated amongst them
[19]. CFS was used in conjunction with a greedy step-
wise search to find a subset with best average merit.

2. Information Gain: This is used to assess the rela-
tive predictive power of the predictor attributes, which
evaluates the worth of an attribute by measuring the
information gain with respect to the outcome status:
IG(Class,Attrib) = H(Class)−H(Class|Attrib), where
H(.) denotes the information entropy.

4. ACS NSQIP DATA
The developmental history and current details of ACS

NSQIP, including sampling strategy, data abstraction pro-
cedures, variables collected, outcomes, and structure are de-
scribed elsewhere [2, 1, 6, 26, 27, 28, 23]. In brief, hos-
pitals collect standardized and audited data on patient de-
mographics, preoperative risk factors, laboratory values, op-
erative variables, and postoperative complications. Trained
Surgical Clinical Reviewers (SCR) using standard ACS NSQIP
tools and definitions gather data based on established time-
lines. Patients are followed for postoperative outcomes for
30 days after the index operation irrespective of whether the
patient is an inpatient, has been discharged to their home
or another facility, or has been readmitted to another hos-
pital. Data definitions are rigorous and standardized across
all participating institutions [38].

Postoperative outcomes assessed in this study were mor-
tality, serious morbidity, and overall morbidity. Serious mor-
bidity was defined as the occurrence of any one of the fol-
lowing surgical or medical complications: stroke or cere-
brovascular accident, coma (lasting greater than 24 hours),
peripheral nerve injury, myocardial infarction, cardiac ar-
rest, pneumonia, ventilation dependence (greater than 48
hours), reintubation, acute renal insufficiency or failure, ve-
nous thromboembolism, sepsis or septic shock, organ space/
deep surgical site infection (SSI), wound dehiscence, graft
failure or postoperative bleeding requiring a blood transfu-
sion. Overall morbidity was defined as the occurrence of any
of the above-mentioned adverse events with the addition of
superficial SSI or urinary tract infection. Patients were pre-
cluded from being categorized as having the following com-
plications if the condition was documented preoperatively:
SSI, pneumonia, ventilator dependence, reintubation or re-
nal insufficiency/failure.
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Figure 1: Prediction performance comparison for
30-day mortality in terms of area under the ROC
curve (c-statistic).

5. EXPERIMENTS AND RESULTS
In our experiments, we used the WEKA toolkit 3.6.7 for

data mining [20]. 3-fold cross-validation was used for eval-
uation. Area under the ROC curve, or c-statistic was used
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Figure 2: Prediction performance comparison for
30-day serious morbidity in terms of area under the
ROC curve (c-statistic).
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Figure 3: Prediction performance comparison for
30-day overall morbidity in terms of area under the
ROC curve (c-statistic).

as the metric for evaluation.
Figures 1, 2, and 3 present the results on 15 classification

schemes for the three post-operative adverse outcomes of 30-
day mortality, 30-day serious morbidity, and 30-day overall
morbidity respectively. The 15 classification schemes shown
here vary for the three outcomes and consist of most of the
popular classifiers. For each of the ensembling techniques,
many underlying classfiers were tried but only the one with
the best c-statistic is shown in these figures. Blue bars rep-
resent the results with the entire set of 23 attributes, and red
bars represent the results with the reduced set after feature
selection. As described earlier, the original dataset consisted
of 23 attribues. Using CFS technique for feature selection
yielded a subset of 6, 5, and 5 features for the post-operative
outcomes of mortality, serious morbidity, and overall mor-
bidity respectively.
In each of the figures, the technique that resulted in the

best c-statistic is placed at extreme right. The number on

top of the each bar is the corresponding c-statistic. The
numbers in brown represent that the c-statistic is signifi-
cantly lower than the best model at p=0.05. Other numbers
in black indicate that the performance is not statistically dis-
tinguishable from the best model at p=0.05. As is evident
from these figures, there are many classification schemes that
perform comparably well for these outcomes. For 30-day
mortality, Rotation Forest with ADTrees as the underlying
classifier gives the best c-statistic of 0.905 with 23 attributes,
and of 0.88 with 6 attributes. For 30-day serious morbodity,
LogitBoost with M5 model tree as the underlying classifier
gives the best c-statistic of 0.771 with 23 attributes, and of
0.757 with 5 attributes. For 30-day overall morbidity, again
LogitBoost with M5 model tree as the underlying classifier
gives the best c-statistic of 0.737 with 23 attributes, and of
0.727 with 5 attributes.

Figure 4 presents the relative predictive power of the re-
sulting smaller subset of attributes identified by CFS for
each of the three post-operative adverse outcomes. There
are 7 distinct attributes across the final attribuets used in
the three models: American Society of Anesthesiology (ASA)
class (1 or 2, 3, 4 or 5), sepsis/septic shock, emergency pro-
cedure, ventilator dependence, functional status (indepen-
dent, partially dependent, totally dependent), acute renal
failure and the procedural group. The procedural groups
were defined based on the principal Current Procedural Ter-
minology [4] (CPT) code, and categorized into the following
clinically meaningful groups: partial laparoscopy with anas-
tomosis, partial laparoscopy with ostomy, partial open with
anastomosis, partial open with ostomy, total laparoscopy
with ostomy, total open with ostomy. These findings are
important given the interest in determining a small set of
attributes that are important for multiple outcomes.

6. CONCLUSION AND FUTURE WORK
In this workshop paper, we present our preliminary re-

sults of data mining on ACS NSQIP data on colon surgical
outcomes. We evaluated nearly 50 classification schemes for
each of the three post-operative outcomes - mortality, seri-
ous morbidity, and overall morbidity, all within 30 days of
surgery. c-statistic of up to 0.905, 0.771, and 0.737 were
achieved for the three outcomes respectively. Further, fea-
ture selection techniques were able to significantly reduce the
number of attributes in the model, incurring a minimal cost
in c-statistic (0.88, 0.757, and 0.727 respectively). Given the
prediction quality, we believe that the resulting models can
be very useful to not only accurately estimate risk of post-
operative adverse outcomes, but also aid doctors in decision
making and improve informed patient consent by providing
a better understanding of the risks involved in a particular
treatment procedure, based on patient-specific attributes.
Accurate risk prediction can potentially also save valuable
resources by avoiding high risk procedures that may not be
necessary for a particular patient.

Future work includes developing more complex models
for the studied outcomes, and also exploring conditional
outcome models using some intra-operative and/or post-
operative outcomes (e.g. risk of 30-day mortality/morbidity,
given that the patient has (not) suffered serious/overall mor-
bidity within 5 days of surgery), and exploring the use of
undersampling/oversampling to deal with unbalanced data.
We also plan to do similar analysis for other types of surg-
erical operations using both ACS NSQIP data and other
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Figure 4: Relative information gain of features resulting from the CFS technique for (a) 30-day mortality,
(b) 30-day serious morbidity, and (c) 30-day overall morbidity

available data. Finally, we would also like to integrate the
current and future work into healthcare and clinical decision
making in practice. One possible way to do so is to develop
risk calculators for different types of outcomes.
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